LECTURE 10: KAZHDAN-LUSZTIG BASIS AND CATEGORIES \mathcal{O}

IVAN LOSEV

Introduction

In this and the next lecture we will describe an entirely different application of Hecke algebras, now to the category \mathcal{O}. In the first section we will define the Kazhdan-Lusztig basis in the Hecke algebra of W and explain how to read the multiplicities in the category \mathcal{O} from this basis (the Kazhdan-Lusztig conjecture proved independently by Beilinson-Bernstein and Brylinski-Kashiwara).

In the remainder of this lecture and in the next one, we will explain some steps towards a proof of this conjecture based on works of Soergel and of Elias-Williamson. We will start by defining projective functors between different infinitesimal blocks of category \mathcal{O}. As an application, we will show how the computation of multiplicities in \mathcal{O}_{λ} for $\lambda \in P$ reduces to $\lambda=0$.

1. Kazhdan-Lusztig basis and conjecture

1.1. Recap on category \mathcal{O}. Pick a semisimple Lie algebra \mathfrak{g} over \mathbb{C}. We have the triangular decomposition $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}$. Let W denote the Weyl group. Let $\rho:=\frac{1}{2} \sum_{\alpha>0} \alpha=\sum_{i} \omega_{i}$ (where ω_{i} denote the fundamental weight corresponding to a simple root α_{i}). Define the shifted action of W on \mathfrak{h} by $w \cdot \lambda:=w(\lambda+\rho)-\rho$.

Recall that in Lecture 7 we have introduced the BGG category \mathcal{O} consisting of all finitely generated $U(\mathfrak{g})$-modules with diagonalizable action of \mathfrak{h} and locally nilpotent action of \mathfrak{n}. Also we have identified the center Z of $U(\mathfrak{g})$ with $\mathbb{C}[\mathfrak{h}]^{W \cdot}=\{f \in \mathbb{C}[\mathfrak{h}] \mid f(w \cdot \lambda)=f(\lambda), \forall w \in$ $W, \lambda \in \mathfrak{h}\}$, where we send $z \in Z$ to the polynomial \tilde{f}_{z} such that z acts by $\tilde{f}_{z}(\lambda)$ on the Verma module $\Delta(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$. This allowed to split \mathcal{O} into the direct sum of infinitesimal blocks \mathcal{O}_{λ} consisting of all modules M in \mathcal{O}, where z acts with generalized eigenvalue $\tilde{f}_{z}(\lambda)$. We are going to be interested in \mathcal{O}_{λ}, where $\lambda \in P$ (the weight lattice) and mainly in \mathcal{O}_{0} (we will see that the study of \mathcal{O}_{λ} with $\lambda \in P$ basically reduces to the study of \mathcal{O}_{0}). The simple objects in \mathcal{O}_{0} are $L(w \cdot 0), w \in W$, all of these objects are different because $W_{\rho}=\{1\}$. We have seen in Lecture 7 that any $L(w \cdot 0)$ appears in the composition series of $\Delta(w \cdot 0)$ once, and all other composition are $L\left(w^{\prime} \cdot 0\right)$, where $w^{\prime} \cdot 0<w \cdot 0$ meaning that $w \cdot 0-w^{\prime} \cdot 0$ is a sum of positive roots. In fact, we can take a weaker Bruhat order (getting a stronger result).

Definition 1.1. We say that $u \prec w$ (in the Bruhat order) if $w=s_{\beta_{k}} \ldots s_{\beta_{1}} u$, where $\beta_{k}, \ldots, \beta_{1}$ are roots (not necessarily simple) and $\ell\left(s_{\beta_{i}} \ldots s_{\beta_{1}} u\right)>\ell\left(s_{\beta_{i-1}} \ldots s_{\beta_{1}} u\right)$ for all i.

In this order, the minimal element in W is 1 , while the maximal element is the longest (with respect to the length $\ell(w)$) element $w_{0} \in W$. It is uniquely characterized by the property that it maps the positive Weyl chamber C to $-C$. For $W=S_{n}$, we have $w_{0}(i)=n+1-i$ for all i.

