LECTURE 10: KAZHDAN-LUSZTIG BASIS AND CATEGORIES $\ensuremath{\mathcal{O}}$

IVAN LOSEV

INTRODUCTION

In this and the next lecture we will describe an entirely different application of Hecke algebras, now to the category \mathcal{O} . In the first section we will define the Kazhdan-Lusztig basis in the Hecke algebra of W and explain how to read the multiplicities in the category \mathcal{O} from this basis (the Kazhdan-Lusztig conjecture proved independently by Beilinson-Bernstein and Brylinski-Kashiwara).

In the remainder of this lecture and in the next one, we will explain some steps towards a proof of this conjecture based on works of Soergel and of Elias-Williamson. We will start by defining projective functors between different infinitesimal blocks of category \mathcal{O} . As an application, we will show how the computation of multiplicities in \mathcal{O}_{λ} for $\lambda \in P$ reduces to $\lambda = 0$.

1. KAZHDAN-LUSZTIG BASIS AND CONJECTURE

1.1. Recap on category \mathcal{O} . Pick a semisimple Lie algebra \mathfrak{g} over \mathbb{C} . We have the triangular decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}$. Let W denote the Weyl group. Let $\rho := \frac{1}{2} \sum_{\alpha>0} \alpha = \sum_i \omega_i$ (where ω_i denote the fundamental weight corresponding to a simple root α_i). Define the shifted action of W on \mathfrak{h} by $w \cdot \lambda := w(\lambda + \rho) - \rho$.

Recall that in Lecture 7 we have introduced the BGG category \mathcal{O} consisting of all finitely generated $U(\mathfrak{g})$ -modules with diagonalizable action of \mathfrak{h} and locally nilpotent action of \mathfrak{n} . Also we have identified the center Z of $U(\mathfrak{g})$ with $\mathbb{C}[\mathfrak{h}]^{W} = \{f \in \mathbb{C}[\mathfrak{h}] | f(w \cdot \lambda) = f(\lambda), \forall w \in W, \lambda \in \mathfrak{h}\}$, where we send $z \in Z$ to the polynomial \tilde{f}_z such that z acts by $\tilde{f}_z(\lambda)$ on the Verma module $\Delta(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$. This allowed to split \mathcal{O} into the direct sum of infinitesimal blocks \mathcal{O}_{λ} consisting of all modules M in \mathcal{O} , where z acts with generalized eigenvalue $\tilde{f}_z(\lambda)$. We are going to be interested in \mathcal{O}_{λ} , where $\lambda \in P$ (the weight lattice) and mainly in \mathcal{O}_0 (we will see that the study of \mathcal{O}_{λ} with $\lambda \in P$ basically reduces to the study of \mathcal{O}_0). The simple objects in \mathcal{O}_0 are $L(w \cdot 0), w \in W$, all of these objects are different because $W_{\rho} = \{1\}$. We have seen in Lecture 7 that any $L(w \cdot 0)$ appears in the composition series of $\Delta(w \cdot 0)$ once, and all other composition are $L(w' \cdot 0)$, where $w' \cdot 0 < w \cdot 0$ meaning that $w \cdot 0 - w' \cdot 0$ is a sum of positive roots. In fact, we can take a weaker *Bruhat* order (getting a stronger result).

Definition 1.1. We say that $u \prec w$ (in the Bruhat order) if $w = s_{\beta_k} \dots s_{\beta_1} u$, where β_k, \dots, β_1 are roots (not necessarily simple) and $\ell(s_{\beta_i} \dots s_{\beta_1} u) > \ell(s_{\beta_{i-1}} \dots s_{\beta_1} u)$ for all *i*.

In this order, the minimal element in W is 1, while the maximal element is the longest (with respect to the length $\ell(w)$) element $w_0 \in W$. It is uniquely characterized by the property that it maps the positive Weyl chamber C to -C. For $W = S_n$, we have $w_0(i) = n + 1 - i$ for all i.

Here are properties of \prec to be used below.

Lemma 1.2. The following is true:

- (1) If $u \prec w$, then $u \cdot 0 > w \cdot 0$.
- (2) If u is obtained from w by deleting some elements in the reduced expression of w, then $u \prec w$.
- (3) $u \leq w$ if and only if $w_0 w \leq w_0 u$.

The proof is left as an exercise.

