LECTURE 12: HOPF ALGEBRA $U_q(\mathfrak{sl}_2)$

IVAN LOSEV

Introduction

In this lecture we start to study quantum groups $U_q(\mathfrak{g})$, certain deformations of the universal enveloping algebras $U(\mathfrak{g})$. The algebras $U_q(\mathfrak{g})$ are Hopf algebras that basically means that we can take tensor products and duals of their representations. In Section 1 we define Hopf algebras.

In Section 2 we start discussing quantum groups themselves concentrating mostly on the simplest case, $U_q(\mathfrak{sl}_2)$. An important feature here is that the tensor product is not commutative in a naive sense. This is a feature and not a bug, this is one of the main reasons why the quantum groups were introduced.

1. Hopf algebras

1.1. **Tensor products and duals.** Recall that for a group G and two G-modules V_1, V_2 we can define G-module structures on $V_1 \otimes V_2$ and V_1^* by

$$g.(v_1 \otimes v_2) := gv_1 \otimes gv_2, \langle g.\alpha, v_1 \rangle := \langle \alpha, g^{-1}v_1 \rangle.$$

We also have the trivial one-dimensional module \mathbb{C} , where $g \in G$ acts by 1.

Similarly, for a Lie algebra \mathfrak{g} and two \mathfrak{g} -modules V_1, V_2 , we can define \mathfrak{g} -module structures on $V_1 \otimes V_2$ and V_1^* by

$$x.(v_1 \otimes v_2) = (x.v_1) \otimes v_2 + v_1 \otimes (x.v_2), \langle x.\alpha, v_1 \rangle = -\langle \alpha, x.v_1 \rangle.$$

And we have the trivial one-dimensional module \mathbb{C} , where $x \in \mathfrak{g}$ acts by 0.

Recall also that a G-module (resp., \mathfrak{g} -module) is the same thing as a module over the group algebra $\mathbb{C}G$ (resp., over the universal enveloping algebra $U(\mathfrak{g})$). Both $\mathbb{C}G, U(\mathfrak{g})$ are associative algebras. Note, however, that if A is an associative algebra, then we do not have natural A-module structures on $V_1 \otimes V_2, V_1^*, \mathbb{C}$ (where V_1, V_2 are A-modules). Indeed, $V_1 \otimes V_2$ carries a natural structure of $A \otimes A$ -module by $(a \otimes b).(v_1 \otimes v_2) = (av_1) \otimes (bv_2)$. The dual space V_1^* is naturally a module over the opposite algebra A^{op} , which is the same vector space as A but with opposite multiplication: $a \cdot b := ba$. An A^{op} -module is the same thing as a right A-module, and we set $(\alpha a)(v_1) := \alpha(av_1)$. Finally, \mathbb{C} is naturally a \mathbb{C} -module. We could equip $V_1 \otimes V_2$ with an A-module structure if we have a distinguished algebra homomorphism $\Delta : A \to A \otimes A$ (then we just pull the $A \otimes A$ -module structure back to A). This homomorphism Δ is called a coproduct. Similarly, to equip V_1^* and \mathbb{C} with A-module structures we need algebra homomorphisms $S : A \to A^{op}$ (antipode) and $\eta : A \to \mathbb{C}$ (counit). Let us construct these homomorphisms for $A = \mathbb{C}G$ and $A = U(\mathfrak{g})$.

Example 1.1. For $A = \mathbb{C}G$, we have $\Delta(q) := q \otimes q$, $S(q) = q^{-1}$, $\eta(q) = 1$ for $q \in G$.

Example 1.2. Let $A = U(\mathfrak{g})$. Since Δ, S, η are supposed to be algebra homomorphisms, it is enough to define them on \mathfrak{g} . We set $\Delta(x) = x \otimes 1 + 1 \otimes x, S(x) = -x, \eta(x) = 1$, where $x \in \mathfrak{g}$.

2 IVAN LOSEV

1.2. Coassociativity. We need some additional assumptions on Δ , S, ϵ in order to guarantee some natural properties of tensor products such as associativity. Axiomatizing these properties, we arrive at the definition of a *Hopf algebra*.

