LECTURE 12: HOPF ALGEBRA $U_{q}\left(\mathfrak{s l}_{2}\right)$

IVAN LOSEV

Introduction

In this lecture we start to study quantum groups $U_{q}(\mathfrak{g})$, certain deformations of the universal enveloping algebras $U(\mathfrak{g})$. The algebras $U_{q}(\mathfrak{g})$ are Hopf algebras that basically means that we can take tensor products and duals of their representations. In Section 1 we define Hopf algebras.

In Section 2 we start discussing quantum groups themselves concentrating mostly on the simplest case, $U_{q}\left(\mathfrak{s l}_{2}\right)$. An important feature here is that the tensor product is not commutative in a naive sense. This is a feature and not a bug, this is one of the main reasons why the quantum groups were introduced.

1. Hopf algebras

1.1. Tensor products and duals. Recall that for a group G and two G-modules V_{1}, V_{2} we can define G-module structures on $V_{1} \otimes V_{2}$ and V_{1}^{*} by

$$
g .\left(v_{1} \otimes v_{2}\right):=g v_{1} \otimes g v_{2},\left\langle g . \alpha, v_{1}\right\rangle:=\left\langle\alpha, g^{-1} v_{1}\right\rangle .
$$

We also have the trivial one-dimensional module \mathbb{C}, where $g \in G$ acts by 1 .
Similarly, for a Lie algebra \mathfrak{g} and two \mathfrak{g}-modules V_{1}, V_{2}, we can define \mathfrak{g}-module structures on $V_{1} \otimes V_{2}$ and V_{1}^{*} by

$$
x \cdot\left(v_{1} \otimes v_{2}\right)=\left(x \cdot v_{1}\right) \otimes v_{2}+v_{1} \otimes\left(x \cdot v_{2}\right),\left\langle x \cdot \alpha, v_{1}\right\rangle=-\left\langle\alpha, x \cdot v_{1}\right\rangle .
$$

And we have the trivial one-dimensional module \mathbb{C}, where $x \in \mathfrak{g}$ acts by 0 .
Recall also that a G-module (resp., \mathfrak{g}-module) is the same thing as a module over the group algebra $\mathbb{C} G$ (resp., over the universal enveloping algebra $U(\mathfrak{g})$). Both $\mathbb{C} G, U(\mathfrak{g})$ are associative algebras. Note, however, that if A is an associative algebra, then we do not have natural A-module structures on $V_{1} \otimes V_{2}, V_{1}^{*}, \mathbb{C}$ (where V_{1}, V_{2} are A-modules). Indeed, $V_{1} \otimes V_{2}$ carries a natural structure of $A \otimes A$-module by $(a \otimes b) \cdot\left(v_{1} \otimes v_{2}\right)=\left(a v_{1}\right) \otimes\left(b v_{2}\right)$. The dual space V_{1}^{*} is naturally a module over the opposite algebra $A^{o p}$, which is the same vector space as A but with opposite multiplication: $a \cdot b:=b a$. An $A^{o p}$-module is the same thing as a right A-module, and we set $(\alpha a)\left(v_{1}\right):=\alpha\left(a v_{1}\right)$. Finally, \mathbb{C} is naturally a \mathbb{C}-module. We could equip $V_{1} \otimes V_{2}$ with an A-module structure if we have a distinguished algebra homomorphism $\Delta: A \rightarrow A \otimes A$ (then we just pull the $A \otimes A$-module structure back to A). This homomorphism Δ is called a coproduct. Similarly, to equip V_{1}^{*} and \mathbb{C} with A-module structures we need algebra homomorphisms $S: A \rightarrow A^{o p}$ (antipode) and $\eta: A \rightarrow \mathbb{C}$ (counit).

Let us construct these homomorphisms for $A=\mathbb{C} G$ and $A=U(\mathfrak{g})$.
Example 1.1. For $A=\mathbb{C} G$, we have $\Delta(g):=g \otimes g, S(g)=g^{-1}, \eta(g)=1$ for $g \in G$.
Example 1.2. Let $A=U(\mathfrak{g})$. Since Δ, S, η are supposed to be algebra homomorphisms, it is enough to define them on \mathfrak{g}. We set $\Delta(x)=x \otimes 1+1 \otimes x, S(x)=-x, \eta(x)=1$, where $x \in \mathfrak{g}$.
1.2. Coassociativity. We need some additional assumptions on Δ, S, ϵ in order to guarantee some natural properties of tensor products such as associativity. Axiomatizing these properties, we arrive at the definition of a Hopf algebra.

