LECTURE 2: REPRESENTATIONS OF SYMMETRIC GROUPS, II

IVAN LOSEV

1. INTRODUCTION

Recall that last time we have introduced the set of weights $Wt(n) \subset \mathbb{C}^n$ and an equivalence relation \sim on Wt(n). Our goal is to describe this set and this equivalence relation – the equivalence classes are in a natural bijection with $Irr(S_n)$. The first step here is as follows. Pick a path $P = V^1 \rightarrow V^2 \rightarrow \ldots \rightarrow V^n$ in the branching graph and an integer k with 1 < k < n. We fix all vertices but V^k and vary V^k . The questions that we are going to answer: how many paths do we get? What is the relation between their weights? Let Path(P,k) be the resulting set of paths and $V_{P,k}^n := Span(v_{P'}|P' \in Path(P,k))$. We will see that $V_{P,k}^n$ is an irreducible $Z_{k-1}(k+1)$ -submodule in V^n , where, recall, $Z_{k-1}(k+1)$ stands for the centralizer of $\mathbb{C}S_{k-1}$ inside $\mathbb{C}S_{k+1}$. Next, we will construct the degenerate affine Hecke algebra $\mathcal{H}(2)$ and its homomorphism to $Z_{k-1}(k+1)$ so that $V_{P,k}^n$ becomes an irreducible $\mathcal{H}(2)$ -module. We will obtain a complete classification of the finite dimensional irreducible $\mathcal{H}(2)$ -modules. This will ultimately allow us to describe the set Wt(n) and \sim .

2. Degenerate Affine Hecke Algebras

2.1. Comparing $V_{P,k}^n$ to $\operatorname{Hom}_{S_{k-1}}(V^{k-1}, V^{k+1})$. Recall that the space $\operatorname{Hom}_{S_{k-1}}(V^{k-1}, V^{k+1})$ has a basis $\varphi_{\underline{P}}$, where \underline{P} runs over $\operatorname{Path}(V^{k-1}, V^{k+1})$. The space $V_{P,k}^n$ has a basis indexed by the same set, $v_{P_1\underline{P}P_2}$, where $P_1 = V^1 \to \ldots \to V^{k-1}, P_2 = V^{k+1} \to \ldots \to V^n$ are the fixed parts of the paths in $\operatorname{Path}(P, k)$.

Lemma 2.1. The map ψ : Hom_{S_{k-1}} $(V^{k-1}, V^{k+1}) \to V^n$ given by $\varphi \mapsto \varphi_{P_2} \circ \varphi(v_{P_1})$ is a $Z_{k-1}(k+1)$ -equivariant embedding whose image coincides with $V_{P_k}^n$.

Proof. By Remark 3.2 in Lecture 1 (concatenation of paths gives the composition of homomorphisms), $v_{P_1\underline{P}P_2}$ is proportional to $\varphi_{P_2}(\varphi_{\underline{P}}(v_{P^1}))$. This shows that ψ is an embedding whose image coincides with $V_{P,k}^n$. It remains to check that it is $Z_{k-1}(k+1)$ -equivariant. Note that φ_{P_2} is $\mathbb{C}S_{k+1}$ -equivariant and hence is $Z_{k-1}(k+1)$ -equivariant. By Remark 2.3 in Lecture 1, we have $[z \cdot \varphi](u) = z \cdot \varphi(u)$ for $z \in Z_{k-1}(k+1), \varphi \in \operatorname{Hom}_{S_{k-1}}(V^{k-1}, V^{k+1})$ and $u \in V^{k-1}$. This implies the $Z_{k-1}(k+1)$ -equivariance of ψ .

Recall the Jucys-Murphy elements $L_m = \sum_{i=1}^{m-1} (im)$. We have $L_k, L_{k+1}, (k, k+1) \in \mathbb{Z}_{k-1}(k+1)$.

Corollary 2.2. The subspace $V_{P,k}^n$ is stable under $L_k, L_{k+1}, (k, k+1)$ (the latter stands for the transposition of k, k+1) and has no proper stable subspaces.

Proof. Recall, Theorem 2.4 from Lecture 1, that $Z_{k-1}(k+1)$ is generated by $Z_{k-1}(k-1)$, L_k , L_{k+1} , (k, k+1). By (1) of Corollary 2.5 of Lecture 1, $Z_{k-1}(k-1)$ is in the center of $Z_{k-1}(k+1)$. So elements of $Z_{k-1}(k-1)$ act by scalars on any irreducible $Z_{k-1}(k+1)$ -module U. So U is irreducible with respect to L_k , L_{k+1} , (k, k+1). Since $V_{P,k}^n$ is an irreducible $Z_{k-1}(k+1)$ -module, we are done.