First, let us examine the associativity of the tensor product. We have a natural isomorphism $(V_1 \otimes V_2) \otimes V_3 \to V_1 \otimes (V_2 \otimes V_3), (v_1 \otimes v_2) \otimes v_3 \mapsto v_1 \otimes (v_2 \otimes v_3)$. We want this isomorphism to be A-linear. We have two homomorphisms $A \to A^{\otimes 3}$ produced from Δ . First, we have $(\Delta \otimes \mathrm{id}) \circ \Delta$. The algebra A acts on $(V_1 \otimes V_2) \otimes V_3$ via this homomorphism $A \to A^{\otimes 3}$. Indeed, if $\Delta(a) = \sum_{i=1}^k a_i^1 \otimes a_i^2$, then $a.((v_1 \otimes v_2) \otimes v_3) = \sum_{i=1}^k a_i^1.(v_1 \otimes v_2) \otimes a_i^2v_3 = \sum_{i=1}^k \Delta(a_i^1)(v_1 \otimes v_2) \otimes a_i^2v_3$, and $(\Delta \otimes \mathrm{id}) \circ \Delta(a) = \sum_{i=1}^k \Delta(a_i^1) \otimes a_i^2$. Similarly, A acts on $V_1 \otimes (V_2 \otimes V_3)$ via $(\mathrm{id} \otimes \Delta) \circ \Delta : A \to A^{\otimes 3}$. So, if we want to the isomorphism $(v_1 \otimes v_2) \otimes v_3 \mapsto v_1 \otimes (v_2 \otimes v_3)$ to be A-linear, it is natural to require that $(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta$. In other words, we want the following diagram to be commutative.

If this holds, then we say that Δ is coassociative.

Let us motivate the terminology ("coproduct" and "coassociative"). Let A be a finite dimensional algebra. Let us write $m:A\otimes A\to A$ for the product. Then m is associative (i.e., $m(m(a\otimes b)\otimes c)=m(a\otimes m(b\otimes c))$) if and only if the following diagram is commutative.

Now let us dualize. We get the space A^* together with the map $m^*: A^* \to A^* \otimes A^*$ that is natural to call a coproduct. Clearly, m is associative if and only if m^* is coassociative.

1.3. **Axioms of Hopf algebras.** We need to axiomatically describe two more maps: the counit $\eta: A \to \mathbb{C}$ and the antipode $S: A \to A^{op}$.

An axiom of a counit should be dual to that of the unit, $e: \mathbb{C} \to A, z \mapsto z \cdot 1$. The element e(1) is a unit if and only if the following diagram is commutative.

Dualizing this diagram we get the counit axiom: the following diagram is commutative.

Finally, the antipode axiom is the commutativity of the following diagram.

Let us illustrate this axiom in the example of $A = \mathbb{C}G$, where $S(g) = g^{-1}$. There $\Delta(g) = g \otimes g$, $S \otimes \mathrm{id}(g \otimes g) = g^{-1} \otimes g$, $m(g^{-1} \otimes g) = 1 = e \circ \eta(g)$.

Definition 1.3. By a Hopf algebra we mean a \mathbb{C} -vector space A with five maps (m, e, Δ, η, S) , where $m: A \otimes A \to A, e: \mathbb{C} \to A, \Delta: A \to A \otimes A, \eta: A \to \mathbb{C}, S: A \to A$ such that:

- (1) (A, m, e) is an associative unital algebra.
- (2) $\Delta: A \to A \otimes A, S: A \to A^{op}, \eta: A \to \mathbb{C}$ are algebra homomorphisms.
- (3) Δ is coassociative, and η satisfies the counit axiom.
- (4) S satisfies the antipode axiom.

Remark 1.4. In fact, once m, e, Δ are specified, S and η are recovered in at most one way.

It is straightforward to check that $\mathbb{C}G$ and $U(\mathfrak{g})$ are Hopf algebras.

1.4. **Duality of Hopf algebras.** Now let $(A, m, e, \Delta, \eta, S)$ be a finite dimensional Hopf algebra. One can show that $(A^*, \Delta^*, \eta^*, m^*, e^*, S^*)$ is a Hopf algebra as well.

Example 1.5. Let us describe $(\mathbb{C}G)^*$. As a vector space, $(\mathbb{C}G)^*$ is the algebra of functions on G, to be denoted by $\mathbb{C}[G]$. The map $\Delta: \mathbb{C}G \to \mathbb{C}G \otimes \mathbb{C}G$ sends g to $g \otimes g$. So $\Delta^*(\alpha \otimes \beta)(g) = \alpha \otimes \beta(g \otimes g) = \alpha(g)\beta(g)$ is the usual multiplication of functions. Similarly, η^* sends 1 to the identity function. The map $m^*: \mathbb{C}[G] \to \mathbb{C}[G] \otimes \mathbb{C}[G] = \mathbb{C}[G \times G]$ sends $\alpha \in \mathbb{C}[G]$ to $m^*(\alpha)(g,h) := \alpha(gh)$. The map $e^*: \mathbb{C}[G] \to \mathbb{C}$ maps α to $\alpha(1)$. Finally, we have $(S^*\alpha)(g) = \alpha(g^{-1})$.

