LECTURE 2: REPRESENTATIONS OF SYMMETRIC GROUPS, II

IVAN LOSEV

1. Introduction

Recall that last time we have introduced the set of weights $\mathrm{Wt}(n) \subset \mathbb{C}^{n}$ and an equivalence relation \sim on $\mathrm{Wt}(n)$. Our goal is to describe this set and this equivalence relation - the equivalence classes are in a natural bijection with $\operatorname{Irr}\left(S_{n}\right)$. The first step here is as follows. Pick a path $P=V^{1} \rightarrow V^{2} \rightarrow \ldots \rightarrow V^{n}$ in the branching graph and an integer k with $1<k<n$. We fix all vertices but V^{k} and vary V^{k}. The questions that we are going to answer: how many paths do we get? What is the relation between their weights? Let $\operatorname{Path}(P, k)$ be the resulting set of paths and $V_{P, k}^{n}:=\operatorname{Span}\left(v_{P^{\prime}} \mid P^{\prime} \in \operatorname{Path}(P, k)\right)$. We will see that $V_{P, k}^{n}$ is an irreducible $Z_{k-1}(k+1)$-submodule in V^{n}, where, recall, $Z_{k-1}(k+1)$ stands for the centralizer of $\mathbb{C} S_{k-1}$ inside $\mathbb{C} S_{k+1}$. Next, we will construct the degenerate affine Hecke algebra $\mathcal{H}(2)$ and its homomorphism to $Z_{k-1}(k+1)$ so that $V_{P, k}^{n}$ becomes an irreducible $\mathcal{H}(2)$-module. We will obtain a complete classification of the finite dimensional irreducible $\mathcal{H}(2)$-modules. This will ultimately allow us to describe the set $\mathrm{Wt}(n)$ and \sim.

2. Degenerate affine Hecke algebras

2.1. Comparing $V_{P, k}^{n}$ to $\operatorname{Hom}_{S_{k-1}}\left(V^{k-1}, V^{k+1}\right)$. Recall that the space $\operatorname{Hom}_{S_{k-1}}\left(V^{k-1}, V^{k+1}\right)$ has a basis $\varphi_{\underline{P}}$, where \underline{P} runs over $\operatorname{Path}\left(V^{k-1}, V^{k+1}\right)$. The space $V_{P, k}^{n}$ has a basis indexed by the same set, $v_{P_{1} \underline{\underline{P}} P_{2}}$, where $P_{1}=V^{1} \rightarrow \ldots \rightarrow V^{k-1}, P_{2}=V^{k+1} \rightarrow \ldots \rightarrow V^{n}$ are the fixed parts of the paths in $\operatorname{Path}(P, k)$.
Lemma 2.1. The map $\psi: \operatorname{Hom}_{S_{k-1}}\left(V^{k-1}, V^{k+1}\right) \rightarrow V^{n}$ given by $\varphi \mapsto \varphi_{P_{2}} \circ \varphi\left(v_{P_{1}}\right)$ is a $Z_{k-1}(k+1)$-equivariant embedding whose image coincides with $V_{P, k}^{n}$.

Proof. By Remark 3.2 in Lecture 1 (concatenation of paths gives the composition of homomorphisms), $v_{P_{1} \underline{P} P_{2}}$ is proportional to $\varphi_{P_{2}}\left(\varphi_{\underline{P}}\left(v_{P^{1}}\right)\right)$. This shows that ψ is an embedding whose image coincides with $V_{P, k}^{n}$. It remains to check that it is $Z_{k-1}(k+1)$-equivariant. Note that $\varphi_{P_{2}}$ is $\mathbb{C} S_{k+1}$-equivariant and hence is $Z_{k-1}(k+1)$-equivariant. By Remark 2.3 in Lecture 1, we have $[z \cdot \varphi](u)=z \cdot \varphi(u)$ for $z \in Z_{k-1}(k+1), \varphi \in \operatorname{Hom}_{S_{k-1}}\left(V^{k-1}, V^{k+1}\right)$ and $u \in V^{k-1}$. This implies the $Z_{k-1}(k+1)$-equivariance of ψ.