Here are properties of \prec to be used below.
Lemma 1.2. The following is true:
(1) If $u \prec w$, then $u \cdot 0>w \cdot 0$.
(2) If u is obtained from w by deleting some elements in the reduced expression of w, then $u \prec w$.
(3) $u \preceq w$ if and only if $w_{0} w \preceq w_{0} u$.

The proof is left as an exercise.
We will write L_{w} for $L\left(w_{0} w \cdot 0\right)$ and $\Delta_{w}=\Delta\left(w_{0} w \cdot 0\right)$. One can show that if L_{u} is a composition factor of Δ_{w}, then $u \preceq w$. What we want to compute is the character of L_{w}. Let m_{w}^{u} denote the multiplicity of L_{u} in Δ_{w}. Consider the multiplicity matrix M, it is unitriangular and hence invertible. Let $M^{-1}=\left(n_{w}^{u}\right)$. So $\operatorname{ch} L_{w}=\sum_{u \preceq w} n_{w}^{u} \operatorname{ch} \Delta_{u}$. So what we need to compute is the numbers n_{w}^{u}.

It is convenient to reformulate this problem. The category \mathcal{O}_{0} is abelian. So we can consider its Grothendieck group $K_{0}\left(\mathcal{O}_{0}\right)$. It is defined as the quotient of the free group generated by the isomorphism classes of the objects $M \in \mathcal{O}_{0}$ modulo the relation $M=$ $M^{\prime} \oplus M^{\prime \prime}$ if there is an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$. We denote the image of M in $K_{0}\left(\mathcal{O}_{0}\right)$ by $[M]$. Since the objects in \mathcal{O}_{0} have finite length, the classes $\left[L_{w}\right]$ form a basis in $K_{0}\left(\mathcal{O}_{0}\right)$. Since the matrix M is uni-triangular, the same is true for [Δ_{w}]. We identify $K_{0}\left(\mathcal{O}_{0}\right)$ with the group ring $\mathbb{Z} W$ in such a way that $\left[\Delta_{w}\right]$ corresponds to w. So we need to compute the basis $\left[L_{w}\right]=\sum_{u \preceq w} n_{w}^{u} u$.
Example 1.3. It is easy to compute two basis elements $\left[L_{w}\right]$. Namely, we have $n_{w}^{w}=1$ and $n_{w}^{u} \neq 0 \Rightarrow u \preceq w$. This immediately implies $\left[L_{1}\right]=1$. The proof of the Weyl character formula in Lecture 7 says $\left[L_{w_{0}}\right]=\sum_{w \in W} \operatorname{sgn}\left(w_{0} w\right) w$.

In general, however, we cannot even describe the basis $\left[L_{w}\right]$ staying inside $\mathbb{Z} W$. This is where the Hecke algebra comes into play.
1.2. Kazhdan-Lusztig basis. First, it will be convenient to modify the Hecke algebra slightly. Let us recall the previous definition (in the specialization $v_{s}=v$ for all $s \in S$, where S denotes the set of simple reflections in $W)$. The Hecke algebra $\mathcal{H}_{v}(W)$ is generated by elements that we will now denote by T_{s}^{\prime} with relations $T_{s}^{\prime} T_{t}^{\prime} T_{s}^{\prime} \ldots=T_{t}^{\prime} T_{s}^{\prime} T_{t}^{\prime} \ldots$ ($m_{s t}$ times) and $\left(T_{s}^{\prime}-v\right)\left(T_{s}^{\prime}+1\right)=0$. Now let q be another independent variable (that has nothing to do with a prime power). Define the $\mathbb{Z}\left[q^{ \pm 1}\right]$-algebra $\mathcal{H}_{q}(W)$ by generators T_{s} with relations $T_{s} T_{t} T_{s} \ldots=T_{t} T_{s} T_{t} \ldots$ and $\left(T_{s}-q\right)\left(T_{s}+q^{-1}\right)=0$. Clearly, $\mathcal{H}_{q}(W)=\mathcal{H}_{v}(W)\left[q^{ \pm 1}\right] /\left(v-q^{2}\right)$ with $T_{s}^{\prime} \mapsto q T_{s}$. We see that $\mathcal{H}_{q}(W)$ has basis T_{w} such that

$$
T_{s} T_{w}=\left\{\begin{array}{l}
T_{s w}, \quad \text { if } \ell(s w)=\ell(w)+1 \tag{1.1}\\
T_{s w}+\left(q-q^{-1}\right) T_{w}, \quad \text { if } \ell(s w)=\ell(w)-1
\end{array}\right.
$$