First, let us examine the associativity of the tensor product. We have a natural isomorphism $\left(V_{1} \otimes V_{2}\right) \otimes V_{3} \rightarrow V_{1} \otimes\left(V_{2} \otimes V_{3}\right),\left(v_{1} \otimes v_{2}\right) \otimes v_{3} \mapsto v_{1} \otimes\left(v_{2} \otimes v_{3}\right)$. We want this isomorphism to be A-linear. We have two homomorphisms $A \rightarrow A^{\otimes 3}$ produced from Δ. First, we have $(\Delta \otimes \mathrm{id}) \circ \Delta$. The algebra A acts on $\left(V_{1} \otimes V_{2}\right) \otimes V_{3}$ via this homomorphism $A \rightarrow A^{\otimes 3}$. Indeed, if $\Delta(a)=\sum_{i=1}^{k} a_{i}^{1} \otimes a_{i}^{2}$, then $a .\left(\left(v_{1} \otimes v_{2}\right) \otimes v_{3}\right)=$ $\sum_{i=1}^{k} a_{i}^{1} \cdot\left(v_{1} \otimes v_{2}\right) \otimes a_{i}^{2} v_{3}=\sum_{i=1}^{k} \Delta\left(a_{i}^{1}\right)\left(v_{1} \otimes v_{2}\right) \otimes a_{i}^{2} v_{3}$, and $(\Delta \otimes \mathrm{id}) \circ \Delta(a)=\sum_{i=1}^{k} \Delta\left(a_{i}^{1}\right) \otimes a_{i}^{2}$. Similarly, A acts on $V_{1} \otimes\left(V_{2} \otimes V_{3}\right)$ via $(\mathrm{id} \otimes \Delta) \circ \Delta: A \rightarrow A^{\otimes 3}$. So, if we want to the isomorphism $\left(v_{1} \otimes v_{2}\right) \otimes v_{3} \mapsto v_{1} \otimes\left(v_{2} \otimes v_{3}\right)$ to be A-linear, it is natural to require that $(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta$. In other words, we want the following diagram to be commutative.

If this holds, then we say that Δ is coassociative.
Let us motivate the terminology ("coproduct" and "coassociative"). Let A be a finite dimensional algebra. Let us write $m: A \otimes A \rightarrow A$ for the product. Then m is associative (i.e., $m(m(a \otimes b) \otimes c)=m(a \otimes m(b \otimes c)))$ if and only if the following diagram is commutative.

Now let us dualize. We get the space A^{*} together with the map $m^{*}: A^{*} \rightarrow A^{*} \otimes A^{*}$ that is natural to call a coproduct. Clearly, m is associative if and only if m^{*} is coassociative.
1.3. Axioms of Hopf algebras. We need to axiomatically describe two more maps: the counit $\eta: A \rightarrow \mathbb{C}$ and the antipode $S: A \rightarrow A^{o p}$.

An axiom of a counit should be dual to that of the unit, $e: \mathbb{C} \rightarrow A, z \mapsto z \cdot 1$. The element $e(1)$ is a unit if and only if the following diagram is commutative.

Dualizing this diagram we get the counit axiom: the following diagram is commutative.

Finally, the antipode axiom is the commutativity of the following diagram.

Let us illustrate this axiom in the example of $A=\mathbb{C} G$, where $S(g)=g^{-1}$. There $\Delta(g)=$ $g \otimes g, S \otimes \operatorname{id}(g \otimes g)=g^{-1} \otimes g, m\left(g^{-1} \otimes g\right)=1=e \circ \eta(g)$.

Definition 1.3. By a Hopf algebra we mean a \mathbb{C}-vector space A with five maps (m, e, Δ, η, S), where $m: A \otimes A \rightarrow A, e: \mathbb{C} \rightarrow A, \Delta: A \rightarrow A \otimes A, \eta: A \rightarrow \mathbb{C}, S: A \rightarrow A$ such that:
(1) (A, m, e) is an associative unital algebra.
(2) $\Delta: A \rightarrow A \otimes A, S: A \rightarrow A^{o p}, \eta: A \rightarrow \mathbb{C}$ are algebra homomorphisms.
(3) Δ is coassociative, and η satisfies the counit axiom.
(4) S satisfies the antipode axiom.