2.2. Degenerate affine Hecke algebra $\mathcal{H}(2)$. Corollary 2.2 motivates us to find relations between $L_k, L_{k+1}, (k, k+1)$. Then we can form an associative algebra with three generators corresponding to $L_k, L_{k+1}, (k, k+1)$ and relations we have found, the space $V_{P,k}^n$ will be an irreducible module over this algebra.

Lemma 2.3. We have the following relations

(2.1)
$$L_k L_{k+1} = L_{k+1} L_k$$
, $(k, k+1)^2 = 1$, $(k, k+1) L_k = L_{k+1} (k, k+1) - 1$.

Proof. The element L_{k+1} commutes with $\mathbb{C}S_k$ and hence with $L_k \in \mathbb{C}S_k$. This gives the first relation. The second relation is obvious. The left hand side of the third relation is

$$(k,k+1)\sum_{i=1}^{k-1}(ik) = \sum_{i=1}^{k-1}(k,k+1)(ik) = \sum_{i=1}^{k-1}(i,k,k+1).$$

The right hand side is

$$\left(\sum_{i=1}^{k} (i,k+1)\right)(k,k+1) - 1 = \sum_{i=1}^{k+1} (i,k+1)(k,k+1) - 1 = \sum_{i=1}^{k-1} (i,k,k+1) + (k,k+1)^2 - 1 = \sum_{i=1}^{k-1} (i,k,k+1).$$

These computations prove the third relation.

Define the degenerate affine Hecke algebra $\mathcal{H}(2)$ by generators X_1, X_2, T and relations that mirror those found in Lemma 2.1.

$$X_1X_2 = X_2X_1, T^2 = 1, TX_1 = X_2T - 1.$$

There is a consequence of these relations: $X_1T = TX_2 - 1$ (multiply the third relation by T both from the left and from the right).

Our conclusion is that we have a unique homomorphism $\mathcal{H}(2) \to Z_{k-1}(k+1)$ given on generators by $X_1 \mapsto L_k, X_2 \mapsto L_{k+1}, T \mapsto (k, k+1)$.

Corollary 2.4. The space $V_{P,k}^n$ is an irreducible $\mathcal{H}(2)$ -module.

2.3. Classification of irreducible $\mathcal{H}(2)$ -modules. Let us classify the finite dimensional irreducible $\mathcal{H}(2)$ -modules M.

Since X_1, X_2 commute, they have a common eigenvector $m \in M$. Let $X_1m = am, X_2m = bm$, where $a, b \in \mathbb{C}$.

Let us consider two cases:

1) Tm is proportional to m. Since $T^2 = 1$, we have two options:

1.1) Tm = m. Let us apply the third relation to m. The left hand side gives $TX_1m = am$, while the right hand side gives $(X_2T - 1)m = (b - 1)m$, so here b = a + 1.

1.2) Tm = -m. Similarly to the previous case, we get b = a - 1.

2) m and Tm are linearly independent. Let us see how X_1, X_2 act on Tm:

$$X_1(Tm) = [X_1T = TX_2 - 1] = TX_2m - m = b(Tm) - m,$$

$$X_2(Tm) = [X_2T = TX_1 + 1] = TX_1m + m = a(Tm) + m.$$

(2.2)
$$T \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, X_1 \mapsto \begin{pmatrix} a & 0 \\ -1 & b \end{pmatrix}, X_2 \mapsto \begin{pmatrix} b & 0 \\ 1 & a \end{pmatrix}.$$

In particular, we see that, in case 2), two modules M, M' that give the same pair of eigenvalues a, b are isomorphic. Note that if $b = a \pm 1$, then (2.2) give a reducible module. Indeed, assume in the sake of being definite, that b = a+1. Then the line $\mathbb{C}(m+Tm)$ is a submodule, and our 2-dimensional module is a non-split extension of the 1-dimensional modules in 1.1) and 1.2). In particular, the pair (a, b) of eigenvalues for X_1, X_2 determines any irreducible $\mathcal{H}(2)$ -module uniquely up to an isomorphism. Let us denote the corresponding module by M(a, b).