We have a ring involution of $\mathcal{H}_{q}(W)$ (called the bar involution and denoted by \bullet), given on generators by $\bar{q}:=q^{-1}, \bar{T}_{s}:=T_{s}^{-1}\left(=T_{s}+q^{-1}-q\right)$. Since \bullet preserves the relations, we see that $\bar{\bullet}$ is indeed a well-defined ring involution. Note that $\bar{T}_{w}=\left(T_{w^{-1}}\right)^{-1}$.

The following fundamental result is due to Kazhdan and Lusztig, [KL].
Theorem 1.4. For any $w \in W$, there is a unique element $C_{w} \in \mathcal{H}_{q}(W)$ such that $C_{w}=$ $T_{w}+\sum_{u \prec w} P_{w}^{u}(q) T_{u}$, where $P_{w}^{u}(q) \in q \mathbb{Z}[q]$, and $\bar{C}_{w}=C_{w}$.

Since the matrix of expressing C_{w} 's in terms of T_{w} 's is uni-triangular, we see that the elements $C_{w}, w \in W$, form a basis in $\mathcal{H}_{q}(W)$. This is a so called Kazhdan-Lusztig basis.
Proof. The proof is by induction with respect to the Bruhat order: we assume that C_{u} exits and is unique for all $u \prec w$. Let $w=s_{i_{1}} \ldots s_{i_{\ell}}$ be a reduced expression. We have
$\bar{T}_{w}=\bar{T}_{i_{1}} \ldots \bar{T}_{i_{\ell}}=\left(T_{i_{1}}+q^{-1}-q\right) \ldots\left(T_{i_{\ell}}+q^{-1}-q\right)$. Decompose \bar{T}_{w} in the basis T_{u}. We have $\bar{T}_{w}=T_{w}+\sum_{u \prec w} R_{w}^{u}(q) T_{u}$ (all u 's are obtained by removing some simple reflections from the reduced decomposition of w and so $u \prec w$ by (2) of Lemma 1.2). By the existence of C_{u}, what we need to show that there is a unique $\tilde{P}_{w}^{u}(q) \in q \mathbb{Z}[q]$ such that $C_{w}=T_{w}+\sum_{u \prec w} \tilde{P}_{w}^{u}(q) C_{u}$ and $\bar{C}_{w}=C_{w}$. We also have $\bar{T}_{w}-T_{w}=\sum_{u \prec w} Q_{w}^{u}(q) C_{u}$. Applying \bullet to the equation, we get $T_{w}-\bar{T}_{w}=\sum_{u \prec w} Q_{w}^{u}\left(q^{-1}\right) C_{u}$ and so $\bar{Q}_{w}^{u}\left(q^{-1}\right)=-\bar{Q}_{w}^{u}(q)$. But we have

$$
\bar{C}_{w}=\bar{T}_{w}+\sum_{u \prec w} \tilde{P}_{w}^{u}\left(q^{-1}\right) C_{u}=T_{w}+\sum_{u \prec w} Q_{w}^{u}(q) C_{u}+\sum_{u \prec w} \tilde{P}_{w}^{u}\left(q^{-1}\right) C_{u}
$$