1.5. Cocommutativity. In the cases of $A = U(\mathfrak{g})$, $\mathbb{C}G$ the isomorphism $V_1 \otimes V_2 \xrightarrow{\sim} V_2 \otimes V_1$ is that of A-modules. The reason for this is that the *opposite coproduct* $\Delta^{op} := \sigma \circ \Delta$, where $\sigma : A^{\otimes 2} \to A^{\otimes 2}$, $a \otimes b \mapsto b \otimes a$, coincides with Δ . The Hopf algebras with $\Delta = \Delta^{op}$ are called *cocommutative*. However, there are Hopf algebras that are not cocommutative, e.g. $\mathbb{C}[G]$.

The Hopf algebras we have encountered so far are commutative as algebras $(\mathbb{C}[G])$ or cocommutative $(\mathbb{C}G, U(\mathfrak{g}))$. Of course, one can cook a Hopf algebra that is neither commutative nor cocommutative: the tensor product of two Hopf algebras carries a natural Hopf algebra structure and we can take the tensor product of a non-commutative Hopf algebra with a non-cocommutative one. But this is very boring. In the next section, we will study a far more interesting example.

2.
$$U_q(\mathfrak{sl}_2)$$

2.1. $U_q(\mathfrak{sl}_2)$ as a Hopf algebra. We will define the "quantum \mathfrak{sl}_2 " by generators and relations (as an algebra) and then define Δ, η, S on the generators.

Let $q \in \mathbb{C} \setminus \{0, \pm 1\}$ (we can also take q to be an independent variable in the field of rational functions $\mathbb{C}(q)$). We define the algebra $U_q(\mathfrak{sl}_2)$ generated by E, F, K, K^{-1} subject to the following relations:

$$KK^{-1} = K^{-1}K = 1$$
, $KEK^{-1} = q^2E$, $KFK^{-1} = q^{-2}F$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

Note that the algebra $U := U_q(\mathfrak{sl}_2)$ is spanned by the monomials $F^k K^{\ell} E^m$, where $k, m \in \mathbb{Z}_{\geq 0}$, and $\ell \in \mathbb{Z}$. In fact, these monomials are linearly independent (the PBW theorem).

Now let us define the Hopf algebra structure. We set

$$\Delta(E) = E \otimes 1 + K \otimes E, \quad \Delta(F) = F \otimes K^{-1} + 1 \otimes F, \quad \Delta(K) = K \otimes K,$$

$$(2.1) \qquad \eta(E) = \eta(F) = 0, \quad \eta(K) = 1,$$

$$S(E) = -K^{-1}E, S(F) = -FK, S(K) = K^{-1}.$$

Proposition 2.1. Δ , η , S extend to required algebra homomorphisms. Moreover, U becomes a Hopf algebra.

Proof. This is a mighty tedious check... What we need to verify is that Δ, S, η respect the relations in U and that the axioms (3),(4) in the definition of a Hopf algebra hold on the generators E, K, F. Let us check that $\Delta([E, F]) = [\Delta(E), \Delta(F)]$, which is the hardest relation to check. We have

$$\Delta([E, F]) = \Delta\left(\frac{K - K^{-1}}{q - q^{-1}}\right) = \frac{K \otimes K - K^{-1} \otimes K^{-1}}{q - q^{-1}}$$

On the other hand,

$$\begin{split} [\Delta(E), \Delta(F)] &= [E \otimes 1 + K \otimes E, F \otimes K^{-1} + 1 \otimes F] = [E, F] \otimes K^{-1} + K \otimes [E, F] + \\ &+ [K \otimes E, F \otimes K^{-1}] = \frac{(K - K^{-1}) \otimes K^{-1}}{q - q^{-1}} + \frac{K \otimes (K - K^{-1})}{q - q^{-1}} + KF \otimes EK^{-1} - \\ &- FK \otimes K^{-1}E = \frac{K \otimes K - K^{-1} \otimes K^{-1}}{q - q^{-1}} + KF \otimes EK^{-1} - (q^2KF) \otimes (q^{-2}EK^{-1}) = \\ &= \frac{K \otimes K - K^{-1} \otimes K^{-1}}{q - q^{-1}}. \end{split}$$

We note that $\Delta \neq \Delta^{op}$. In particular, the map $v_1 \otimes v_2 \mapsto v_2 \otimes v_1$ does not give an isomorphism $V_1 \otimes V_2 \to V_2 \otimes V_1$, in general. However, in the next lecture we will find an element $R \in U_q(\mathfrak{sl}_2) \otimes U_q(\mathfrak{sl}_2)$ (this is a slight lie, we need a certain completion) with $R^{-1}\Delta(u)R = \Delta^{op}(u)$. This element, called the universal R-matrix, is extremely important. In particular, it will allow us to construct link invariants, such as the Jones polynomial.