We will write L_w for $L(w_0w \cdot 0)$ and $\Delta_w = \Delta(w_0w \cdot 0)$. One can show that if L_u is a composition factor of Δ_w , then $u \leq w$. What we want to compute is the character of L_w . Let m_w^u denote the multiplicity of L_u in Δ_w . Consider the multiplicity matrix M, it is unitriangular and hence invertible. Let $M^{-1} = (n_w^u)$. So $chL_w = \sum_{u \leq w} n_w^u ch\Delta_u$. So what we need to compute is the numbers n_w^u .

It is convenient to reformulate this problem. The category \mathcal{O}_0 is abelian. So we can consider its *Grothendieck group* $K_0(\mathcal{O}_0)$. It is defined as the quotient of the free group generated by the isomorphism classes of the objects $M \in \mathcal{O}_0$ modulo the relation M = $M' \oplus M''$ if there is an exact sequence $0 \to M' \to M \to M'' \to 0$. We denote the image of Min $K_0(\mathcal{O}_0)$ by [M]. Since the objects in \mathcal{O}_0 have finite length, the classes $[L_w]$ form a basis in $K_0(\mathcal{O}_0)$. Since the matrix M is uni-triangular, the same is true for $[\Delta_w]$. We identify $K_0(\mathcal{O}_0)$ with the group ring $\mathbb{Z}W$ in such a way that $[\Delta_w]$ corresponds to w. So we need to compute the basis $[L_w] = \sum_{u \prec w} n_w^u u$.

Example 1.3. It is easy to compute two basis elements $[L_w]$. Namely, we have $n_w^w = 1$ and $n_w^u \neq 0 \Rightarrow u \preceq w$. This immediately implies $[L_1] = 1$. The proof of the Weyl character formula in Lecture 7 says $[L_{w_0}] = \sum_{w \in W} \operatorname{sgn}(w_0 w) w$.

In general, however, we cannot even describe the basis $[L_w]$ staying inside $\mathbb{Z}W$. This is where the Hecke algebra comes into play.

1.2. Kazhdan-Lusztig basis. First, it will be convenient to modify the Hecke algebra slightly. Let us recall the previous definition (in the specialization $v_s = v$ for all $s \in S$, where S denotes the set of simple reflections in W). The Hecke algebra $\mathcal{H}_v(W)$ is generated by elements that we will now denote by T'_s with relations $T'_sT'_tT'_s\ldots = T'_tT'_sT'_t\ldots (m_{st} \text{ times})$ and $(T'_s - v)(T'_s + 1) = 0$. Now let q be another independent variable (that has nothing to do with a prime power). Define the $\mathbb{Z}[q^{\pm 1}]$ -algebra $\mathcal{H}_q(W)$ by generators T_s with relations $T_sT_tT_s\ldots = T_tT_sT_t\ldots$ and $(T_s - q)(T_s + q^{-1}) = 0$. Clearly, $\mathcal{H}_q(W) = \mathcal{H}_v(W)[q^{\pm 1}]/(v - q^2)$ with $T'_s \mapsto qT_s$. We see that $\mathcal{H}_q(W)$ has basis T_w such that

(1.1)
$$T_s T_w = \begin{cases} T_{sw}, & \text{if } \ell(sw) = \ell(w) + 1, \\ T_{sw} + (q - q^{-1})T_w, & \text{if } \ell(sw) = \ell(w) - 1. \end{cases}$$

We have a ring involution of $\mathcal{H}_q(W)$ (called the bar involution and denoted by $\bar{\bullet}$), given on generators by $\bar{q} := q^{-1}, \bar{T}_s := T_s^{-1} (= T_s + q^{-1} - q)$. Since $\bar{\bullet}$ preserves the relations, we see that $\bar{\bullet}$ is indeed a well-defined ring involution. Note that $\bar{T}_w = (T_{w^{-1}})^{-1}$.

The following fundamental result is due to Kazhdan and Lusztig, [KL].

Theorem 1.4. For any $w \in W$, there is a unique element $C_w \in \mathcal{H}_q(W)$ such that $C_w = T_w + \sum_{u \prec w} P_w^u(q) T_u$, where $P_w^u(q) \in q\mathbb{Z}[q]$, and $\overline{C}_w = C_w$.

Since the matrix of expressing C_w 's in terms of T_w 's is uni-triangular, we see that the elements $C_w, w \in W$, form a basis in $\mathcal{H}_q(W)$. This is a so called *Kazhdan-Lusztig* basis.