So we need to prove that there is a unique $\tilde{P}_{w}^{u}(q) \in q \mathbb{Z}[q]$ such that $\tilde{P}_{w}^{u}\left(q^{-1}\right)-\tilde{P}_{w}^{u}(q)=Q_{w}^{u}(q)$. This follows from $Q_{w}^{u}\left(q^{-1}\right)=-Q_{w}^{u}(q)$.
Example 1.5. We have $C_{1}=1$ and $C_{s}=T_{s}-q$, where $s \in S$.
Let us consider a more interesting example: $W=S_{3}$. Let s, t denote the simple reflections. The Bruhat order is that $1<s, t<s t, t s<s t s=t s t$ (elements in the same group are not comparable). We have
$C_{s t}=T_{s t}-q\left(T_{s}+T_{t}\right)+q^{2}, C_{t s}=T_{t s}-q\left(T_{s}+T_{t}\right)+q^{2}, C_{s t s}=T_{s t s}-q\left(T_{s t}+T_{t s}\right)+q^{2}\left(T_{s}+T_{t}\right)-q^{3}$.
More generally, $C_{w_{0}}=\sum_{w \in W}(-q)^{\ell\left(w_{0}\right)-\ell(w)} T_{w}$. To check these equalities is a part of the homework.
1.3. Kazhdan-Lusztig conjecture. We have a surjection $\mathcal{H}_{q}(W) \rightarrow \mathbb{Z} W$ given by setting $q=1$. The following theorem was conjectured by Kazhdan-Lusztig and proved by BeilinsonBernstein, [BB], and Brylinski-Kashiwara, [BK].
Theorem 1.6. We have $\left[L_{w}\right]=\left.C_{w}\right|_{q=1}$.
By Example 1.5, this agrees with the Weyl character formula: $\left[L_{w_{0}}\right]=\sum_{w \in W_{0}} \operatorname{sgn}\left(w_{0} w\right) w$.
This is a difficult theorem whose proof found in the 80 's required a heavy machinery and is one of the greatest achievements of Geometric Representation theory. Recently, a more elementary (but also difficult) proof was found, see [EW]. Starting the next section, we will outline some ideas relevant for that proof.
1.4. Stronger version. Now we are going to explain how to recover C_{w} itself (not just its specialization to 1) from the structure of Verma modules. This description was found in [BGS].

Let M be an object of \mathcal{O}. By head (M) we mean the maximal semisimple quotient of M and by the radical $\operatorname{Rad}(M)$ we mean the kernel $M \rightarrow$ head (M). Now define the radical filtration $M_{0} \supsetneq M_{1} \supsetneq M_{2} \supsetneq \ldots$ by setting $M_{i}:=\operatorname{Rad}\left(M_{i-1}\right)$. Now take $M:=\Delta_{w}$ and for $u \preceq w$ define $m_{w}^{u}(q):=\sum\left[M_{i} / M_{i+1}: L_{u}\right] q^{i}$, where the square bracket denotes the multiplicity of L_{u} in the composition series of M_{i} / M_{i+1}. For example, $m_{w}^{w}(q)=1$.
Theorem 1.7. We have $T_{w}=\sum_{u \preceq w} m_{w}^{u}(q) C_{u}$.
Example 1.8. For $\mathfrak{g}=\mathfrak{s l}_{2}$, the module $\Delta(1)$ has simple radical, $\Delta(-2)=L(-2)$. For $s \in S_{2} \backslash\{1\}$, we get $m_{s}^{s}(q)=1, m_{s}^{1}(q)=q$. Indeed, $T_{s}=C_{s}+q C_{1}$.

2. Projective functors, I

We are going to explain how to reduce the study of \mathcal{O}_{λ} with $\lambda \in P$ to $\lambda=0$.
2.1. Tensor products with finite dimensional modules. Recall that if V is a finite dimensional \mathfrak{g}-module and $M \in \mathcal{O}$, then $V \otimes M \in \mathcal{O}$. So we get the functor $V \otimes \bullet: \mathcal{O} \rightarrow \mathcal{O}$. This functor is exact (preserves exact sequences), it has both left and right adjoints, both are given by $V^{*} \otimes \bullet$.

Now we are going to get a partial description of $V \otimes \Delta(\lambda)$. Pick a weight basis v_{1}, \ldots, v_{m} of V and let $\nu_{1}, \ldots, \nu_{m} \in \mathfrak{h}^{*}$ be the corresponding weights. We may assume that they are ordered compatibly with the order on \mathfrak{h}^{*}, i.e., if $\nu_{i} \geqslant \nu_{j}$, then $i \geqslant j$.

Proposition 2.1. There is a filtration $V \otimes M=M_{0} \supset M_{1} \supset \ldots \supset M_{m}=\{0\}$ such that $M_{i-1} / M_{i} \cong \Delta\left(\lambda+\nu_{i}\right)$.

