# LECTURE 1: REPRESENTATIONS OF SYMMETRIC GROUPS, I 

IVAN LOSEV

## 1. Introduction

In this lecture we start to study the representation theory of the symmetric groups $S_{n}$ over $\mathbb{C}$. Let us summarize a few things that we already know.

0 ) A representation of $S_{n}$ is the same thing as a representation of the group algebra $\mathbb{C} S_{n}$.

1) As with all finite groups, any representation of $S_{n}$ over $\mathbb{C}$ is completely reducible.
2) The number of irreducible representations of $S_{n}$ coincides with the number of conjugacy classes.

The conjugacy classes are in a natural bijection with partitions of $n$. Namely, we take an element $\sigma \in S_{n}$ and decompose it into the product of disjoint cycles. The lengthes of cycles form a partition of $n$ that is independent of the choice of $\sigma$ in the conjugacy class. We assign this partition to the conjugacy class of $\sigma$.

We would like to emphasize that 2) does not establish any preferred bijection between the irreducible representations of $S_{n}$ and the partitions of $n$. To establish such a bijection is our goal in this part. We will follow a "new" approach to the representation theory of the groups $S_{n}$ due to Okounkov and Vershik, [OV]. Our exposition follows [K, Section 2]. For a "traditional" approach based on Young symmetrizers, the reader is welcome to consult [E] or $[F]$.

## 2. Inductive approach

A key observation is that symmetric groups for different $n$ are embedded into one another: $\{1\}=S_{1} \subset S_{2} \subset S_{3} \ldots \subset S_{n-1} \subset S_{n} \subset \ldots$, where we view $S_{n-1}$ as the subgroup of $S_{n}$ fixing $n \in\{1, \ldots, n\}$. We could try to use "induction", i.e., to study the irreducible representations of $S_{n}$ by restricting them to $S_{n-1}$. In fact, this naive idea does not quite work, but this is our starting point.
2.1. Centralizer $Z_{B}(A)$ and restrictions of representations. We start with the following question: given a finite dimensional semisimple associative algebra $A$ and its semisimple subalgebra $B$, understand the restriction of $V \in \operatorname{Irr}(A)$ (the set of isomorphism classes of finite dimensional irreducible $A$-modules) to $B$. The answer to this question is controlled by the subalgebra $Z_{B}(A) \subset A$ (the centralizer of $B$ in $A$ ) defined by $Z_{B}(A)=\{a \in A \mid b a=$ $a b, \forall b \in B\}$. More precisely, we have the following fact, where, recall that $\operatorname{Hom}_{B}(U, V)$ stands for the space of $B$-module homomorphisms $U \rightarrow V$.

Lemma 2.1. We have an isomorphism $Z_{B}(A)=\bigoplus_{U, V} \operatorname{End}\left(\operatorname{Hom}_{B}(U, V)\right)$, where the sum is taken over all pairs $(U, V) \in \operatorname{Irr}(B) \times \operatorname{Irr}(A)$ satisfying $\operatorname{Hom}_{B}(U, V) \neq\{0\}$.

In other words, the algebra $Z_{B}(A)$ is semisimple and the irreducible $Z_{B}(A)$-modules are precisely the nonzero multiplicity spaces $\operatorname{Hom}_{B}(U, V)$.

Proof. Since $A$ is semisimple, it can be identified with $\bigoplus_{V \in \operatorname{Irr}(A)} \operatorname{End}(V)$, see Proposition 4.2 from Lecture 0 . In this realization, we have $Z_{B}(A)=\bigoplus_{V \in \operatorname{Irr}(A)} \operatorname{End}_{B}(V)$. Recall from Lecture 0, Section 3.4, that

$$
\operatorname{End}_{B}(V)=\bigoplus_{U} \operatorname{End}\left(\operatorname{Hom}_{B}(U, V)\right)
$$

where the summation is taken over all $U \in \operatorname{Irr}(B)$ such that $\operatorname{Hom}_{B}(U, V) \neq\{0\}$.
Here is a corollary of this lemma that will be very useful for us in what follows.
Corollary 2.2. The following two conditions are equivalent:
(1) For any $U \in \operatorname{Irr}(B), V \in \operatorname{Irr}(A)$, we have $\operatorname{dim} \operatorname{Hom}_{B}(U, V) \leqslant 1$.
(2) $Z_{B}(A)$ is commutative.