Proof. The proof is by induction with respect to the Bruhat order: we assume that C_u exits and is unique for all $u \prec w$. Let $w = s_{i_1} \dots s_{i_\ell}$ be a reduced expression. We have

 $\bar{T}_w = \bar{T}_{i_1} \dots \bar{T}_{i_\ell} = (T_{i_1} + q^{-1} - q) \dots (T_{i_\ell} + q^{-1} - q).$ Decompose \bar{T}_w in the basis T_u . We have $\bar{T}_w = T_w + \sum_{u \prec w} R_w^u(q) T_u$ (all u's are obtained by removing some simple reflections from the reduced decomposition of w and so $u \prec w$ by (2) of Lemma 1.2). By the existence of C_u , what we need to show that there is a unique $\tilde{P}_w^u(q) \in q\mathbb{Z}[q]$ such that $C_w = T_w + \sum_{u\prec w} \tilde{P}_w^u(q) C_u$ and $\bar{C}_w = C_w$. We also have $\bar{T}_w - T_w = \sum_{u\prec w} Q_w^u(q) C_u$. Applying $\bar{\bullet}$ to the equation, we get $T_w - \bar{T}_w = \sum_{u\prec w} Q_w^u(q^{-1}) C_u$ and so $\bar{Q}_w^u(q^{-1}) = -\bar{Q}_w^u(q)$. But we have

$$\bar{C}_w = \bar{T}_w + \sum_{u \prec w} \tilde{P}_w^u(q^{-1}) C_u = T_w + \sum_{u \prec w} Q_w^u(q) C_u + \sum_{u \prec w} \tilde{P}_w^u(q^{-1}) C_u$$

So we need to prove that there is a unique $\tilde{P}_w^u(q) \in q\mathbb{Z}[q]$ such that $\tilde{P}_w^u(q^{-1}) - \tilde{P}_w^u(q) = Q_w^u(q)$. This follows from $Q_w^u(q^{-1}) = -Q_w^u(q)$.

Example 1.5. We have $C_1 = 1$ and $C_s = T_s - q$, where $s \in S$.

Let us consider a more interesting example: $W = S_3$. Let s, t denote the simple reflections. The Bruhat order is that 1 < s, t < st, ts < sts = tst (elements in the same group are not comparable). We have

 $C_{st} = T_{st} - q(T_s + T_t) + q^2, C_{ts} = T_{ts} - q(T_s + T_t) + q^2, C_{sts} = T_{sts} - q(T_{st} + T_{ts}) + q^2(T_s + T_t) - q^3.$

More generally, $C_{w_0} = \sum_{w \in W} (-q)^{\ell(w_0) - \ell(w)} T_w$. To check these equalities is a part of the homework.

1.3. Kazhdan-Lusztig conjecture. We have a surjection $\mathcal{H}_q(W) \twoheadrightarrow \mathbb{Z}W$ given by setting q = 1. The following theorem was conjectured by Kazhdan-Lusztig and proved by Beilinson-Bernstein, [BB], and Brylinski-Kashiwara, [BK].

Theorem 1.6. We have $[L_w] = C_w|_{q=1}$.

By Example 1.5, this agrees with the Weyl character formula: $[L_{w_0}] = \sum_{w \in W_0} \operatorname{sgn}(w_0 w) w$. This is a difficult theorem whose proof found in the 80's required a heavy machinery and is one of the greatest achievements of Geometric Representation theory. Recently, a more elementary (but also difficult) proof was found, see [EW]. Starting the next section, we will outline some ideas relevant for that proof.

1.4. Stronger version. Now we are going to explain how to recover C_w itself (not just its specialization to 1) from the structure of Verma modules. This description was found in [BGS].

Let M be an object of \mathcal{O} . By $\mathsf{head}(M)$ we mean the maximal semisimple quotient of M and by the radical $\mathsf{Rad}(M)$ we mean the kernel $M \twoheadrightarrow \mathsf{head}(M)$. Now define the *radical* filtration $M_0 \supseteq M_1 \supseteq M_2 \supseteq \ldots$ by setting $M_i := \mathsf{Rad}(M_{i-1})$. Now take $M := \Delta_w$ and for $u \preceq w$ define $m_w^u(q) := \sum [M_i/M_{i+1} : L_u]q^i$, where the square bracket denotes the multiplicity of L_u in the composition series of M_i/M_{i+1} . For example, $m_w^w(q) = 1$.

