LECTURE 13: REPRESENTATIONS OF $U_q(\mathfrak{g})$ AND *R*-MATRICES

IVAN LOSEV

INTRODUCTION

In this lecture we study the representation theory of $U_q(\mathfrak{g})$ when q is not a root of 1. In Section 1, we classify the finite dimensional irreducible representations of $U := U_q(\mathfrak{sl}_2)$, sketch the proof of complete reducibility and explain what happens for a general \mathfrak{g} .

As we have seen in the previous lecture, the obvious isomorphism $\sigma : v_1 \otimes v_2 \rightarrow v_2 \otimes v_1 : V_1 \otimes V_2 \xrightarrow{\sim} V_2 \otimes V_1$ is not *U*-linear. However, one can find an element *R* in a suitable completion of $U \otimes U$ such that $R \circ \sigma : V_1 \otimes V_2 \xrightarrow{\sim} V_2 \otimes V_1$ is a *U*-module isomorphism. This will be done in Section 2. This construction is of importance for knot invariants, as will be explained in the next lecture.

1. Representation theory of $U_q(\mathfrak{g})$, I

Recall that, as an algebra, U is given by generators $E, F, K^{\pm 1}$ and relations

$$KEK^{-1} = q^{2}E, \quad KFK^{-1} = q^{-2}F, \quad EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$$

1.1. Classification of the irreducibles. Let us start by producing some examples of the irreducible representations of U.

Example 1.1. Let us classify the one-dimensional representations. We have $KEK^{-1} = q^2E$, $KFK^{-1} = q^{-2}F$. Since $q \neq \pm 1$, it follows that E, F act by 0. So $K - K^{-1} = (q - q^{-1})(EF - FE)$ acts by 0. We deduce that K acts by ± 1 . Both choice give representations. Of course, the representation, where K acts by 1, E, F act by 0, is the trivial representation, one that is given by the counit η .

Example 1.2. The assignment $E \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, F \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, K \mapsto \begin{pmatrix} q & 0 \\ 0 & q^{-1} \end{pmatrix}$ gives rise to a two-dimensional representation of U. This is a so called tautological representation.

Lemma 1.3. Suppose q is not a root of 1. Let V be a finite dimensional U-module. Then the elements E, F act on V nilpotently.

Proof. For $\alpha \in \mathbb{C}^{\times}$, let V_{α} denote the generalized eigenspace for K with eigenvalue α . It is easy to show that $EV_{\alpha} \subset V_{q^{2}\alpha}$. Since q is not a root of 1, we see that all numbers $q^{2n}\alpha$ are different. It follows that E acts nilpotently. For the same reasons, F acts nilpotently. \Box

Now the classification of $\operatorname{Irr}_{fin}(U)$ works in the same way as for $U(\mathfrak{sl}_2)$. Namely, we have the subalgebra $U_q(\mathfrak{b}) \subset U$ spanned by K, E, it has a basis $K^{\ell}E^m$ for $\ell \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}$. The algebra U is a free right module over $U_q(\mathfrak{b})$ with basis $F^k, k \in \mathbb{Z}_{\geq 0}$. Then, for $\alpha \in \mathbb{C}^{\times}$, we can form the Verma module $\Delta_q(\alpha) := U \otimes_{U_q(\mathfrak{b})} \mathbb{C}_{\alpha}$, where K acts on \mathbb{C}_{α} by α and E acts by 0. The U-module $\Delta_q(\alpha)$ has basis $v_k := F^k v_\alpha, k \in \mathbb{Z}_{\geq 0}$. The action of F, K, E in this basis is given by

$$Fv_k = v_{k+1}, \quad Kv_k = q^{-2k}\alpha v_k, \quad Ev_k = [k]_q \frac{\alpha q^{1-k} - \alpha^{-1}q^{k-1}}{q - q^{-1}} v_{k-1}$$