Note that if $a \neq b, b \pm 1$, then dim M(a, b) = 2 and the action of X_1, X_2 on M(a, b) is diagonalizable, as X_1 has distinct eigenvalues and X_2 commutes with X_1 . The pairs of eigenvalues that appear are (a, b) and (b, a). It follows that $M(a, b) \cong M(b, a)$. Moreover, if M(a, b) = M(a', b') and $(a, b) \neq (a', b')$, then $b \neq a \pm 1$, and a' = b, b' = a.

We arrive at the following classification result.

Proposition 2.5. The finite dimensional irreducible $\mathcal{H}(2)$ -modules are classified by pairs of complex numbers, $(a, b) \mapsto M(a, b)$, with $M(a, b) \cong M(b, a)$ if $b \neq a, a \pm 1$. The pair (a, b) is a pair of simultaneous eigenvalues of X_1, X_2 in M(a, b). Moreover, the following is true.

- (1) If b = a + 1, then $M(a, b) = \mathbb{C}$ with $T \mapsto 1, X_1 \mapsto a, X_2 \mapsto b$.
- (2) If b = a 1, then $M(a, b) = \mathbb{C}$ with $T \mapsto -1, X_1 \mapsto a, X_2 \mapsto b$.
- (3) If $b \neq a \pm 1$, then formulas (2.2) define an irreducible representation, and this is M(a,b).
- (4) The action of X_1, X_2 on M(a, b) is diagonalizable if and only if $a \neq b$.

2.4. Algebras $\mathcal{H}(d)$. One can define the algebra $\mathcal{H}(d)$ for all $d \ge 1$. It is generated by generators $X_1, \ldots, X_d, T_1, \ldots, T_{d-1}$ with relations:

$$X_i X_j = X_j X_i,$$

$$T_i^2 = 1, \quad T_i T_j = T_j T_i, \text{ for } |i - j| > 1, \quad T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$$

$$X_i T_j = T_j X_i, \text{ for } i - j \neq 0, 1, \quad T_i X_i = X_{i+1} T_i - 1.$$

Note that in the second line we have precisely the relations for the transpositions $(i, i+1) \in \mathbb{C}S_n, i = 1, \ldots, n-1$. So the map $(i, i+1) \mapsto T_i$ extends to an algebra homomorphism $\mathbb{C}S_d \to \mathcal{H}(d)$. We also have an algebra homomorphism $\mathbb{C}[X_1, \ldots, X_d] \to \mathcal{H}(d)$ given in an obvious way.

Also note that we have a homomorphism $\mathcal{H}(d) \to Z_{n-d}(n)$ with $X_i \mapsto L_{n-d+i}, T_i \mapsto (n-d+i, n-d+i+1)$. In particular, $\mathbb{C}S_n$ is a quotient of $\mathcal{H}(n)$ by the two-sided ideal generated by X_1 , the element X_i gets mapped to L_i . The algebra $\mathcal{H}(d)$ first appeared in connection with Yangians, [D], and then was used to study the representations of the usual affine Hecke algebra, [L], that, in its turn, arises in the study of the representations of $\mathrm{GL}(\mathbb{Q}_p)$.

A classification of the finite dimensional irreducible $\mathcal{H}(d)$ -modules and a computation of their dimensions is known but isn't easy, formulas will be in terms of so called Kazhdan-Lusztig polynomials, see [BK].

IVAN LOSEV

3. Completion of classification

3.1. Consequences for weights. Here we are going to get some restrictions for $w_{P'}$, where $P' \in \mathsf{Path}(P,k)$. Let $w_P = (w_1, \ldots, w_n)$ and $w_{P'} = (w'_1, \ldots, w'_n)$. Recall (Lemma 3.3 of Lecture 1) that w'_i is completely determined by V'_i and V'_{i-1} . Since $V'_i = V_i$ when $i \neq k$, we see that $w'_i = w_i$ if $i \neq k, k+1$.

Below we are going to use the following notation. We write s_i for $(i, i + 1) \in S_n$. For $x := (x_1, \ldots, x_n) \in \mathbb{C}^n$, we write $s_i x$ for $(x_1, \ldots, x_{i+1}, x_i, \ldots, x_n)$.

Proposition 3.1. Let P be a path of length n. The following is true:

- (a) If $w_k \neq w_{k+1} \pm 1$, then $s_k w_P$ is a weight equivalent to w_P .
- (b1) $w_1 = 0.$
- (b2) $w_k \neq w_{k+1}$ for any k.
- (b3) If $w_k = w_{k+2}$, then $w_{k+1} \neq w_k \pm 1$.