Theorem 1.7. We have $T_w = \sum_{u \preceq w} m_w^u(q) C_u$.

Example 1.8. For $\mathfrak{g} = \mathfrak{sl}_2$, the module $\Delta(1)$ has simple radical, $\Delta(-2) = L(-2)$. For $s \in S_2 \setminus \{1\}$, we get $m_s^s(q) = 1, m_s^1(q) = q$. Indeed, $T_s = C_s + qC_1$.

2. Projective functors, I

We are going to explain how to reduce the study of \mathcal{O}_{λ} with $\lambda \in P$ to $\lambda = 0$.

2.1. Tensor products with finite dimensional modules. Recall that if V is a finite dimensional \mathfrak{g} -module and $M \in \mathcal{O}$, then $V \otimes M \in \mathcal{O}$. So we get the functor $V \otimes \bullet : \mathcal{O} \to \mathcal{O}$. This functor is exact (preserves exact sequences), it has both left and right adjoints, both are given by $V^* \otimes \bullet$.

Now we are going to get a partial description of $V \otimes \Delta(\lambda)$. Pick a weight basis v_1, \ldots, v_m of V and let $\nu_1, \ldots, \nu_m \in \mathfrak{h}^*$ be the corresponding weights. We may assume that they are ordered compatibly with the order on \mathfrak{h}^* , i.e., if $\nu_i \ge \nu_j$, then $i \ge j$.

Proposition 2.1. There is a filtration $V \otimes M = M_0 \supset M_1 \supset \ldots \supset M_m = \{0\}$ such that $M_{i-1}/M_i \cong \Delta(\lambda + \nu_i)$.

Proof. Recall that $\Delta(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$. We claim that $V \otimes \Delta(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (V \otimes \mathbb{C})$. This follows from

$$\operatorname{Hom}_{\mathfrak{g}}(V \otimes \Delta(\lambda), M) = \operatorname{Hom}_{\mathfrak{g}}(\Delta(\lambda), V^* \otimes M) = \operatorname{Hom}_{\mathfrak{b}}(\mathbb{C}_{\lambda}, V^* \otimes M) =$$
$$= \operatorname{Hom}_{\mathfrak{b}}(V \otimes \mathbb{C}_{\lambda}, M) = \operatorname{Hom}_{\mathfrak{g}}(U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (V \otimes \mathbb{C}_{\lambda}), M).$$

Consider the filtration $V \otimes \mathbb{C}_{\lambda} = N_0 \supset \ldots \supset N_m = \{0\}$, where $N_i := \operatorname{Span}_{\mathbb{C}}(v_{i+1}, \ldots, v_m)$. This is \mathfrak{b} -module filtration (because \mathfrak{n} increases weights) with $N_{i-1}/N_i = \mathbb{C}_{\lambda+\nu_i}$. Set $M_i := U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} N_i$. Recall that $U(\mathfrak{g})$ is a free right $U(\mathfrak{b})$ -module. So the functor $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \bullet$ is exact and we have $M_{i-1}/M_i = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (N_{i-1}/N_i) = \Delta(\lambda + \nu_i)$.

Let pr_{μ} denote the functor $\mathcal{O} \to \mathcal{O}_{\mu}$ that sends $M \in \mathcal{O}$ to the generalized eigenspace of Z in M with eigenvalue μ . The functors of the form $\operatorname{pr}_{\mu}(V \otimes \bullet) : \mathcal{O}_{\lambda} \to \mathcal{O}_{\mu}$ (and their compositions) are known as *projective functors*. They are tremendously useful in the study of \mathcal{O} .

Corollary 2.2. The object $\operatorname{pr}_{\mu}(V \otimes \Delta(w \cdot \lambda))$ admits a filtration by $\Delta(\lambda + \nu_i)$ with $w \cdot \lambda + \nu_i \in W \cdot \mu$.

2.2. Application: translation functors. We are going to consider a special case of Corollary 2.2, where it is especially easy to describe what weights ν_i appear.