Remark 1.4. In fact, once m, e, Δ are specified, S and η are recovered in at most one way.
It is straightforward to check that $\mathbb{C} G$ and $U(\mathfrak{g})$ are Hopf algebras.
1.4. Duality of Hopf algebras. Now let $(A, m, e, \Delta, \eta, S)$ be a finite dimensional Hopf algebra. One can show that $\left(A^{*}, \Delta^{*}, \eta^{*}, m^{*}, e^{*}, S^{*}\right)$ is a Hopf algebra as well.

Example 1.5. Let us describe $(\mathbb{C} G)^{*}$. As a vector space, $(\mathbb{C} G)^{*}$ is the algebra of functions on G, to be denoted by $\mathbb{C}[G]$. The map $\Delta: \mathbb{C} G \rightarrow \mathbb{C} G \otimes \mathbb{C} G$ sends g to $g \otimes g$. So $\Delta^{*}(\alpha \otimes \beta)(g)=\alpha \otimes \beta(g \otimes g)=\alpha(g) \beta(g)$ is the usual multiplication of functions. Similarly, η^{*} sends 1 to the identity function. The map $m^{*}: \mathbb{C}[G] \rightarrow \mathbb{C}[G] \otimes \mathbb{C}[G]=\mathbb{C}[G \times G]$ sends $\alpha \in \mathbb{C}[G]$ to $m^{*}(\alpha)(g, h):=\alpha(g h)$. The map $e^{*}: \mathbb{C}[G] \rightarrow \mathbb{C}$ maps α to $\alpha(1)$. Finally, we have $\left(S^{*} \alpha\right)(g)=\alpha\left(g^{-1}\right)$.
1.5. Cocommutativity. In the cases of $A=U(\mathfrak{g}), \mathbb{C} G$ the isomorphism $V_{1} \otimes V_{2} \xrightarrow{\sim} V_{2} \otimes V_{1}$ is that of A-modules. The reason for this is that the opposite coproduct $\Delta^{o p}:=\sigma \circ \Delta$, where $\sigma: A^{\otimes 2} \rightarrow A^{\otimes 2}, a \otimes b \mapsto b \otimes a$, coincides with Δ. The Hopf algebras with $\Delta=\Delta^{o p}$ are called cocommutative. However, there are Hopf algebras that are not cocommutative, e.g. $\mathbb{C}[G]$.

The Hopf algebras we have encountered so far are commutative as algebras $(\mathbb{C}[G])$ or cocommutative $(\mathbb{C} G, U(\mathfrak{g}))$. Of course, one can cook a Hopf algebra that is neither commutative nor cocommutative: the tensor product of two Hopf algebras carries a natural Hopf algebra structure and we can take the tensor product of a non-commutative Hopf algebra with a non-cocommutative one. But this is very boring. In the next section, we will study a far more interesting example.

$$
\text { 2. } U_{q}\left(\mathfrak{s l}_{2}\right)
$$

2.1. $U_{q}\left(\mathfrak{s l}_{2}\right)$ as a Hopf algebra. We will define the "quantum $\mathfrak{s l}_{2}$ " by generators and relations (as an algebra) and then define Δ, η, S on the generators.

Let $q \in \mathbb{C} \backslash\{0, \pm 1\}$ (we can also take q to be an independent variable in the field of rational functions $\mathbb{C}(q))$. We define the algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ generated by E, F, K, K^{-1} subject to the following relations:

$$
K K^{-1}=K^{-1} K=1, \quad K E K^{-1}=q^{2} E, \quad K F K^{-1}=q^{-2} F, \quad E F-F E=\frac{K-K^{-1}}{q-q^{-1}} .
$$

Note that the algebra $U:=U_{q}\left(\mathfrak{s l}_{2}\right)$ is spanned by the monomials $F^{k} K^{\ell} E^{m}$, where $k, m \in \mathbb{Z}_{\geqslant 0}$, and $\ell \in \mathbb{Z}$. In fact, these monomials are linearly independent (the PBW theorem).