Proof. The algebra $Z_{B}(A)=\bigoplus_{U, V} \operatorname{End}\left(\operatorname{Hom}_{B}(U, V)\right)$ is commutative if and only if the summands are. For a nonzero vector space $W, \operatorname{End}(W)=\operatorname{Mat}_{\operatorname{dim} W}(\mathbb{C})$ is commutative if and only if $\operatorname{dim} W=1$. This implies that $(1) \Leftrightarrow(2)$.

What this corollary gives us is that if (2) is satisfied, then any irreducible $A$-module uniquely decomposes into the sum of irreducible $B$-modules, meaning that the summands are uniquely determined as subspaces.
Remark 2.3. It is instructive to describe the structure of a $Z_{B}(A)$-module on $\operatorname{Hom}_{B}(U, V)$ without referring to the decomposition $A=\bigoplus \operatorname{End}(V)$. Let $z \in Z_{B}(A)$ and $\varphi \in \operatorname{Hom}_{B}(U, V)$. We define $z \cdot \varphi \in \operatorname{Hom}_{B}(U, V)$ by $[z \cdot \varphi](u)=z \cdot \varphi(u)$, for all $u \in U$. To check that this is well defined and is compatible with the previous module structure (see Section 3.4 of Lecture 0) is left to the reader.
2.2. The structure of $Z_{m}(n)$. We take $A=\mathbb{C} S_{n}$ and $B=\mathbb{C} S_{m}$, where $m<n$. We write $Z_{m}(n)$ for $Z_{B}(A)$. We are interested in finding generators for the algebra $Z_{m}(n)$.
Theorem 2.4. The algebra $Z_{m}(n)$ is generated by the subalgebra $Z_{m}(m)$, the subgroup $S_{[m+1, n]} \subset S_{n}$ (fixing $1, \ldots, m$ and permuting $m+1, \ldots, n$ ) and the Jucys-Murphy elements $L_{k}:=\sum_{i=1}^{k-1}(i k)$, where $k$ ranges from $m+1$ to $n$.

Note that $L_{1}=0$.
Proof. The proof is in several steps.
Step 1. Let $H \subset G$ be finite groups. Then we have a basis in $Z_{\mathbb{C} H}(\mathbb{C} G)$ indexed by the $H$-conjugacy classes in $G$. Namely, to a class $c$ we assign an element $b_{c} \in Z_{\mathbb{C} H}(\mathbb{C} G)$ given by $z_{c}:=\sum_{g \in c} g$. This is a straightforward generalization of Proposition 5.2 in Lecture 0 .

Step 2. Let $G=S_{n}, H=S_{m}$. Recall that the $G$-conjugacy classes in $G$ are parameterized by cycle types, e.g., in $S_{6}$ we have a conjugacy class $(* * *)(* *)$. The $H$-conjugacy classes are parameterized by class types with marked elements $m+1, \ldots, n$, e.g., we have the following $S_{4}$-conjugacy classes in $S_{6}:(56 *)(* *),(65 *)(* *),(6 * *)(5 *),(* * *)(56)$, etc. Note that $b_{(* k)}=L_{k}-\sum_{j=m+1}^{k-1}(j k)$ for $k>m$. In particular, $L_{k} \in Z_{m}(n)$. To a class $c$ we assign its degree $\operatorname{deg} c$ that, by definition, is equal to the number of elements in $\{1, \ldots, n\}$ moved by an element in $c$ (this is independent of the choice of the element).

Step 3. Let $A$ be the subalgebra in $\mathbb{C} S_{n}$ generated by $Z_{m}(m), S_{[m+1, n]}, L_{m+1}, \ldots, L_{n}$. It is easy to see that $A \subset Z_{m}(n)$. To prove the opposite inclusion, assume that $b_{c} \notin A$ for some c. We pick $c$ of minimal degree with this property. In the next four steps we will arrive at a contradiction.