The third equation follows from

(1.1)
$$[E, F^n] = [n]_q F^{n-1} \frac{Kq^{1-n} - K^{-1}q^{n-1}}{q - q^{-1}}.$$

Theorem 1.4. Suppose q is not a root of 1. Then the finite dimensional irreducible Umodules are in one-to-one correspondence with the set $\{\pm q^n\}_{n\in\mathbb{Z}_{\geq 0}}$. The module $L(\pm q^n)$, the
irreducible quotient of $\Delta_q(\pm q^n)$, has basis u_0, \ldots, u_n , where the action of the generators is
given by

$$Ku_i = \pm q^{n-2i}u_i, Fu_i = [n-i]_q u_{i+1}, Eu_i = \pm [i]_q u_{i-1}.$$

Proof. As in the proof for U, we need to understand when $\Delta_q(\alpha)$ has a proper quotient. This is only possible when $Ev_k = 0$. The number $[k]_q = \frac{q^k - q^{-k}}{q - q^{-1}}$ is never zero thanks to our assumption that q is not a root of 1. So $Ev_k = 0$ if and only if

$$\frac{\alpha q^{1-k} - \alpha^{-1} q^{k-1}}{q - q^{-1}} = 0 \Leftrightarrow \alpha^2 = q^{2(k-1)} \Leftrightarrow \alpha = \pm q^{k-1}.$$

In this case, we have a k-dimensional quotient of $\Delta_q(\alpha)$. Thanks to the standard universal property of $\Delta_q(\alpha)$, every simple module is a quotient of one of $\Delta_q(\alpha)$ (and it is easy to see that α is recovered uniquely from the simple module). We set $u_k := v_k/[n-k]_q!$. \Box

Example 1.5. The modules from Example 1.1 are $L(\pm 1)$. The module from Example 1.2 is L(q). Note that $L(-q^n) = L(-1) \otimes L(q^n)$. Thanks to this, one usually only studies the modules $L(q^n)$.

1.2. Complete reducibility. We can introduce the quantum Casimir element

$$C = FE + \frac{Kq + K^{-1}q^{-1}}{(q - q^{-1})^2} \in U.$$

One can show (this is a part of the homework) that this element is central in U.

Theorem 1.6. Let q be not a root of 1. Then any finite dimensional U-module is completely reducible.

Proof. For $v_{\alpha} \in \Delta_q(\alpha)$, we get $Cv_{\alpha} = \frac{\alpha q + \alpha^{-1}q^{-1}}{(q-q^{-1})^2}v_{\alpha}$. In particular, we see that all scalars of the action of C on $L(\pm q^n)$ are distinct. As in the case of $U(\mathfrak{sl}_2)$, we only need to prove that $L(\pm q^n)$ has no self-extensions. This is done similarly to that case.

1.3. General $U_q(\mathfrak{g})$. We assume that q is not a root of 1. Let \mathfrak{g} be a semisimple Lie algebra with generators $e_i, h_i, f_i, i = 1, \ldots, n$. Let us explain the classification of finite dimensional irreducible $U_q(\mathfrak{g})$ -modules.

Theorem 1.7. Any finite dimensional representation of $U_q(\mathfrak{g})$ is completely reducible.

Let us explain how to classify the finite dimensional irreducible representations. First, let us consider the one-dimensional representations. On such a representation, all elements E_i , F_i act by 0, and the elements K_i act by ± 1 . So for $\kappa \in \{\pm 1\}^n$, we have the one-dimensional module $L(\kappa)$, where K_i acts by κ_i . Modulo these 2^n modules, the finite dimensional representation theory of $U_q(\mathfrak{g})$ looks just like the representation theory of \mathfrak{g} . Recall that P^+ denotes the set of dominant weights.

Theorem 1.8. There is a bijection $\{\pm 1\}^n \times P^+ \xrightarrow{\sim} \operatorname{Irr}_{fin}(U_q(\mathfrak{g}))$ that sends (κ, λ) to a unique finite dimensional irreducible module $L(\kappa q^{\lambda})$ that has a highest vector v_{λ} such that $E_i v_{\lambda} = 0, K_i v_{\lambda} = \kappa_i q^{\lambda(\alpha_i^{\vee})} v_{\lambda}.$

We do not provide a proof. We note that this description implies $L(\kappa q^{\lambda}) = L(\kappa) \otimes L(q^{\lambda})$.

To finish let us point out that one can define the notion of a character of $L(q^{\lambda})$ in a natural way. The character is given by the Weyl character formula.