Recall the Jucys-Murphy elements $L_{m}=\sum_{i=1}^{m-1}(i m)$. We have $L_{k}, L_{k+1},(k, k+1) \in$ $Z_{k-1}(k+1)$.
Corollary 2.2. The subspace $V_{P, k}^{n}$ is stable under $L_{k}, L_{k+1},(k, k+1)$ (the latter stands for the transposition of $k, k+1$) and has no proper stable subspaces.
Proof. Recall, Theorem 2.4 from Lecture 1, that $Z_{k-1}(k+1)$ is generated by $Z_{k-1}(k-$ 1), $L_{k}, L_{k+1},(k, k+1)$. By (1) of Corollary 2.5 of Lecture $1, Z_{k-1}(k-1)$ is in the center of $Z_{k-1}(k+1)$. So elements of $Z_{k-1}(k-1)$ act by scalars on any irreducible $Z_{k-1}(k+1)$ module U. So U is irreducible with respect to $L_{k}, L_{k+1},(k, k+1)$. Since $V_{P, k}^{n}$ is an irreducible $Z_{k-1}(k+1)$-module, we are done.
2.2. Degenerate affine Hecke algebra $\mathcal{H}(2)$. Corollary 2.2 motivates us to find relations between $L_{k}, L_{k+1},(k, k+1)$. Then we can form an associative algebra with three generators corresponding to $L_{k}, L_{k+1},(k, k+1)$ and relations we have found, the space $V_{P, k}^{n}$ will be an irreducible module over this algebra.

Lemma 2.3. We have the following relations

$$
\begin{equation*}
L_{k} L_{k+1}=L_{k+1} L_{k}, \quad(k, k+1)^{2}=1, \quad(k, k+1) L_{k}=L_{k+1}(k, k+1)-1 . \tag{2.1}
\end{equation*}
$$

Proof. The element L_{k+1} commutes with $\mathbb{C} S_{k}$ and hence with $L_{k} \in \mathbb{C} S_{k}$. This gives the first relation. The second relation is obvious. The left hand side of the third relation is

$$
(k, k+1) \sum_{i=1}^{k-1}(i k)=\sum_{i=1}^{k-1}(k, k+1)(i k)=\sum_{i=1}^{k-1}(i, k, k+1) .
$$

The right hand side is

$$
\begin{aligned}
& \left(\sum_{i=1}^{k}(i, k+1)\right)(k, k+1)-1=\sum_{i=1}^{k+1}(i, k+1)(k, k+1)-1= \\
& =\sum_{i=1}^{k-1}(i, k, k+1)+(k, k+1)^{2}-1=\sum_{i=1}^{k-1}(i, k, k+1) .
\end{aligned}
$$

These computations prove the third relation.
Define the degenerate affine Hecke algebra $\mathcal{H}(2)$ by generators X_{1}, X_{2}, T and relations that mirror those found in Lemma 2.1.

$$
X_{1} X_{2}=X_{2} X_{1}, T^{2}=1, T X_{1}=X_{2} T-1
$$

There is a consequence of these relations: $X_{1} T=T X_{2}-1$ (multiply the third relation by T both from the left and from the right).

Our conclusion is that we have a unique homomorphism $\mathcal{H}(2) \rightarrow Z_{k-1}(k+1)$ given on generators by $X_{1} \mapsto L_{k}, X_{2} \mapsto L_{k+1}, T \mapsto(k, k+1)$.

Corollary 2.4. The space $V_{P, k}^{n}$ is an irreducible $\mathcal{H}(2)$-module.
2.3. Classification of irreducible $\mathcal{H}(2)$-modules. Let us classify the finite dimensional irreducible $\mathcal{H}(2)$-modules M.

Since X_{1}, X_{2} commute, they have a common eigenvector $m \in M$. Let $X_{1} m=a m, X_{2} m=$ $b m$, where $a, b \in \mathbb{C}$.