Step 4. Assume, first, that $c$ has more than one cycle of length at least 2. Break $c$ into the union of two cycle types $c^{\prime}, c^{\prime \prime}$, e.g., if $c=(6 * *)(5 *)$, then we can take $c^{\prime}=(6 * *), c^{\prime \prime}=(5 *)$. Note that

$$
b_{c^{\prime}} b_{c^{\prime \prime}}=\alpha b_{c}+\sum_{c_{0}, \operatorname{deg} c_{0}<\operatorname{deg} c} \alpha_{c_{0}} b_{c_{0}},
$$

where $\alpha>0$. By our inductive assumption, $b_{c_{0}} \in A$ and $b_{c^{\prime}} b_{c^{\prime \prime}} \in A$. So $b_{c} \in A$, which contradicts the choice of $c$.

Step 5. Now let us pick a cycle $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in S_{n}$ and consider the product $\left(i_{1}, \ldots, i_{k}\right)\left(i_{s}, j\right)$. If $j \notin\left\{i_{1}, \ldots, i_{k}\right\}$, then we get $\left(i_{1}, \ldots, i_{s}, j, i_{s+1}, \ldots, i_{k}\right)$. If $j \in\left\{i_{1}, \ldots, i_{k}\right\}$, then $\left(i_{1}, \ldots, i_{k}\right)\left(i_{k} j\right)$ either splits into the product of two cycles of total degree $k$ or is a cycle of degree $k-1$.

Step 6. Now suppose that the cycle in $c$ has both an element from $\{1, \ldots, m\}$ (does not matter which, we denote it by $*$ ) and $k \in\{m+1, \ldots, n\}$. We may assume that $k$ is right after $*$ in the cycle. Let $c^{\prime}$ denote the cycle obtained from $c$ by deleting $k$. Then $b_{c^{\prime}} L_{k}=\alpha b_{c}+\sum_{c_{0}} \alpha_{c_{0}} b_{c_{0}}$, where the summation is over $c_{0}$ that are products of two disjoint cycles with $\operatorname{deg} c_{0}=\operatorname{deg} c$ or have $\operatorname{deg} c_{0}<\operatorname{deg} c$. This is a consequence of Step 5 , as the left hand side is the sum of products of pairs of cycles that share a common element, $k$. Similarly to Step 4, we arrive at a contradiction with the choice of $c$.

Step 7. So either the elements in the only cycle of $c$ are all from $\{1, \ldots, m\}$, in which case $b_{c} \in Z_{m}(m)$, or are all from $\{m+1, \ldots, n\}$, in which case $b_{c} \in S_{[m+1, n]}$. Contradiction.

Corollary 2.5. The following is true.
(1) $Z_{m}(m)$ lies in the center of $Z_{m}(n)$.
(2) The algebra $Z_{n-1}(n)$ is commutative.

Proof. The algebra $Z_{m}(n)$ commutes with $\mathbb{C} S_{m}$ and $Z_{m}(m) \subset Z_{m}(n) \cap \mathbb{C} S_{m}$. So $Z_{m}(m)$ is in the center of $Z_{m}(n)$.

The algebra $Z_{n-1}(n)$ is generated by $Z_{n-1}(n-1)$ and $L_{n}$. Since the former is central, the algebra $Z_{n-1}(n)$ is commutative.

## 3. Basis and weights

We will use Corollary 2.5 to construct a basis in $\bigoplus_{V \in \operatorname{Irr}\left(S_{n}\right)} V$ and encode elements of this basis with $n$-tuples of complex numbers to be called weights.
3.1. Branching graph. Basis elements will be labelled by paths in a graph that is called the branching graph for the symmetric groups. The vertices of this graph will be $\bigsqcup_{n \geqslant 1} \operatorname{Irr}\left(S_{n}\right)$. We draw a single arrow between $V^{n-1} \in \operatorname{Irr}\left(S_{n-1}\right), V^{n} \in \operatorname{Irr}\left(S_{n}\right)$ if $\operatorname{Hom}_{S_{n-1}}\left(V^{n-1}, V^{n}\right)$ has dimension 1 (by Corollary 2.5 the only other option is 0 ). There are no other edges.