2. Universal R-matrix

2.1. Three coproducts. Recall the coproduct $\Delta: U \to U^{\otimes 2}$ given on the generators by

$$\Delta(K) = K \otimes K, \Delta(E) = E \otimes 1 + K \otimes E, \Delta(F) = F \otimes K^{-1} + 1 \otimes F$$

The opposite coproduct $\Delta^{op} := \sigma \circ \Delta$, where σ denotes the permutation of the tensor factors is then given by

$$\Delta^{op}(K) = K \otimes K, \Delta^{op}(E) = E \otimes K + 1 \otimes E, \Delta^{op}(F) = F \otimes 1 + K^{-1} \otimes F.$$

We want to find an element $R \in U^{\otimes 2}$ (in fact, we will have to use a completion) such that $R\Delta^{op}(u) = \Delta(u)R$. If V_1, V_2 are U-modules, then the map $R_{V_1,V_2} \circ \sigma : V_1 \otimes V_2 \to V_2 \otimes V_1, v_1 \otimes v_2 \mapsto R_{V_1,V_2}(v_2 \otimes v_1)$ is an isomorphism of U-modules.

In order to produce R, we will need the third coproduct, Δ' , given by

$$\Delta'(K) = K \otimes K, \Delta'(E) = E \otimes 1 + K^{-1} \otimes E, \Delta'(F) = F \otimes K + 1 \otimes F.$$

This coproduct is obtained from Δ by a twist with an anti-involution τ of U_q given by $\tau(K) = K^{-1}, \tau(E) = E, \tau(F) = F$. Then $\Delta'(u) = \tau \otimes \tau(\Delta(\tau(u)))$. This equality implies that Δ' also gives a coassociative coproduct on U (or we can check this directly). We will produce R as a product $\Theta \Psi$ with $\Theta^{-1}\Delta(u)\Theta = \Delta'(u)$ and $\Psi^{-1}\Delta'(u)\Psi = \Delta^{op}(u)$.

2.2. Construction of Θ . Let us construct Θ . This will be an infinite sum of the form $\sum_{n=0}^{\infty} a_n F^n \otimes E^n$, where we will find the coefficients a_n from $\Theta \Delta'(E) = \Delta(E)\Theta$.

$$\begin{split} &\Theta\Delta'(E) = \Delta(E)\Theta\\ \Leftrightarrow (\sum_{n=0}^{\infty} a_n F^n \otimes E^n)(E \otimes 1 + K^{-1} \otimes E) = (E \otimes 1 + K \otimes E)(\sum_{n=0}^{\infty} a_n F^n \otimes E^n)\\ \Leftrightarrow \sum_{n=0}^{\infty} a_n(F^n E \otimes E^n + F^n K^{-1} \otimes E^{n+1}) = \sum_{n=0}^{\infty} a_n(EF^n \otimes E^n + KF^n \otimes E^{n+1})\\ \Leftrightarrow \sum_{n=0}^{\infty} a_n[E, F^n] \otimes E^n = \sum_{n=0}^{\infty} a_n(F^n K^{-1} - KF^n) \otimes E^{n+1}\\ \Leftrightarrow a_{n+1}[E, F^{n+1}] = a_n(F^n K^{-1} - KF^n). \end{split}$$

By (1.1), we get $[E, F^{n+1}] = [n+1]_q F^n \frac{Kq^{-n} - K^{-1}q^n}{q-q^{-1}}$. On the other hand $F^n K^{-1} - KF^n = F^n (K^{-1} - q^{-2n}K)$. Therefore

$$a_{n+1}[n+1]_q F^n \frac{Kq^{-n} - K^{-1}q^n}{q - q^{-1}} = a_n F^n (K^{-1} - q^{-2n}K) \Leftrightarrow a_{n+1} = \frac{(q^{-1} - q)q^{-n}}{[n+1]_q} a_n$$

We conclude that

(2.1)
$$\Theta = \sum_{n=0}^{\infty} \frac{(q^{-1} - q)^n q^{-n(n-1)/2}}{[n]_q!} F^n \otimes E^n.$$

One can show that $\Theta \Delta'(K) = \Delta(K)\Theta$ (this is almost immediate) and that $\Theta \Delta'(F) = \Delta(F)\Theta$ (this is a computation very similar to what was done above).