2.2. $U_q(\mathfrak{sl}_2)$ vs $U(\mathfrak{sl}_2)$. The algebra $U_q(\mathfrak{sl}_2)$ should be thought as a deformation of $U(\mathfrak{sl}_2)$ (the latter corresponds to q=1). This however requires some care, we cannot put q=1 in the definition of $U_q(\mathfrak{sl}_2)$. In order to make the claim about the deformation more precise, we will need to consider the formal version of $U_q(\mathfrak{sl}_2)$, we will call it $U_{\hbar}(\mathfrak{sl}_2)$. This will be an algebra over $\mathbb{C}[[\hbar]]$.

By definition, as an algebra, $U_{\hbar}(\mathfrak{sl}_2)$ is the quotient of $T(\mathfrak{sl}_2)[[\hbar]]$ by the relations

$$[h, e] = 2e, [h, f] = -2f, [e, f] = \frac{\exp(\hbar h) - \exp(-\hbar h)}{\exp(\hbar) - \exp(-\hbar)}.$$

Note that $\frac{\exp(\hbar h) - \exp(-\hbar h)}{\exp(\hbar) - \exp(-\hbar)}$ is a formal power series in \hbar , modulo \hbar it equals h. It follows that $U_{\hbar}(\mathfrak{sl}_2)/(\hbar) = U(\mathfrak{sl}_2).$

One can show that \hbar is not a zero divisor in $U_{\hbar}(\mathfrak{sl}_2)$. Note that E=e,F=f,K= $\exp(\hbar h), q = \exp(\hbar)$ satisfy the relations of $U_q(\mathfrak{sl}_2)$. Indeed, for example, we get

$$\exp(\hbar h)e \exp(-\hbar h) = \exp(\hbar \operatorname{ad}(h))e = \exp(2\hbar)e.$$

One can introduce the Hopf algebra structure on $U_{\hbar}(\mathfrak{sl}_2)$ but one needs to extend the definition to allow Δ to be a homomorphism $U_{\hbar}(\mathfrak{sl}_2) \to U_{\hbar}(\mathfrak{sl}_2) \otimes_{\mathbb{C}[[\hbar]} U_{\hbar}(\mathfrak{sl}_2)$. Here \otimes denotes the completed tensor product. While the usual tensor product consists of all finite sums of decomposable tensors, the completed product consists of all converging (in the \hbar -adic topology) infinite sums.

2.3. Algebras $U_q(\mathfrak{g})$. We can define quantum groups $U_q(\mathfrak{g})$ for any semisimple Lie algebra \mathfrak{g} (or, more generally, any Kac-Moody algebra $\mathfrak{g}(A)$ for a symmetrizable Cartan matrix A). Let us start with $\mathfrak{g} = \mathfrak{sl}_{n+1}$.

Recall that the usual universal enveloping algebra $U(\mathfrak{sl}_{n+1})$ is defined by the generators $e_i, h_i, f_i, i = 1, \ldots, n$, and the following relations:

- (i) $[h_i, e_i] = 2e_i, [h_i, f_i] = -2f_i, [e_i, f_i] = h_i.$
- (ii) $[h_i, h_j] = 0$.
- (iii) $[h_i, e_j] = a_{ij}e_j, [h_i, f_j] = -a_{ij}f_i.$
- (iv) $e_i f_j = f_j e_i, i \neq j$.
- (v) $e_i e_j = e_j e_i$, if $a_{ij} = 0$, and $e_i^2 e_j 2e_i e_j e_i + e_j e_i^2 = 0$, if $a_{ij} = -1$. (vi) $f_i f_j = f_j f_i$, if $a_{ij} = 0$, and $f_i^2 f_j 2f_i f_j f_i + f_j f_i^2 = 0$, if $a_{ij} = -1$.

Recall that here $a_{ij} = -1$ if |i - j| = 1 and $a_{ij} = 0$ if |i - j| > 1.