Let us consider two cases:

1) $T m$ is proportional to m. Since $T^{2}=1$, we have two options:
1.1) $T m=m$. Let us apply the third relation to m. The left hand side gives $T X_{1} m=a m$, while the right hand side gives $\left(X_{2} T-1\right) m=(b-1) m$, so here $b=a+1$.
1.2) $T m=-m$. Similarly to the previous case, we get $b=a-1$.
2) m and $T m$ are linearly independent. Let us see how X_{1}, X_{2} act on $T m$:

$$
\begin{aligned}
& X_{1}(T m)=\left[X_{1} T=T X_{2}-1\right]=T X_{2} m-m=b(T m)-m, \\
& X_{2}(T m)=\left[X_{2} T=T X_{1}+1\right]=T X_{1} m+m=a(T m)+m .
\end{aligned}
$$

In particular, we see that $\operatorname{Span}(m, T m)$ is stable under $\mathcal{H}(2)$. Since M is irreducible, we see that m and $T m$ form a basis in M. In this basis, we have

$$
T \mapsto\left(\begin{array}{ll}
0 & 1 \tag{2.2}\\
1 & 0
\end{array}\right), X_{1} \mapsto\left(\begin{array}{cc}
a & 0 \\
-1 & b
\end{array}\right), X_{2} \mapsto\left(\begin{array}{cc}
b & 0 \\
1 & a
\end{array}\right) .
$$

In particular, we see that, in case 2), two modules M, M^{\prime} that give the same pair of eigenvalues a, b are isomorphic. Note that if $b=a \pm 1$, then (2.2) give a reducible module. Indeed, assume in the sake of being definite, that $b=a+1$. Then the line $\mathbb{C}(m+T m)$ is a submodule, and our 2-dimensional module is a non-split extension of the 1 -dimensional modules in 1.1) and 1.2). In particular, the pair (a, b) of eigenvalues for X_{1}, X_{2} determines any irreducible $\mathcal{H}(2)$-module uniquely up to an isomorphism. Let us denote the corresponding module by $M(a, b)$.

Note that if $a \neq b, b \pm 1$, then $\operatorname{dim} M(a, b)=2$ and the action of X_{1}, X_{2} on $M(a, b)$ is diagonalizable, as X_{1} has distinct eigenvalues and X_{2} commutes with X_{1}. The pairs of eigenvalues that appear are (a, b) and (b, a). It follows that $M(a, b) \cong M(b, a)$. Moreover, if $M(a, b)=M\left(a^{\prime}, b^{\prime}\right)$ and $(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$, then $b \neq a \pm 1$, and $a^{\prime}=b, b^{\prime}=a$.

We arrive at the following classification result.
Proposition 2.5. The finite dimensional irreducible $\mathcal{H}(2)$-modules are classified by pairs of complex numbers, $(a, b) \mapsto M(a, b)$, with $M(a, b) \cong M(b, a)$ if $b \neq a, a \pm 1$. The pair (a, b) is a pair of simultaneous eigenvalues of X_{1}, X_{2} in $M(a, b)$. Moreover, the following is true.
(1) If $b=a+1$, then $M(a, b)=\mathbb{C}$ with $T \mapsto 1, X_{1} \mapsto a, X_{2} \mapsto b$.
(2) If $b=a-1$, then $M(a, b)=\mathbb{C}$ with $T \mapsto-1, X_{1} \mapsto a, X_{2} \mapsto b$.
(3) If $b \neq a \pm 1$, then formulas (2.2) define an irreducible representation, and this is $M(a, b)$.
(4) The action of X_{1}, X_{2} on $M(a, b)$ is diagonalizable if and only if $a \neq b$.
2.4. Algebras $\mathcal{H}(d)$. One can define the algebra $\mathcal{H}(d)$ for all $d \geqslant 1$. It is generated by generators $X_{1}, \ldots, X_{d}, T_{1}, \ldots, T_{d-1}$ with relations:

$$
\begin{aligned}
& X_{i} X_{j}=X_{j} X_{i}, \\
& T_{i}^{2}=1, \quad T_{i} T_{j}=T_{j} T_{i} \text {, for }|i-j|>1, \quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \\
& X_{i} T_{j}=T_{j} X_{i}, \text { for } i-j \neq 0,1, \quad T_{i} X_{i}=X_{i+1} T_{i}-1 .
\end{aligned}
$$

Note that in the second line we have precisely the relations for the transpositions $(i, i+1) \in$ $\mathbb{C} S_{n}, i=1, \ldots, n-1$. So the map $(i, i+1) \mapsto T_{i}$ extends to an algebra homomorphism $\mathbb{C} S_{d} \rightarrow \mathcal{H}(d)$. We also have an algebra homomorphism $\mathbb{C}\left[X_{1}, \ldots, X_{d}\right] \rightarrow \mathcal{H}(d)$ given in an obvious way.