Proof. Recall that $\Delta(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$. We claim that $V \otimes \Delta(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}(V \otimes \mathbb{C})$. This follows from

$$
\begin{aligned}
& \operatorname{Hom}_{\mathfrak{g}}(V \otimes \Delta(\lambda), M)=\operatorname{Hom}_{\mathfrak{g}}\left(\Delta(\lambda), V^{*} \otimes M\right)=\operatorname{Hom}_{\mathfrak{b}}\left(\mathbb{C}_{\lambda}, V^{*} \otimes M\right)= \\
& =\operatorname{Hom}_{\mathfrak{b}}\left(V \otimes \mathbb{C}_{\lambda}, M\right)=\operatorname{Hom}_{\mathfrak{g}}\left(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(V \otimes \mathbb{C}_{\lambda}\right), M\right)
\end{aligned}
$$

Consider the filtration $V \otimes \mathbb{C}_{\lambda}=N_{0} \supset \ldots \supset N_{m}=\{0\}$, where $N_{i}:=\operatorname{Span}_{\mathbb{C}}\left(v_{i+1}, \ldots, v_{m}\right)$. This is \mathfrak{b}-module filtration (because \mathfrak{n} increases weights) with $N_{i-1} / N_{i}=\mathbb{C}_{\lambda+\nu_{i}}$. Set $M_{i}:=$ $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N_{i}$. Recall that $U(\mathfrak{g})$ is a free right $U(\mathfrak{b})$-module. So the functor $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \bullet$ is exact and we have $M_{i-1} / M_{i}=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})}\left(N_{i-1} / N_{i}\right)=\Delta\left(\lambda+\nu_{i}\right)$.

Let pr_{μ} denote the functor $\mathcal{O} \rightarrow \mathcal{O}_{\mu}$ that sends $M \in \mathcal{O}$ to the generalized eigenspace of Z in M with eigenvalue μ. The functors of the form $\operatorname{pr}_{\mu}(V \otimes \bullet): \mathcal{O}_{\lambda} \rightarrow \mathcal{O}_{\mu}$ (and their compositions) are known as projective functors. They are tremendously useful in the study of \mathcal{O}.

Corollary 2.2. The object $\mathrm{pr}_{\mu}(V \otimes \Delta(w \cdot \lambda))$ admits a filtration by $\Delta\left(\lambda+\nu_{i}\right)$ with $w \cdot \lambda+\nu_{i} \in$ $W \cdot \mu$.
2.2. Application: translation functors. We are going to consider a special case of Corollary 2.2 , where it is especially easy to describe what weights ν_{i} appear.

Proposition 2.3. Assume that $\lambda, \mu \in P$ are such that $\lambda, \lambda-\mu, \mu+\rho$ are dominant. Let V be the irreducible finite dimensional module with highest weight $\lambda-\mu$. Then $\mathrm{pr}_{\mu}\left(V^{*} \otimes \Delta(w \cdot \lambda)\right)=$ $\Delta(w \cdot \mu)$ and $\operatorname{pr}_{\lambda}(V \otimes \Delta(w \cdot \mu))$ is filtered with $\Delta(w u \cdot \lambda), u \in W_{\mu+\rho}$.

Note that $W_{\mu+\rho}$ is generated by the simple reflections s_{i} such that $\left\langle\mu+\rho, \alpha_{i}^{\vee}\right\rangle=0$.
Proof. To prove the claim about $\operatorname{pr}_{\mu}\left(V^{*} \otimes \Delta(w \cdot \lambda)\right)$ we need to find all weights ν of V^{*} such that $w \cdot \lambda+\nu \in W \cdot \mu$, equivalently, $\lambda+\rho+w^{-1} \nu=u(\mu+\rho)$ for some $u \in W$. We have $u(\mu+\rho) \leqslant \mu+\rho$ for any $u \in W$ and $w^{-1} \nu \geqslant \mu-\lambda$ (the lowest weight of V^{*}) with equality if and only if $w=w_{0}$. So $\lambda+\rho+w^{-1} \nu \geqslant \lambda+\rho+\mu-\lambda=\mu+\rho \geqslant u(\mu+\rho)$. The equality $\operatorname{pr}_{\mu}\left(V^{*} \otimes \Delta(w \cdot \lambda)\right)=\Delta(w \cdot \mu)$ follows from Corollary 2.2.