Example 2.1. Let us compute $\Theta_{V\otimes V}$, where V = L(q). We have $\Theta_{V\otimes V} = 1 + (q^{-1} - q)F \otimes E$. Let us write this operator as a matrix. Let v_1, v_2 (resp., v'_1, v'_2) be the natural basis in the first and in the second factor. Then in the basis $v_1 \otimes v'_1, v_1 \otimes v'_2, v_2 \otimes v'_1, v_2 \otimes v'_2$ we get the

following matrix of
$$\Theta$$
:
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & q^{-1} - q & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2.3. Construction of Ψ . An element Ψ satisfying $\Psi \Delta^{op}(u) = \Delta'(u)\Psi$ will depend only on *K*. But it is not expressed in terms of algebraic functions in q, K (we have to use log's). So we will just define $\Psi_{V_2 \otimes V_1} : V_2 \otimes V_1 \to V_2 \otimes V_1$, where *K* acts on V_2, V_1 with powers of q (we can also define Ψ as an element of the *idempotent completion* of $U \otimes U$, where we add infinite sums $\sum_{\lambda,\mu} a_{\lambda\mu} \pi_{\lambda} \otimes \pi_{\mu}$, where $\lambda, \mu \in \{\pm q^n\}$ and π_{λ} acts on a *U*-module *V* as the projection to V_{λ}). Let $\Psi_{V_2 \otimes V_1}(v_n \otimes u_m) = \psi(n,m)v_n \otimes u_m$, where $v_n \in V_2, u_m \in V_1$ are *K*-eigenvectors with eigenvalues q^n, q^m , and ψ is a function we need to determine. We have

$$\begin{split} \Psi \Delta^{op}(E)(v_n \otimes u_m) &= \Psi(E \otimes K + 1 \otimes E)(v_n \otimes u_m) = \Psi(q^m E v_n \otimes u_m + v_n \otimes E u_m) = \\ &= q^m \psi(n+2,m) E v_n \otimes u_m + \psi(n,m+2) v_n \otimes E u_m. \\ \Delta'(E) \Psi(v_n \otimes u_m) &= \psi(n,m) (K^{-1} \otimes E + E \otimes 1) (v_n \otimes u_m) = \\ &= \psi(n,m) (E v_n \otimes u_m + q^{-n} v_n \otimes E u_m). \\ \Psi \Delta^{op}(E) &= \Delta'(E) \Psi \Leftrightarrow \psi(n+2,m) = q^{-m} \psi(n,m) \text{ and } \psi(n,m+2) = q^{-n} \psi(n,m). \end{split}$$

Conversely, for any ψ satisfying the conditions above, we have $\Psi \Delta^{op}(u) = \Delta'(u)\Psi$. Indeed, for u = K this holds for any ψ and for u = F the conditions on ψ are equivalent to what we had above. Note that to recover ψ we just need to specify the values $\psi(\alpha, \beta)$ when $\alpha, \beta \in \{-1, 0\}$.

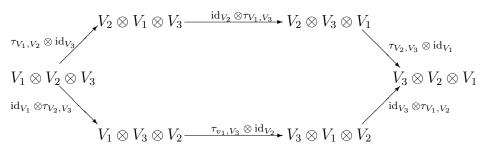
Example 2.2. Let us consider the case when $V_1 = V_2 = V = L(q)$. We set $\psi(-1, -1) = q$. Then $\psi(1, -1) = \psi(-1, 1) = 1, \psi(1, 1) = q^{-1}$. In the same basis as in Example 2.1, we get $\Psi_{V\otimes V} = \text{diag}(q^{-1})$. So

$$R_{V\otimes V} = \Theta_{V\otimes V} \Psi_{V\otimes V} = \begin{pmatrix} q^{-1} & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & q^{-1} - q & 1 & 0\\ 0 & 0 & 0 & q^{-1} \end{pmatrix}, \quad R_{V\otimes V} \circ \sigma = \begin{pmatrix} q^{-1} & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & q^{-1} - q & 0\\ 0 & 0 & 0 & q^{-1} \end{pmatrix}.$$

Of course, it is easy to check directly that $R \circ \sigma : V \otimes V \to V \otimes V$ is U-linear. This is the case that we will mostly need. But for higher dimensional V_1, V_2 constructing an isomorphism by hand is very hard.