Paths in the branching graph label bases in Hom spaces. For vertices $V^{m} \in \operatorname{Irr}\left(S_{m}\right), V^{n} \in$ $\operatorname{Irr}\left(S_{n}\right)$ with $m<n$, denote by $\operatorname{Path}\left(V^{m}, V^{n}\right)$ the set of paths from $V^{m}$ to $V^{n}$.

Lemma 3.1. There is a basis in $\operatorname{Hom}_{S_{m}}\left(V^{m}, V^{n}\right)$ indexed by $\operatorname{Path}\left(V^{m}, V^{n}\right)$.
Proof. We have $V^{n}=\bigoplus_{V^{n-1}, V^{n-1} \rightarrow V^{n}} V^{n-1}$. Now decompose $V^{n-1}$ into the sum of irreducible representations of $S_{n-2}$. Plugging this decomposition into the sum above, we get

$$
V^{n}=\bigoplus_{V^{n-2}, P \in \operatorname{Path}\left(V^{n-2}, V^{n}\right)} V_{P}^{n-2}
$$

where $V_{P}^{n-2}$ denotes the copy of $V_{n}$ embedded into $V^{n}$ via $V^{n-2} \hookrightarrow V^{n-1} \hookrightarrow V^{n}$, where $P=V^{n-2} \rightarrow V^{n-1} \rightarrow V^{n}$. We continue in this manner and get

$$
V^{n}=\bigoplus_{V^{m}, P \in \operatorname{Path}\left(V^{m}, V^{n}\right)} V_{P}^{m} .
$$

Let $\varphi_{P} \in \operatorname{Hom}_{S_{m}}\left(V^{m}, V^{n}\right)$ be the embedding of $V^{m} \xrightarrow{\sim} V_{P}^{m} \subset V^{n}$. We see that $\varphi_{P}, P \in$ $\operatorname{Path}\left(V^{m}, V^{n}\right)$, is a basis in $\operatorname{Hom}_{S_{m}}\left(V^{m}, V^{n}\right)$.
Remark 3.2. Note that the element $\varphi_{P}$ is defined uniquely up to proportionality. Also note that if $P_{2} \in \operatorname{Path}\left(V^{k}, V^{m}\right), P_{1} \in \operatorname{Path}\left(V^{m}, V^{n}\right)$, then $\varphi_{P_{1}} \circ \varphi_{P_{2}}$ is proportional to $\varphi_{P_{1} P_{2}}$, where $P_{1} P_{2} \in \operatorname{Path}\left(V^{k}, V^{n}\right)$ is the concatenation of $P_{1}$ and $P_{2}$.
3.2. Basis and weights. If in Lemma 3.1 we take $m=1$, we will get a basis in $\operatorname{Hom}_{S_{1}}\left(V^{1}, V^{n}\right)=$ $\operatorname{Hom}\left(\mathbb{C}, V^{n}\right)=V^{n}$, we will write $v_{P}$ for $\varphi_{P}$ in this case. By the construction, if $P=V^{1} \rightarrow$ $V^{2} \rightarrow \ldots \rightarrow V^{n}$, then $v_{P}$ lies in $V^{1}$ uniquely embedded into $V^{2}$ that is uniquely embedded into $V^{3}$, etc.

Lemma 3.3. The following is true.
(1) The vector $v_{P}$ is an eigenvector for all Jucys-Murphy elements $L_{k}, k=1, \ldots, n$.
(2) The eigenvalue of $L_{k}$ on $v_{P}$ depends only on the $V^{k-1}$ and $V^{k}$ components in $P=$ $V^{1} \rightarrow V^{2} \rightarrow \ldots \rightarrow V^{n}$.