The claim about $\mathrm{pr}_{\lambda}(V \otimes \Delta(w \cdot \mu))$ follows similarly using the observation that $\lambda-w \cdot \mu \geqslant$ $\lambda-\mu$ for any $w \in W$, and the equality is equivalent to $w \in W_{\mu+\rho}$.

This proposition has several important corollaries.
Corollary 2.4. Let λ_{1}, λ_{2} be dominant. Then there is an equivalence $\mathcal{O}_{\lambda_{1}} \xrightarrow{\sim} \mathcal{O}_{\lambda_{2}}$ sending $\Delta\left(w \cdot \lambda_{1}\right)$ to $\Delta\left(w \cdot \lambda_{2}\right)$.

Proof. We may assume that $\lambda_{1}-\lambda_{2}$ is dominant. Otherwise, we replace λ_{1} with $\lambda_{1}+\lambda_{2}$ and take a composed equivalence $\mathcal{O}_{\lambda_{1}} \xrightarrow{\sim} \mathcal{O}_{\lambda_{1}+\lambda_{2}} \xrightarrow{\sim} \mathcal{O}_{\lambda_{2}}$.

Apply Proposition 2.3 to $\lambda=\lambda_{1}+\lambda_{2}$ and $\mu=\lambda_{2}$. We get functors $\varphi: \mathcal{O}_{\mu} \rightarrow \mathcal{O}_{\lambda}, \varphi(M):=$ $\operatorname{pr}_{\lambda}(V \otimes M)$ and $\varphi^{*}:=\operatorname{pr}_{\mu}\left(V^{*} \otimes \bullet\right): \mathcal{O}_{\lambda} \rightarrow \mathcal{O}_{\mu}$. The notation φ^{*} is justified by the observation that φ^{*} is left and right adjoint to φ. We are going to prove that φ^{*}, φ are mutually inverse (quasi-inverse, if we want to be precise).

Note that $\varphi(\Delta(w \cdot \mu))=\Delta(w \cdot \lambda)$ and $\varphi^{*}(\Delta(w \cdot \lambda))=\Delta(w \cdot \mu)$ (we have $W_{\mu+\rho}=\{1\}$). Also we have an adjointness homomorphism $\varphi^{*} \circ \varphi(M) \rightarrow M$ (induced by $\varphi^{*} \circ \varphi(M) \hookrightarrow$ $\left.V^{*} \otimes V \otimes M \rightarrow M\right)$. This homomorphism is zero if and only if $\varphi(M)$ is zero. Now apply this to $M=\Delta(w \cdot \lambda)$, we get a nonzero homomorphism $\Delta(w \cdot \mu)=\varphi^{*} \circ \varphi(\Delta(w \cdot \mu)) \rightarrow \Delta(w \cdot \mu)$. But any Verma module is generated by its highest weight vector and any endomorphism maps that vector to its multiple. We deduce that any nonzero endomorphism of a Verma module is an isomorphism. So $\varphi^{*} \circ \varphi(M) \xrightarrow{\sim} M$ when M is a Verma module. Since any object in \mathcal{O}_{μ} is filtered by quotients of Verma modules, we see that $\varphi^{*} \circ \varphi(M) \xrightarrow{\sim} M$ for any $M \in \mathcal{O}_{\lambda}$. So φ^{*} is left inverse of φ. Similarly, we see that φ^{*} is a right inverse of φ.

Now let us consider the case when $\mu+\rho$ is dominant, but $W_{\mu+\rho}$ is non-trivial. The simples in \mathcal{O}_{μ} are naturally labelled by $W / W_{\mu+\rho}$. There is a distinguished representative in each right coset $w W_{\mu+\rho}$ - it is known that such a coset contains a unique longest element (w.r.t. the length function ℓ; it also contains a unique shortest element, but we do not need this). So it is natural to label the simples in $\mathcal{O}_{\mu+\rho}$ with longest elements of right $W_{\mu+\rho}$-cosets.

Corollary 2.5. Let λ, μ be such as in Proposition 2.3. Then $\operatorname{pr}_{\mu}\left(V^{*} \otimes L(w \cdot \lambda)\right)=L(w \cdot \mu)$ if w is longest in its right $W_{\mu+\rho}$-coset $w W_{\mu+\rho}$ and is zero else.