Also note that we have a homomorphism $\mathcal{H}(d) \rightarrow Z_{n-d}(n)$ with $X_{i} \mapsto L_{n-d+i}, T_{i} \mapsto$ $(n-d+i, n-d+i+1)$. In particular, $\mathbb{C} S_{n}$ is a quotient of $\mathcal{H}(n)$ by the two-sided ideal generated by X_{1}, the element X_{i} gets mapped to L_{i}. The algebra $\mathcal{H}(d)$ first appeared in connection with Yangians, [D], and then was used to study the representations of the usual affine Hecke algebra, [L], that, in its turn, arises in the study of the representations of $\mathrm{GL}\left(\mathbb{Q}_{p}\right)$.

A classification of the finite dimensional irreducible $\mathcal{H}(d)$-modules and a computation of their dimensions is known but isn't easy, formulas will be in terms of so called KazhdanLusztig polynomials, see [BK].

3. Completion of classification

3.1. Consequences for weights. Here we are going to get some restrictions for $w_{P^{\prime}}$, where $P^{\prime} \in \operatorname{Path}(P, k)$. Let $w_{P}=\left(w_{1}, \ldots, w_{n}\right)$ and $w_{P^{\prime}}=\left(w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right)$. Recall (Lemma 3.3 of Lecture 1) that w_{i}^{\prime} is completely determined by V_{i}^{\prime} and V_{i-1}^{\prime}. Since $V_{i}^{\prime}=V_{i}$ when $i \neq k$, we see that $w_{i}^{\prime}=w_{i}$ if $i \neq k, k+1$.

Below we are going to use the following notation. We write s_{i} for $(i, i+1) \in S_{n}$. For $x:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$, we write $s_{i} x$ for $\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)$.

Proposition 3.1. Let P be a path of length n. The following is true:
(a) If $w_{k} \neq w_{k+1} \pm 1$, then $s_{k} w_{P}$ is a weight equivalent to w_{P}.
(b1) $w_{1}=0$.
(b2) $w_{k} \neq w_{k+1}$ for any k.
(b3) If $w_{k}=w_{k+2}$, then $w_{k+1} \neq w_{k} \pm 1$.
Proof. The proof is based on the observation that if $P^{\prime} \in \operatorname{Path}(P, k)$, then $V_{P, k}^{n} \cong M\left(w_{k}^{\prime}, w_{k+1}^{\prime}\right)$, an isomorphism of $\mathcal{H}(2)$-modules, where on the left hand side the structure of the module is given by $X_{1} \mapsto L_{k}, X_{2} \mapsto L_{k+1}, T \mapsto(k, k+1)$. So we can use Proposition 2.5.

In the situation of (a), the module $M\left(w_{k}, w_{k+1}\right)$ is two-dimensional. So Path (P, k) consists of two elements, P and $P^{\prime} \neq P$. Since $M\left(w_{k}^{\prime}, w_{k+1}^{\prime}\right) \cong V_{P, k}^{n} \cong M\left(w_{k}, w_{k+1}\right)$, we use (3) of Proposition 2.5 to see that $w_{k}^{\prime}=w_{k+1}, w_{k+1}^{\prime}=w_{k}$. This proves (a).
(b1) follows from $L_{1}=0$.
To prove (b2), we note that the action of X_{1}, X_{2} on $V_{P, k}^{n} \cong M\left(w_{k}, w_{k+1}\right)$ is diagonalizable. So $w_{k} \neq w_{k+1}$ by (4) of Proposition 2.5.