Proposition 2.3. Assume that $\lambda, \mu \in P$ are such that $\lambda, \lambda - \mu, \mu + \rho$ are dominant. Let V be the irreducible finite dimensional module with highest weight $\lambda - \mu$. Then $\operatorname{pr}_{\mu}(V^* \otimes \Delta(w \cdot \lambda)) = \Delta(w \cdot \mu)$ and $\operatorname{pr}_{\lambda}(V \otimes \Delta(w \cdot \mu))$ is filtered with $\Delta(wu \cdot \lambda), u \in W_{\mu+\rho}$.

Note that $W_{\mu+\rho}$ is generated by the simple reflections s_i such that $\langle \mu + \rho, \alpha_i^{\vee} \rangle = 0$.

Proof. To prove the claim about $\operatorname{pr}_{\mu}(V^* \otimes \Delta(w \cdot \lambda))$ we need to find all weights ν of V^* such that $w \cdot \lambda + \nu \in W \cdot \mu$, equivalently, $\lambda + \rho + w^{-1}\nu = u(\mu + \rho)$ for some $u \in W$. We have $u(\mu + \rho) \leq \mu + \rho$ for any $u \in W$ and $w^{-1}\nu \geq \mu - \lambda$ (the lowest weight of V^*) with equality if and only if $w = w_0$. So $\lambda + \rho + w^{-1}\nu \geq \lambda + \rho + \mu - \lambda = \mu + \rho \geq u(\mu + \rho)$. The equality $\operatorname{pr}_{\mu}(V^* \otimes \Delta(w \cdot \lambda)) = \Delta(w \cdot \mu)$ follows from Corollary 2.2.

The claim about $\operatorname{pr}_{\lambda}(V \otimes \Delta(w \cdot \mu))$ follows similarly using the observation that $\lambda - w \cdot \mu \geq \lambda - \mu$ for any $w \in W$, and the equality is equivalent to $w \in W_{\mu+\rho}$.

This proposition has several important corollaries.

Corollary 2.4. Let λ_1, λ_2 be dominant. Then there is an equivalence $\mathcal{O}_{\lambda_1} \xrightarrow{\sim} \mathcal{O}_{\lambda_2}$ sending $\Delta(w \cdot \lambda_1)$ to $\Delta(w \cdot \lambda_2)$.

Apply Proposition 2.3 to $\lambda = \lambda_1 + \lambda_2$ and $\mu = \lambda_2$. We get functors $\varphi : \mathcal{O}_{\mu} \to \mathcal{O}_{\lambda}, \varphi(M) := \operatorname{pr}_{\lambda}(V \otimes M)$ and $\varphi^* := \operatorname{pr}_{\mu}(V^* \otimes \bullet) : \mathcal{O}_{\lambda} \to \mathcal{O}_{\mu}$. The notation φ^* is justified by the observation that φ^* is left and right adjoint to φ . We are going to prove that φ^*, φ are mutually inverse (quasi-inverse, if we want to be precise).

Note that $\varphi(\Delta(w \cdot \mu)) = \Delta(w \cdot \lambda)$ and $\varphi^*(\Delta(w \cdot \lambda)) = \Delta(w \cdot \mu)$ (we have $W_{\mu+\rho} = \{1\}$). Also we have an adjointness homomorphism $\varphi^* \circ \varphi(M) \to M$ (induced by $\varphi^* \circ \varphi(M) \hookrightarrow V^* \otimes V \otimes M \to M$). This homomorphism is zero if and only if $\varphi(M)$ is zero. Now apply this to $M = \Delta(w \cdot \lambda)$, we get a nonzero homomorphism $\Delta(w \cdot \mu) = \varphi^* \circ \varphi(\Delta(w \cdot \mu)) \to \Delta(w \cdot \mu)$. But any Verma module is generated by its highest weight vector and any endomorphism maps that vector to its multiple. We deduce that any nonzero endomorphism of a Verma module is an isomorphism. So $\varphi^* \circ \varphi(M) \xrightarrow{\sim} M$ when M is a Verma module. Since any object in \mathcal{O}_{μ} is filtered by quotients of Verma modules, we see that $\varphi^* \circ \varphi(M) \xrightarrow{\sim} M$ for any $M \in \mathcal{O}_{\lambda}$. So φ^* is left inverse of φ . Similarly, we see that φ^* is a right inverse of φ .