2.4. Yang-Baxter equation. We have constructed an isomorphism $R_{V_2 \otimes V_1} \circ \sigma : V_1 \otimes V_2 \rightarrow V_2 \otimes V_1$. Now pick three *U*-modules, V_1, V_2, V_3 . We can produce two isomorphisms $V_1 \otimes V_2 \otimes V_3 \rightarrow V_3 \otimes V_2 \otimes V_1$ by using the isomorphisms of the form $R_{?\otimes?} \circ \sigma$ (note that applying this

to V_1 and V_3 and inserting id_{V_2} in the middle does not give a U-linear map). Let us write $\tau_{?,?}$ for $R_{?\otimes?} \circ \sigma$.



We want this diagram to commute (the hexagon axiom). Note that the top isomorphism is $(R_{23}R_{13}R_{12})_{V_3\otimes V_2\otimes V_1}\circ \sigma_{13}$, while the bottom isomorphism is $(R_{12}R_{13}R_{23})_{V_3\otimes V_2\otimes V_1}\circ \sigma_{13}$. Here the notation is as follows. We write R_{12} for $R \otimes 1 \in U^{\tilde{\otimes}3}$ (where we put $\tilde{\otimes}$ to indicate that we take a completion) and R^{23} for $1 \otimes R$. The notation R_{13} means $\sum_i R_i^1 \otimes 1 \otimes R_i^2$, where $R = \sum_i R_i^1 \otimes R_i^2$. We write σ_{13} for the permutation $u \otimes v \otimes w \mapsto w \otimes v \otimes u$. So the hexagon diagram is commutative provided

$$(2.2) R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$

This is the quantum Yang-Baxter equation (shortly, QYBE) that first appeared in Statistical Physics and was an initial motivation for introducing quantum groups.

Theorem 2.3. *QYBE holds for* $R \in U \otimes U$.

We omit the proof.

2.5. Braid group representation. There is an alternative way to view QYBE when we are dealing with the *n*-fold tensor product of a single *U*-module *V*. Define the *U*-module automorphism $\tau_{i,i+1}$ of $V^{\otimes n}$ as $\mathrm{id}_{V}^{\otimes i-1} \otimes \tau_{V,V} \otimes \mathrm{id}^{n-1-i}$ (we permute the *i*th and *i*+1th copies). The hexagon axiom gives $\tau_{i,i+1}\tau_{i+1,i+2}\tau_{i,i+1} = \tau_{i+1,i+2}\tau_{i,i+1}\tau_{i+1,i+2}$ for all $i \in \{1, \ldots, n-1\}$. Clearly, $\tau_{i,i+1}\tau_{j,j+1} = \tau_{j,j+1}\tau_{i,i+1}$ if |i-j| > 1.

Definition 2.4. The braid group B_n is the group with generators T_1, \ldots, T_{n-1} and relations $T_iT_j = T_jT_i$ when |i - j| > 1 and $T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1}$.

So we have a representation of B_n in $V^{\otimes n}$ given by $T_i \mapsto \tau_{i,i+1}$. When V = L(q), one can verify this directly without referring to Theorem 2.3. Now note that $\tau = \tau_{1,2} \in \text{End}(V \otimes V)$ satisfies $\tau^2 = 1 + (q^{-1} - q)\tau$. In other words, the action of $\mathbb{C}B_n$ on $V^{\otimes n}$ factors through the Hecke algebra $\mathcal{H}_{q^{-1}}(n)$.

Remark 2.5. Let \mathfrak{g} be a finite dimensional semisimple Lie algebra so that we can form the quantum group $U_q(\mathfrak{g})$. We still have the universal *R*-matrix $R \in U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g})$ satisfying QYBE and such that $R_{V_2 \otimes V_1} \circ \sigma : V_1 \otimes V_2 \to V_2 \otimes V_1$ is an isomorphism of $U_q(\mathfrak{g})$ -modules. It was constructed by Drinfeld.