Let us prove (b3). Assume the converse, say, $w_{k}=w_{k+2}=w_{k+1}-1$. Then $\mathbb{C} v_{P} \cong$ $M\left(w_{k}, w_{k}+1\right)$ via $X_{1} \mapsto L_{k}, X_{2} \mapsto L_{k+1}, T \mapsto(k, k+1)$. In particular, $(k, k+1) v_{P}=v_{P}$. Similarly, $(k+1, k+2) v_{P}=-v_{P}$. But $(k+1, k)(k+1, k+2)(k, k+1)=(k+1, k+$ $2)(k, k+1)(k+1, k+2)$ in S_{n}. Applying the two sides to v_{P}, we arrive at $-v_{P}=v_{P}$. Contradiction.
3.2. Combinatorial weights and combinatorial equivalence. Motivated by (a), define an equivalence relation \sim_{c} (combinatorial equivalence) on \mathbb{C}^{n} by $x \sim y$ if y is obtained from x by a sequence of permutations of adjacent elements whose difference is not ± 1 (we call such a permutation admissible). We define the subset $\mathrm{CWt}(n) \subset \mathbb{C}^{n}$ (combinatorial weights) as the set of all x such that any y with $y \sim_{c} x$ satisfies (b1)-(b3). The next lemma follows from Proposition 2.5.

Lemma 3.2. $\mathrm{Wt}(n)$ is the union of some equivalence classes for \sim_{c} in $\mathrm{CWt}(n)$. Moreover, for $w, w^{\prime} \in \mathbf{W t}(n)$, we have $w \sim_{c} w^{\prime} \Rightarrow w \sim w^{\prime}$.

Note that $\mathrm{CWt}(n) \subset \mathbb{Z}^{n}$.
We are going to embed the set of equivalence classes $\mathrm{CWt}(n) / \sim_{c}$ into $\mathcal{P}(n)$, the set of partitions on n. This is done by reducing an element of $\mathrm{CWt}(n)$ to a "normal form". We say that an element $x \in \operatorname{CWt}(n)$ is normal if it has the form

$$
\left(0,1, \ldots, n_{1},-1,0, \ldots, n_{2},-2, \ldots, n_{3}, \ldots\right)
$$

where $n_{1}+1 \geqslant n_{2}+2 \geqslant \ldots \geqslant 0$.
Proposition 3.3. For any $y \in \operatorname{CWt}(n)$, there exists a unique normal $x \in \operatorname{CWt}(n)$ with $y \sim_{c} x$.

Proof. Let n_{1} be the maximal entry in y. We can find $y^{\prime} \sim_{c} y$ such that $y_{k}^{\prime}=n_{1}$ and $y_{k+1}^{\prime}, \ldots, y_{n}^{\prime}<n_{1}$, while there is no other $z \sim_{c} y$ with $z_{k}, \ldots, z_{n}<n_{1}$ (the maximal entries in y^{\prime} are as far to the left as possible). We claim that $k=n_{1}+1$ and $y_{i}=i-1$ for $i \leqslant k$. Indeed, if $y_{k-1}^{\prime} \neq n_{1}-1$, then we can switch y_{k-1}^{\prime} and y_{k}^{\prime} (here we use (b2)), etc.

Then we freeze the first $n_{1}+1$ entries in y^{\prime} (we no longer permute them) and pick the maximal unfrozen entry n_{2} in y^{\prime}. Again, consider $y^{\prime \prime}$, where the entries n_{2} are as far to the left as possible (with the first $n_{1}+1$ entries frozen). Similarly to the previous paragraph, $y^{\prime \prime}$ starts with $0,1, \ldots, n_{1}, a, a+1, \ldots, n_{2}$. If $a<-1$, then we can move a all the way to the left and get a contradiction with (b1). If $a>-1$, then we can move it the left until we get a segment $a, a+1, a$, which contradicts (b3). So $a=-1$.
Then we freeze the first $\left(n_{1}+1\right)+\left(n_{2}+2\right)$ entries and repeat the argument. This shows the existence of x.

Uniqueness follows from the observation that n_{1} is the maximal element of $y_{1}, \ldots, y_{n}, n_{2}$ is maximal after removing $0,1, \ldots, n_{1}$, etc.
3.3. Young diagrams and tableaux, finally. Partitions of n that are often depicted as Young diagrams, the following diagram corresponds to the partition $5=3+2$.