We postpone the proof a little bit, to give a definition and an example.
Definition 3.4. Define the weight $w_{P}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$ of the path $P$ (or of the basis vector $\left.v_{P}\right)$ by $L_{k} v_{P}=w_{k} v_{P}, k=1, \ldots, n$.

Example 3.5. Consider the reflection representation $R^{n}$ of $S_{n}$. It can be realized as the submodule $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+\ldots+x_{n}=0\right\}$ in the permutation representation $\mathbb{C}^{n}$ of $S_{n}$. The restriction of $R^{n}$ to $S_{n-1}$ decomposes as $R^{n-1} \oplus T^{n-1}$, where we write $T^{n-1}$ for the trivial representation of $S_{n-1}$. The copy of $R^{n-1}$ is realized as $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+\ldots+x_{n-1}=0, x_{n}=\right.$ $0\}$, while the copy of $T^{n-1}$ is spanned by $(1, \ldots, 1,1-n)$. The paths indexing the basis in $R^{n}$ are

$$
P_{m}:=T^{1} \rightarrow T^{2} \rightarrow T^{m-1} \rightarrow R^{m} \rightarrow R^{m+1} \rightarrow \ldots \rightarrow R^{n}, m=2, \ldots, n .
$$

The corresponding basis vector is $v_{P_{m}}=(1, \ldots, 1,1-m, 0, \ldots, 0)$. The weight $w_{P_{m}}$ equals $(0,1, \ldots, m-2,-1, m-1, \ldots, n-2)$.

Proof of Lemma 3.3. Note that $v_{P}$ lies in the unique copy of $V^{k-1}$ in $V^{k}$. It is enough to check that $L_{k}$ acts on that copy of $V^{k-1}$ by a scalar (that depends only on $V^{k-1}, V^{k}$ because $L_{k} \in \mathbb{C} S_{k}$ ). But $L_{k}$ commutes with $\mathbb{C} S_{k-1}$ and so the operator of multiplication by $L_{k}$ gives an element in $\operatorname{Hom}_{S_{k-1}}\left(V^{k-1}, V^{k}\right)$. Since the dimension of the latter space is 1 , the multiplication by $L_{k-1}$ gives an endomorphism of the $S_{k-1}$-module $V^{k-1}$. This endomorphism is scalar by the Schur lemma.
3.3. Maximal commutative subalgebra. A natural question to ask at this point is: can two different paths $P \in \operatorname{Path}\left(V^{1}, V^{n}\right), P^{\prime} \in \operatorname{Path}\left(V^{1}, V^{\prime n}\right)$ give the same weight? Here we will see that the answer is "no": a weight determines a path uniquely.

Consider the subalgebra $A \subset \mathbb{C} S_{n}$ consisting of all elements $a$ such that all $v_{P}$ are eigenvectors for $a$. In other words, if we identify $\operatorname{End}\left(V^{n}\right)$ with $\operatorname{Mat}_{\operatorname{dim} V^{n}}(\mathbb{C})$ using the basis $v_{P}, P \in \operatorname{Path}\left(V^{1}, V^{n}\right)$, and $\mathbb{C} S_{n}$ with $\bigoplus_{V^{n} \in \operatorname{Irr}\left(S_{n}\right)} \operatorname{End}\left(V^{n}\right)$, then $A$ is the direct sum of the
subalgebras of diagonal matrices in $\operatorname{Mat}_{\operatorname{dim} V^{n}}(\mathbb{C})$. Note that $A$ is a maximal commutative subalgebra in $\mathbb{C} S_{n}$.

There are two alternative descriptions of $A$.
Proposition 3.6. The following subalgebras of $\mathbb{C} S_{n}$ coincide.
(i) A introduced above.
(ii) $A^{\prime}$ generated by $Z_{k}(k), k=1, \ldots, n$.
(iii) $A^{\prime \prime}$ generated by $L_{1}, \ldots, L_{n}$.