Now let us define the Hopf algebra structure. We set

$$
\begin{align*}
& \Delta(E)=E \otimes 1+K \otimes E, \quad \Delta(F)=F \otimes K^{-1}+1 \otimes F, \quad \Delta(K)=K \otimes K, \\
& \eta(E)=\eta(F)=0, \quad \eta(K)=1, \tag{2.1}\\
& S(E)=-K^{-1} E, S(F)=-F K, S(K)=K^{-1} .
\end{align*}
$$

Proposition 2.1. Δ, η, S extend to required algebra homomorphisms. Moreover, U becomes a Hopf algebra.

Proof. This is a mighty tedious check... What we need to verify is that Δ, S, η respect the relations in U and that the axioms (3),(4) in the definition of a Hopf algebra hold on the generators E, K, F. Let us check that $\Delta([E, F])=[\Delta(E), \Delta(F)]$, which is the hardest relation to check. We have

$$
\Delta([E, F])=\Delta\left(\frac{K-K^{-1}}{q-q^{-1}}\right)=\frac{K \otimes K-K^{-1} \otimes K^{-1}}{q-q^{-1}}
$$

On the other hand,

$$
\begin{aligned}
& {[\Delta(E), \Delta(F)]=\left[E \otimes 1+K \otimes E, F \otimes K^{-1}+1 \otimes F\right]=[E, F] \otimes K^{-1}+K \otimes[E, F]+} \\
& +\left[K \otimes E, F \otimes K^{-1}\right]=\frac{\left(K-K^{-1}\right) \otimes K^{-1}}{q-q^{-1}}+\frac{K \otimes\left(K-K^{-1}\right)}{q-q^{-1}}+K F \otimes E K^{-1}- \\
& -F K \otimes K^{-1} E=\frac{K \otimes K-K^{-1} \otimes K^{-1}}{q-q^{-1}}+K F \otimes E K^{-1}-\left(q^{2} K F\right) \otimes\left(q^{-2} E K^{-1}\right)= \\
= & \frac{K \otimes K-K^{-1} \otimes K^{-1}}{q-q^{-1}} .
\end{aligned}
$$

We note that $\Delta \neq \Delta^{o p}$. In particular, the map $v_{1} \otimes v_{2} \mapsto v_{2} \otimes v_{1}$ does not give an isomorphism $V_{1} \otimes V_{2} \rightarrow V_{2} \otimes V_{1}$, in general. However, in the next lecture we will find an element $R \in U_{q}\left(\mathfrak{s l}_{2}\right) \otimes U_{q}\left(\mathfrak{s l}_{2}\right)$ (this is a slight lie, we need a certain completion) with $R^{-1} \Delta(u) R=\Delta^{o p}(u)$. This element, called the universal R-matrix, is extremely important. In particular, it will allow us to construct link invariants, such as the Jones polynomial.
2.2. $U_{q}\left(\mathfrak{s l}_{2}\right)$ vs $U\left(\mathfrak{s l}_{2}\right)$. The algebra $U_{q}\left(\mathfrak{s l}_{2}\right)$ should be thought as a deformation of $U\left(\mathfrak{s l}_{2}\right)$ (the latter corresponds to $q=1$). This however requires some care, we cannot put $q=1$ in the definition of $U_{q}\left(\mathfrak{s l}_{2}\right)$. In order to make the claim about the deformation more precise, we will need to consider the formal version of $U_{q}\left(\mathfrak{s l}_{2}\right)$, we will call it $U_{\hbar}\left(\mathfrak{s l}_{2}\right)$. This will be an algebra over $\mathbb{C}[[\hbar]]$.

By definition, as an algebra, $U_{\hbar}\left(\mathfrak{s l}_{2}\right)$ is the quotient of $T\left(\mathfrak{s l}_{2}\right)[[\hbar]]$ by the relations

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=\frac{\exp (\hbar h)-\exp (-\hbar h)}{\exp (\hbar)-\exp (-\hbar)}
$$

Note that $\frac{\exp (\hbar h)-\exp (-\hbar h)}{\exp (\hbar)-\exp (-\hbar)}$ is a formal power series in \hbar, modulo \hbar it equals h. It follows that $U_{\hbar}\left(\mathfrak{S l}_{2}\right) /(\hbar)=U\left(\mathfrak{s l}_{2}\right)$.