Define a map $\mathrm{CWt}(n) / \sim_{c} \rightarrow \mathcal{P}(n)$ by sending x to the partition with parts $\left(n_{1}+1\right),\left(n_{2}+2\right)$, where n_{1}, n_{2}, etc., are as in Proposition 3.3. By the uniqueness part of that proposition, our map is an embedding. The following theorem completes the classification of $\operatorname{Irr}\left(S_{n}\right)=$ $\mathrm{Wt}(n) / \sim$.

Theorem 3.4. We have $\mathrm{Wt}(n)=\mathrm{CWt}(n), \sim=\sim_{c}$ and $\mathrm{CWt}(n) / \sim_{c} \xrightarrow{\sim} \mathcal{P}(n)$.
Proof. We have a surjection $\mathrm{Wt}(n) / \sim_{c} \rightarrow \mathrm{Wt}(n) / \sim$ and embeddings

$$
\left(\mathrm{Wt}(n) / \sim_{c}\right) \hookrightarrow\left(\mathrm{CWt}(n) / \sim_{c}\right) \hookrightarrow \mathcal{P}(n) .
$$

Therefore we get the following chain of inequalities:

$$
|\mathrm{Wt}(n) / \sim| \leqslant\left|\mathrm{Wt}(n) / \sim_{c}\right| \leqslant\left|\operatorname{CWt}(n) / \sim_{c}\right| \leqslant|\mathcal{P}(n)|
$$

By Introduction to Lecture 1, $\left|\operatorname{Irr}\left(S_{n}\right)\right|=|\mathrm{Wt}(n) / \sim|=|\mathcal{P}(n)|$. So all these embeddings and a surjection are bijections.

Now let us relate $\mathrm{Wt}(n)$ to the set of standard Young tableaux $\mathrm{SYT}(n)$. Recall that a standard Young tableaux on a Young diagram λ with n boxes is a filling of λ with numbers from 1 to n that strictly increase bottom to top and left to right. For example, these two fillings are examples of Young tableaux of shape (3,2).

4	5	
1	2	3

3	5	
1	2	4

To a Young tableaux T we assign its content as follows. Let $\left(x_{i}, y_{i}\right)$ be the coordinate of the box numbered by i. Then the content $c(T)$ of T is, by definition, $\left(x_{1}-y_{1}, x_{2}-\right.$ $\left.y_{2}, \ldots, x_{n}-y_{n}\right)$. The following two collections are contents of the tableaux in the previous example: $(0,1,2,-1,0)$ and $(0,1,-1,2,0)$.

Proposition 3.5. The map $T \mapsto c(T)$ is a biijection $\mathrm{SYT}(n) \rightarrow \mathrm{Wt}(n)$ that intertwines the surjections $\operatorname{SYT}(n) \rightarrow \mathcal{P}(n)$ (taking the shape) and $\mathrm{Wt}(n) \rightarrow \mathcal{P}(n)$.
Proof. We can define an admissible permutation of k and $k+1$ in a tableaux T : it permutes k and $k+1$ if the result is still a tableau. For example, the two tableaux above are obtained from one another by permuting 3 and 4 .

The admissible permutations give rise to an equivalence relation \sim_{c} on $\operatorname{SYT}(n)$. Clearly, an admissible permutation of $k, k+1$ in T corresponds to the admissible permutation s_{k} of $c(T)$. It is not hard to show that $c(T)$ satisfies conditions (b1)-(b3). So $c(T)$ is indeed an element of $\mathrm{CWt}(n)$ and the image of c is the union of equivalence classes for \sim_{c}.

We can define normal Young tableaux, where we fill the first row by numbers from 1 to some n_{1}, then the second row by the numbers from $n_{1}+1$ to $n_{1}+n_{2}$, etc., for example, the first tableau above is normal. Clearly, if T is normal, then so is $c(T)$. From Proposition 3.3, it follows that c is surjective. On the other hand, it is easy to check that c is injective.

References

[BK] J. Brundan, A. Kleshchev. The degenerate analogue of Ariki's categorification theorem. Math. Z. 266 (2010), no. 4, 877-919. arXiv:0901.0057.
[D] V. Drinfeld. Degenerate affine Hecke algebra and Yangians. Funktsional. Anal. i Prilozh., 20 (1986), 69-70.
[L] G. Lusztig. Affine Hecke algebras and their graded version. J. Amer. Math. Soc. 2 (1989), no. 3, 599635.