Sketch of proof. The proof is again based on using adjoint functors $\varphi:=\mathrm{pr}_{\mu}\left(V^{*} \otimes \bullet\right)$ and $\varphi^{*}:=\mathrm{pr}_{\lambda}(V \otimes \bullet)$.

Step 1. We need to show that $\varphi(L(w \cdot \lambda))=0$ when w is not longest in its right $W_{\mu+\rho^{-}}$ coset. In other words, we can find a simple reflection $s_{i} \in W_{\mu+\rho}$ such that $\ell\left(w s_{i}\right)>\ell(w)$. In this case, we have a nonzero homomorphism $\eta: \Delta\left(w s_{i} \cdot \lambda\right) \rightarrow \Delta(w \cdot \lambda)$. One can show that $\varphi(\eta) \neq 0$. So $\varphi(\eta)$ is an isomorphism. In particular, $\varphi(\operatorname{coker} \eta)=0$ and hence $\varphi(L(w \cdot \lambda))=0$.

Step 2. Now let w be longest in its right $W_{\mu+\rho}$-coset. The object $\varphi(L(w \cdot \lambda))$ is a quotient of $\varphi(\Delta(w \cdot \lambda))=\Delta(w \cdot \mu)$. So we need to show that $\varphi(L(w \cdot \lambda)) \neq 0$ and that $\operatorname{Hom}\left(\Delta\left(w^{\prime}\right.\right.$. $\mu), \varphi(L(w \cdot \lambda)))=0$ if $w^{\prime} \cdot \mu<w \cdot \mu$ (this will show that $\varphi(L(w \cdot \lambda))$ is simple). The equality follows because $\operatorname{Hom}\left(\Delta\left(w^{\prime} \cdot \mu\right), \varphi(L(w \cdot \lambda))\right)=\operatorname{Hom}\left(\varphi^{*}\left(\Delta\left(w^{\prime} \cdot \mu\right)\right), L(w \cdot \lambda)\right)$ and $\Delta(w \cdot \lambda)$ does not appear in the filtration of $\varphi^{*}\left(\Delta\left(w^{\prime} \cdot \mu\right)\right)$. On the other hand, if $\varphi(L(w \cdot \lambda))=0$, then the class $[\varphi(\Delta(w \cdot \lambda))]$ is a linear combination of $\left[\varphi\left(L\left(w^{\prime} \cdot \lambda\right)\right)\right]$ with $w^{\prime} \cdot \mu<w \cdot \mu$ and hence of $\left[\varphi\left(\Delta\left(w^{\prime} \cdot \lambda\right)\right)\right]$ with $w^{\prime} \cdot \mu<w \cdot \mu$. But $\varphi(\Delta(w \cdot \lambda))=\Delta(w \cdot \mu)$ and $\varphi\left(\Delta\left(w^{\prime} \cdot \lambda\right)\right)=\Delta\left(w^{\prime} \cdot \mu\right)$, contradiction.

Let us give a corollary of the previous two corollaries that reduces the question about the multiplicities in the categories \mathcal{O}_{μ} for $\lambda \in P$ to $\lambda=0$.

Corollary 2.6. Let μ be such that $\mu+\rho$ is dominant. Pick w that is longest in its right $W_{\lambda+\rho}$-coset. Then $[\Delta(u \cdot \mu): L(w \cdot \mu)]=[\Delta(u \cdot 0): L(w \cdot 0)]$.

References

[BB] A. Beilinson, J. Bernstein. Localisation de \mathfrak{g}-modules. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1,1518 .
[BGS] A. Beilinson, V. Ginzburg, W. Soergel. Koszul duality patterns in representation theory. J. Amer. Math. Soc. 9 (1996), no. 2, 473527.
[BK] J.-L. Brylinski, M. Kashiwara. Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math. 64 (1981), no. 3, 387410.
[EW] B. Elias, G. Williamson. The Hodge theory of Soergel bimodules. Ann. of Math. (2) 180 (2014), no. 3, 10891136. arXiv:1212.0791.
[KL] D. Kazhdan, G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), no. 2, 165-184.