One can show that \hbar is not a zero divisor in $U_{\hbar}\left(\mathfrak{s l}_{2}\right)$. Note that $E=e, F=f, K=$ $\exp (\hbar h), q=\exp (\hbar)$ satisfy the relations of $U_{q}\left(\mathfrak{s l}_{2}\right)$. Indeed, for example, we get

$$
\exp (\hbar h) e \exp (-\hbar h)=\exp (\hbar \operatorname{ad}(h)) e=\exp (2 \hbar) e
$$

One can introduce the Hopf algebra structure on $U_{\hbar}\left(\mathfrak{s l}_{2}\right)$ but one needs to extend the definition to allow Δ to be a homomorphism $U_{\hbar}\left(\mathfrak{s l}_{2}\right) \rightarrow U_{\hbar}\left(\mathfrak{s l}_{2}\right) \widehat{\otimes}_{\mathbb{C}[\hbar \hbar]]} U_{\hbar}\left(\mathfrak{s l}_{2}\right)$. Here $\widehat{\otimes}$ denotes the completed tensor product. While the usual tensor product consists of all finite sums of decomposable tensors, the completed product consists of all converging (in the \hbar-adic topology) infinite sums.
2.3. Algebras $U_{q}(\mathfrak{g})$. We can define quantum groups $U_{q}(\mathfrak{g})$ for any semisimple Lie algebra \mathfrak{g} (or, more generally, any Kac-Moody algebra $\mathfrak{g}(A)$ for a symmetrizable Cartan matrix A). Let us start with $\mathfrak{g}=\mathfrak{s l}_{n+1}$.

Recall that the usual universal enveloping algebra $U\left(\mathfrak{s l}_{n+1}\right)$ is defined by the generators $e_{i}, h_{i}, f_{i}, i=1, \ldots, n$, and the following relations:
(i) $\left[h_{i}, e_{i}\right]=2 e_{i},\left[h_{i}, f_{i}\right]=-2 f_{i},\left[e_{i}, f_{i}\right]=h_{i}$.
(ii) $\left[h_{i}, h_{j}\right]=0$.
(iii) $\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j}$.
(iv) $e_{i} f_{j}=f_{j} e_{i}, i \neq j$.
(v) $e_{i} e_{j}=e_{j} e_{i}$, if $a_{i j}=0$, and $e_{i}^{2} e_{j}-2 e_{i} e_{j} e_{i}+e_{j} e_{i}^{2}=0$, if $a_{i j}=-1$.
(vi) $f_{i} f_{j}=f_{j} f_{i}$, if $a_{i j}=0$, and $f_{i}^{2} f_{j}-2 f_{i} f_{j} f_{i}+f_{j} f_{i}^{2}=0$, if $a_{i j}=-1$.

Recall that here $a_{i j}=-1$ if $|i-j|=1$ and $a_{i j}=0$ if $|i-j|>1$.
The quantum group $U_{q}\left(\mathfrak{s l}_{n+1}\right)$ is defined by the generators $E_{i}, K_{i}^{ \pm 1}, F_{i}, i=1, \ldots, n$, with relations

$$
\begin{aligned}
& \text { (i } \left.{ }_{q}\right) K_{i} E_{i} K_{i}^{-1}=q^{2} E_{i}, K_{i} F_{i} K_{i}^{-1}=q^{-2} F_{i},\left[E_{i}, F_{i}\right]=\frac{K_{i}-K_{i}^{-1}}{q-q^{-1}} . \\
& \left(\mathrm{ii}_{i}\right)\left[K_{i}, K_{j}\right]=0 . \\
& \left(\mathrm{iii}_{q}\right) K_{i} E_{j} K_{i}^{-1}=q^{a_{i j}} E_{j}, K_{i} F_{j} K_{i}^{-1}=q^{-a_{i j}} F_{j} . \\
& \left(\mathrm{i}_{q}\right) E_{i} F_{j}=F_{j} E_{i}, i \neq j . \\
& \left(\mathrm{v}_{q}\right) E_{i} E_{j}=E_{j} E_{i} \text { if } a_{i j}=0 \text { and } E_{i}^{2} E_{j}-[2]_{q} E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0 \text { if } a_{i j}=-1 . \\
& \left(\mathrm{vi}_{q}\right) F_{i} F_{j}=F_{j} F_{i} \text { if } a_{i j}=0 \text { and } F_{i}^{2} F_{j}-[2]_{q} F_{i} F_{j} F_{i}+F_{j} F_{i}^{2}=0 \text { if } a_{i j}=-1 .
\end{aligned}
$$