Proof. We will prove that $A \subset A^{\prime}, A^{\prime} \subset A^{\prime \prime}$, and $A^{\prime \prime} \subset A$.
Proof of $A \subset A^{\prime}$. We have a basis in $A$ labelled by the paths $P \in \operatorname{Path}\left(V^{1}, V^{n}\right)$, where $V^{n}$ runs over $\operatorname{Irr}\left(S_{n}\right)$. Namely, define $e_{P}$ by $e_{P} v_{P^{\prime}}=\delta_{P P^{\prime}} v_{P^{\prime}}$ (i.e., $e_{P}$ is the diagonal matrix element corresponding to $P$ ). Let $P=V^{1} \rightarrow V^{2} \rightarrow \ldots \rightarrow V^{n}$.

Define $e_{V^{m}} \in \mathbb{C} S_{m}$ as the identity in the summand $\operatorname{End}\left(V^{m}\right)$ of $\mathbb{C} S_{m}=\bigoplus_{U \in \operatorname{Irr}\left(S_{m}\right)} \operatorname{End}(U)$ and zero in all other summands. This element is central, in other words, $e_{V^{m}} \in Z_{m}(m)$. Now consider the product $e_{V^{1}} e_{V^{2}} \ldots e_{V^{n}}$ and its action on $\bigoplus_{U^{n} \in \operatorname{Irr}\left(S_{n}\right)} U^{n}$. Applying $e_{V^{n}}$ we project to the summand $V^{n}$. Applying $e_{V^{n-1}}$ next, we project to the summand $V^{n-1}$ inside $V^{n}$. And so on. From the construction of the element $v_{P}$, we conclude that $e_{V^{1}} \ldots e_{V^{n}}$ coincides with $e_{P}$. Since $e_{V^{1}} \ldots e_{V^{n}} \in A^{\prime}$, we see that $e_{P} \in A^{\prime}$, and we are done.

Proof of $A^{\prime} \subset A$. We prove this by induction on $n$ : suppose that $Z_{1}(1)=\mathbb{C}, \ldots, Z_{n-1}(n-1)$ lie in the subalgebra generated by $L_{1}, \ldots, L_{n-1}$. Note that $Z_{n}(n) \subset Z_{n-1}(n)$. By Theorem 2.4, $Z_{n-1}(n)$ is generated by $Z_{n-1}(n-1)$ and $L_{n}$. So $Z_{n}(n) \subset A^{\prime \prime}$ and hence $A^{\prime} \subset A^{\prime \prime}$.

Proof of $A^{\prime \prime} \subset A$. By Lemma 3.3, every $v_{P}$ is an eigenvector for $L_{k}$. So $L_{k} \in A$ for any $k$. The inclusion $A^{\prime \prime} \subset A$ follows.

Corollary 3.7. If $P \neq P^{\prime}$, then $w_{P} \neq w_{P^{\prime}}$.
Proof. If $w_{P}=w_{P^{\prime}}$, then every element $a \in A^{\prime \prime}$ acts on $v_{P}, v_{P^{\prime}}$ with the same eigenvalue. But $e_{P} \in A^{\prime \prime}$ obviously does not have this property.
3.4. Road map. Let $\mathrm{Wt}(n)$ denote the set of all possible weights, this is a subset of $\mathbb{C}^{n}$. On $\mathrm{Wt}(n)$ we have an equivalence relation: we say that $w_{P} \sim w_{P^{\prime}}$, if $P, P^{\prime}$ lead to the same irreducible $V^{n}$. What we need to do to classify $\operatorname{Irr}\left(S_{n}\right)$ is to solve the following two problems:
a) Describe $\mathrm{Wt}(n)$.
b) Determine the equivalence relation $\sim$ on $\mathrm{Wt}(n)$.

This will be done in the next lecture.

## References

[E] P. Etingof et al. Introduction to representation theory. Student Mathematical Library, 59. American Mathematical Society, Providence, RI, 2011. arXiv:0901.0827.
[F] W. Fulton. Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
[K] A. Kleshchev. Linear and projective representations of symmetric groups. Cambridge Tracts in Mathematics, 163. Cambridge University Press, Cambridge, 2005.
[OV] A. Okounkov, A. Vershik. A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2 (1996), no. 4, 581605.