Now let us consider the case when $\mu + \rho$ is dominant, but $W_{\mu+\rho}$ is non-trivial. The simples in \mathcal{O}_{μ} are naturally labelled by $W/W_{\mu+\rho}$. There is a distinguished representative in each right coset $wW_{\mu+\rho}$ – it is known that such a coset contains a unique longest element (w.r.t. the length function ℓ ; it also contains a unique shortest element, but we do not need this). So it is natural to label the simples in $\mathcal{O}_{\mu+\rho}$ with longest elements of right $W_{\mu+\rho}$ -cosets.

Corollary 2.5. Let λ, μ be such as in Proposition 2.3. Then $\operatorname{pr}_{\mu}(V^* \otimes L(w \cdot \lambda)) = L(w \cdot \mu)$ if w is longest in its right $W_{\mu+\rho}$ -coset $wW_{\mu+\rho}$ and is zero else.

Sketch of proof. The proof is again based on using adjoint functors $\varphi := \mathsf{pr}_{\mu}(V^* \otimes \bullet)$ and $\varphi^* := \mathsf{pr}_{\lambda}(V \otimes \bullet).$

Step 1. We need to show that $\varphi(L(w \cdot \lambda)) = 0$ when w is not longest in its right $W_{\mu+\rho}$ coset. In other words, we can find a simple reflection $s_i \in W_{\mu+\rho}$ such that $\ell(ws_i) > \ell(w)$. In
this case, we have a nonzero homomorphism $\eta : \Delta(ws_i \cdot \lambda) \to \Delta(w \cdot \lambda)$. One can show that $\varphi(\eta) \neq 0$. So $\varphi(\eta)$ is an isomorphism. In particular, $\varphi(\operatorname{coker} \eta) = 0$ and hence $\varphi(L(w \cdot \lambda)) = 0$.

Step 2. Now let w be longest in its right $W_{\mu+\rho}$ -coset. The object $\varphi(L(w \cdot \lambda))$ is a quotient of $\varphi(\Delta(w \cdot \lambda)) = \Delta(w \cdot \mu)$. So we need to show that $\varphi(L(w \cdot \lambda)) \neq 0$ and that $\operatorname{Hom}(\Delta(w' \cdot \mu), \varphi(L(w \cdot \lambda))) = 0$ if $w' \cdot \mu < w \cdot \mu$ (this will show that $\varphi(L(w \cdot \lambda))$ is simple). The equality follows because $\operatorname{Hom}(\Delta(w' \cdot \mu), \varphi(L(w \cdot \lambda))) = \operatorname{Hom}(\varphi^*(\Delta(w' \cdot \mu)), L(w \cdot \lambda)))$ and $\Delta(w \cdot \lambda)$ does not appear in the filtration of $\varphi^*(\Delta(w' \cdot \mu))$. On the other hand, if $\varphi(L(w \cdot \lambda)) = 0$, then the class $[\varphi(\Delta(w \cdot \lambda))]$ is a linear combination of $[\varphi(L(w' \cdot \lambda))]$ with $w' \cdot \mu < w \cdot \mu$ and hence of $[\varphi(\Delta(w' \cdot \lambda))]$ with $w' \cdot \mu < w \cdot \mu$. But $\varphi(\Delta(w \cdot \lambda)) = \Delta(w \cdot \mu)$ and $\varphi(\Delta(w' \cdot \lambda)) = \Delta(w' \cdot \mu)$, contradiction.

Let us give a corollary of the previous two corollaries that reduces the question about the multiplicities in the categories \mathcal{O}_{μ} for $\lambda \in P$ to $\lambda = 0$.

Corollary 2.6. Let μ be such that $\mu + \rho$ is dominant. Pick w that is longest in its right $W_{\lambda+\rho}$ -coset. Then $[\Delta(u \cdot \mu) : L(w \cdot \mu)] = [\Delta(u \cdot 0) : L(w \cdot 0)].$

References

[BB] A. Beilinson, J. Bernstein. Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 1518.

- [BGS] A. Beilinson, V. Ginzburg, W. Soergel. Koszul duality patterns in representation theory. J. Amer. Math. Soc. 9 (1996), no. 2, 473527.
- [BK] J.-L. Brylinski, M. Kashiwara. Kazhdan-Lusztig conjecture and holonomic systems. Invent. Math. 64 (1981), no. 3, 387410.
- [EW] B. Elias, G. Williamson. The Hodge theory of Soergel bimodules. Ann. of Math. (2) 180 (2014), no. 3, 10891136. arXiv:1212.0791.
- [KL] D. Kazhdan, G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), no. 2, 165-184.