The quantum group $U_q(\mathfrak{sl}_{n+1})$ is defined by the generators $E_i, K_i^{\pm 1}, F_i, i = 1, \ldots, n$, with relations

- $(i_q) K_i E_i K_i^{-1} = q^2 E_i, K_i F_i K_i^{-1} = q^{-2} F_i, [E_i, F_i] = \frac{K_i K_i^{-1}}{q q^{-1}}.$
- $(ii_q) [K_i, K_j] = 0.$
- $(iii_q) K_i E_j K_i^{-1} = q^{a_{ij}} E_j, K_i F_j K_i^{-1} = q^{-a_{ij}} F_j.$
- (iv_a) $E_iF_i = F_iE_i, i \neq j.$
- (\mathbf{v}_q) $E_i E_j = E_j E_i$ if $a_{ij} = 0$ and $E_i^2 E_j [2]_q E_i E_j E_i + E_j E_i^2 = 0$ if $a_{ij} = -1$. (\mathbf{v}_q) $F_i F_j = F_j F_i$ if $a_{ij} = 0$ and $F_i^2 F_j [2]_q F_i F_j F_i + F_j F_i^2 = 0$ if $a_{ij} = -1$.

Here $[2]_q$ denotes the "quantum 2", i.e., $q + q^{-1}$.

The similar definition will work for any simply laced Cartan matrix A (meaning that $a_{ij} \in \{0, -1\}$ if $i \neq j$). When A is not simply laced (e.g., of type B_n, C_n, F_4, G_2), the definition is more technical, one needs to use different q's for the " \mathfrak{sl}_2 -subalgebras" of $U_q(\mathfrak{g})$ according the length of the corresponding root. Namely, when \mathfrak{g} is finite dimensional, we define $d_i \in \{1, 2, 3\}$ as $(\alpha_i, \alpha_i)/2$, where (\cdot, \cdot) is a W-invariant form on \mathfrak{h}^* normalized in such a way that $(\alpha, \alpha) = 2$ for the short roots (we have two different root lengths). This can be generalized to an arbitrary symmetrizable Kac-Moody algebra but we are not going to explain that.

IVAN LOSEV 6

Now set $q_i := q^{d_i}$ (so that $q_1 = q$). We also define the quantum integer $[n]_{q_i} = q_i^{n-1} +$ $q_i^{n-2} + \ldots + q_i^{1-n}$, and the quantum factorial $[n]_{q_i}! = [1]_{q_i} \ldots [n]_{q_i}$. We set

$$\binom{n}{k}_{q_i} = \frac{[n]_{q_i}!}{[k]_{q_i}![n-k]_{q_i}!}.$$

Now we define $U_q(\mathfrak{g})$ as the algebra generated by E_i, K_i, F_i subject to the relations

$$(i_q) K_i E_i K_i^{-1} = q_i^2 E_i, K_i F_i K_i^{-1} = q_i^{-2} F_i, [E_i, F_i] = \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}.$$

$$(ii_q) [K_i, K_j] = 0.$$

$$(iii_q) K_i E_j K_i^{-1} = q_i^{a_{ij}} E_j, K_i F_j K_i^{-1} = q_i^{-a_{ij}} F_j.$$

$$(iv_q)$$
 $E_iF_j = F_jE_i, i \neq j.$

$$(\mathbf{v}_q) \sum_{k=0}^{1-a_{ij}} (-1)^k {\binom{1-a_{ij}}{k}}_{a_i} E_i^{1-a_{ij}-k} E_j E_i^k = 0.$$

$$\begin{aligned} &(\text{Im}_{q}) \ K_{i} E_{j} K_{i} &= q_{i} \ E_{j}, K_{i} I_{j} K_{i} &= q_{i} \ I_{j}. \\ &(\text{iv}_{q}) \ E_{i} F_{j} &= F_{j} E_{i}, i \neq j. \\ &(\text{v}_{q}) \ \sum_{k=0}^{1-a_{ij}} (-1)^{k} {1-a_{ij} \choose k}_{q_{i}} E_{i}^{1-a_{ij}-k} E_{j} E_{i}^{k} &= 0. \\ &(\text{vi}_{q}) \ \sum_{k=0}^{1-a_{ij}} (-1)^{k} {1-a_{ij} \choose k}_{q_{i}} F_{i}^{1-a_{ij}-k} F_{j} F_{i}^{k} &= 0. \end{aligned}$$

Note that they are obtained from the relations for $U(\mathfrak{g})$ in the same fashion as the relations for $U_q(\mathfrak{sl}_{n+1})$ are obtained from those for $U(\mathfrak{sl}_{n+1})$.

The Hopf algebra structure on $U_q(\mathfrak{g})$ is introduced as follows: we just define Δ, S, η on E_i, F_i, K_i as in $U_{q_i}(\mathfrak{sl}_2)$.