Here $[2]_{q}$ denotes the "quantum 2", i.e., $q+q^{-1}$.
The similar definition will work for any simply laced Cartan matrix A (meaning that $a_{i j} \in\{0,-1\}$ if $i \neq j$). When A is not simply laced (e.g., of type $B_{n}, C_{n}, F_{4}, G_{2}$), the definition is more technical, one needs to use different q 's for the " $\mathfrak{s l}_{2}$-subalgebras" of $U_{q}(\mathfrak{g})$ according the length of the corresponding root. Namely, when \mathfrak{g} is finite dimensional, we define $d_{i} \in\{1,2,3\}$ as $\left(\alpha_{i}, \alpha_{i}\right) / 2$, where (\cdot, \cdot) is a W-invariant form on \mathfrak{h}^{*} normalized in such a way that $(\alpha, \alpha)=2$ for the short roots (we have two different root lengthes). This can be generalized to an arbitrary symmetrizable Kac-Moody algebra but we are not going to explain that.

Now set $q_{i}:=q^{d_{i}}$ (so that $q_{1}=q$). We also define the quantum integer $[n]_{q_{i}}=q_{i}^{n-1}+$ $q_{i}^{n-2}+\ldots+q_{i}^{1-n}$, and the quantum factorial $[n]_{q_{i}}!=[1]_{q_{i}} \ldots[n]_{q_{i}}$. We set

$$
\binom{n}{k}_{q_{i}}=\frac{[n]_{q_{i}}!}{[k]_{q_{i}}![n-k]_{q_{i}}!} .
$$

Now we define $U_{q}(\mathfrak{g})$ as the algebra generated by E_{i}, K_{i}, F_{i} subject to the relations

$$
\begin{aligned}
& \text { (iq }) K_{i} E_{i} K_{i}^{-1}=q_{i}^{2} E_{i}, K_{i} F_{i} K_{i}^{-1}=q_{i}^{-2} F_{i},\left[E_{i}, F_{i}\right]=\frac{K_{i}-K_{i}^{-1}}{q_{i}-q_{i}^{-1}} . \\
& \left(\mathrm{ii}_{q}\right)\left[K_{i}, K_{j}\right]=0 . \\
& \left(\mathrm{iii}_{q}\right) K_{i} E_{j} K_{i}^{-1}=q_{i}^{a_{i j}} E_{j}, K_{i} F_{j} K_{i}^{-1}=q_{i}^{-a_{i j}} F_{j} . \\
& \left(\mathrm{iv}_{q}\right) E_{i} F_{j}=F_{j} E_{i}, i \neq j . \\
& \left(\mathrm{v}_{q}\right) \sum_{k=0}^{1-a_{i j}}(-1)^{k}\left(\begin{array}{c}
1-a_{i j} \\
k
\end{array} q_{q_{i}} E_{i}^{1-a_{i j}-k} E_{j} E_{i}^{k}=0 .\right. \\
& \left(\mathrm{vi}_{q}\right) \sum_{k=0}^{1-a_{i j}}(-1)^{k}\binom{1-a_{i j}}{k} q_{i} F_{i}^{1-a_{i j}-k} F_{j} F_{i}^{k}=0 .
\end{aligned}
$$

Note that they are obtained from the relations for $U(\mathfrak{g})$ in the same fashion as the relations for $U_{q}\left(\mathfrak{s l}_{n+1}\right)$ are obtained from those for $U\left(\mathfrak{s l}_{n+1}\right)$.

The Hopf algebra structure on $U_{q}(\mathfrak{g})$ is introduced as follows: we just define Δ, S, η on E_{i}, F_{i}, K_{i} as in $U_{q_{i}}\left(\mathfrak{s l}_{2}\right)$.