Proof. The proof is based on the observation that if $P' \in \mathsf{Path}(P, k)$, then $V_{P,k}^n \cong M(w'_k, w'_{k+1})$, an isomorphism of $\mathcal{H}(2)$ -modules, where on the left hand side the structure of the module is given by $X_1 \mapsto L_k, X_2 \mapsto L_{k+1}, T \mapsto (k, k+1)$. So we can use Proposition 2.5.

In the situation of (a), the module $M(w_k, w_{k+1})$ is two-dimensional. So $\mathsf{Path}(P, k)$ consists of two elements, P and $P' \neq P$. Since $M(w'_k, w'_{k+1}) \cong V_{P,k}^n \cong M(w_k, w_{k+1})$, we use (3) of Proposition 2.5 to see that $w'_k = w_{k+1}, w'_{k+1} = w_k$. This proves (a).

(b1) follows from $L_1 = 0$.

To prove (b2), we note that the action of X_1, X_2 on $V_{P,k}^n \cong M(w_k, w_{k+1})$ is diagonalizable. So $w_k \neq w_{k+1}$ by (4) of Proposition 2.5.

Let us prove (b3). Assume the converse, say, $w_k = w_{k+2} = w_{k+1} - 1$. Then $\mathbb{C}v_P \cong M(w_k, w_k + 1)$ via $X_1 \mapsto L_k, X_2 \mapsto L_{k+1}, T \mapsto (k, k+1)$. In particular, $(k, k+1)v_P = v_P$. Similarly, $(k+1, k+2)v_P = -v_P$. But (k+1, k)(k+1, k+2)(k, k+1) = (k+1, k+2)(k, k+1)(k+1, k+2) in S_n . Applying the two sides to v_P , we arrive at $-v_P = v_P$. Contradiction.

3.2. Combinatorial weights and combinatorial equivalence. Motivated by (a), define an equivalence relation \sim_c (combinatorial equivalence) on \mathbb{C}^n by $x \sim y$ if y is obtained from x by a sequence of permutations of adjacent elements whose difference is not ± 1 (we call such a permutation *admissible*). We define the subset $\mathsf{CWt}(n) \subset \mathbb{C}^n$ (combinatorial weights) as the set of all x such that any y with $y \sim_c x$ satisfies (b1)-(b3). The next lemma follows from Proposition 2.5.

Lemma 3.2. Wt(n) is the union of some equivalence classes for \sim_c in CWt(n). Moreover, for $w, w' \in Wt(n)$, we have $w \sim_c w' \Rightarrow w \sim w'$.

Note that $\mathsf{CWt}(n) \subset \mathbb{Z}^n$.

We are going to embed the set of equivalence classes $\mathsf{CWt}(n)/\sim_c \operatorname{into} \mathcal{P}(n)$, the set of partitions on n. This is done by reducing an element of $\mathsf{CWt}(n)$ to a "normal form". We say that an element $x \in \mathsf{CWt}(n)$ is normal if it has the form

$$(0, 1, \ldots, n_1, -1, 0, \ldots, n_2, -2, \ldots, n_3, \ldots),$$

where $n_1 + 1 \ge n_2 + 2 \ge \ldots \ge 0$.

Proposition 3.3. For any $y \in CWt(n)$, there exists a unique normal $x \in CWt(n)$ with $y \sim_c x$.

Proof. Let n_1 be the maximal entry in y. We can find $y' \sim_c y$ such that $y'_k = n_1$ and $y'_{k+1}, \ldots, y'_n < n_1$, while there is no other $z \sim_c y$ with $z_k, \ldots, z_n < n_1$ (the maximal entries in y' are as far to the left as possible). We claim that $k = n_1 + 1$ and $y_i = i - 1$ for $i \leq k$. Indeed, if $y'_{k-1} \neq n_1 - 1$, then we can switch y'_{k-1} and y'_k (here we use (b2)), etc.

Then we freeze the first $n_1 + 1$ entries in y' (we no longer permute them) and pick the maximal unfrozen entry n_2 in y'. Again, consider y'', where the entries n_2 are as far to the left as possible (with the first $n_1 + 1$ entries frozen). Similarly to the previous paragraph, y'' starts with $0, 1, \ldots, n_1, a, a + 1, \ldots, n_2$. If a < -1, then we can move a all the way to the left and get a contradiction with (b1). If a > -1, then we can move it the left until we get a segment a, a + 1, a, which contradicts (b3). So a = -1.

Then we freeze the first $(n_1 + 1) + (n_2 + 2)$ entries and repeat the argument. This shows the existence of x.

Uniqueness follows from the observation that n_1 is the maximal element of y_1, \ldots, y_n, n_2 is maximal after removing $0, 1, \ldots, n_1$, etc.

3.3. Young diagrams and tableaux, finally. Partitions of n that are often depicted as Young diagrams, the following diagram corresponds to the partition 5 = 3 + 2.

Define a map $\mathsf{CWt}(n)/\sim_c \to \mathcal{P}(n)$ by sending x to the partition with parts $(n_1+1), (n_2+2)$, where n_1, n_2 , etc., are as in Proposition 3.3. By the uniqueness part of that proposition, our map is an embedding. The following theorem completes the classification of $\mathrm{Irr}(S_n) =$ $\mathrm{Wt}(n)/\sim$.

Theorem 3.4. We have $Wt(n) = CWt(n), \sim = \sim_c and CWt(n) / \sim_c \xrightarrow{\sim} \mathcal{P}(n)$.

Proof. We have a surjection $Wt(n) / \sim_c \twoheadrightarrow Wt(n) / \sim$ and embeddings

$$(\mathsf{Wt}(n)/\sim_c) \hookrightarrow (\mathsf{CWt}(n)/\sim_c) \hookrightarrow \mathcal{P}(n).$$

Therefore we get the following chain of inequalities:

$$|\mathsf{Wt}(n)/\sim|\leqslant|\mathsf{Wt}(n)/\sim_c|\leqslant|\mathsf{CWt}(n)/\sim_c|\leqslant|\mathcal{P}(n)|$$

By Introduction to Lecture 1, $|\operatorname{Irr}(S_n)| = |\mathsf{Wt}(n)/ \sim | = |\mathcal{P}(n)|$. So all these embeddings and a surjection are bijections.

Now let us relate Wt(n) to the set of standard Young tableaux SYT(n). Recall that a standard Young tableaux on a Young diagram λ with n boxes is a filling of λ with numbers from 1 to n that strictly increase bottom to top and left to right. For example, these two fillings are examples of Young tableaux of shape (3, 2).

4	5		3	5	
1	2	3	1	2	4

To a Young tableaux T we assign its *content* as follows. Let (x_i, y_i) be the coordinate of the box numbered by i. Then the content c(T) of T is, by definition, $(x_1 - y_1, x_2 - y_2, \ldots, x_n - y_n)$. The following two collections are contents of the tableaux in the previous example: (0, 1, 2, -1, 0) and (0, 1, -1, 2, 0). **Proposition 3.5.** The map $T \mapsto c(T)$ is a bijection $SYT(n) \to Wt(n)$ that intertwines the surjections $SYT(n) \twoheadrightarrow \mathcal{P}(n)$ (taking the shape) and $Wt(n) \twoheadrightarrow \mathcal{P}(n)$.

Proof. We can define an admissible permutation of k and k+1 in a tableaux T: it permutes k and k+1 if the result is still a tableau. For example, the two tableaux above are obtained from one another by permuting 3 and 4.

The admissible permutations give rise to an equivalence relation \sim_c on $\mathsf{SYT}(n)$. Clearly, an admissible permutation of k, k+1 in T corresponds to the admissible permutation s_k of c(T). It is not hard to show that c(T) satisfies conditions (b1)-(b3). So c(T) is indeed an element of $\mathsf{CWt}(n)$ and the image of c is the union of equivalence classes for \sim_c .

We can define normal Young tableaux, where we fill the first row by numbers from 1 to some n_1 , then the second row by the numbers from $n_1 + 1$ to $n_1 + n_2$, etc., for example, the first tableau above is normal. Clearly, if T is normal, then so is c(T). From Proposition 3.3, it follows that c is surjective. On the other hand, it is easy to check that c is injective.

References

- [BK] J. Brundan, A. Kleshchev. The degenerate analogue of Ariki's categorification theorem. Math. Z. 266 (2010), no. 4, 877-919. arXiv:0901.0057.
- [D] V. Drinfeld. Degenerate affine Hecke algebra and Yangians. Funktsional. Anal. i Prilozh., 20 (1986), 69-70.
- [L] G. Lusztig. Affine Hecke algebras and their graded version. J. Amer. Math. Soc. 2 (1989), no. 3, 599635.