LECTURE 1: REPRESENTATIONS OF SYMMETRIC GROUPS, I

IVAN LOSEV

1. INTRODUCTION

In this lecture we start to study the representation theory of the symmetric groups S_n over \mathbb{C} . Let us summarize a few things that we already know.

0) A representation of S_n is the same thing as a representation of the group algebra $\mathbb{C}S_n$.

1) As with all finite groups, any representation of S_n over \mathbb{C} is completely reducible.

2) The number of irreducible representations of S_n coincides with the number of conjugacy classes.

The conjugacy classes are in a natural bijection with partitions of n. Namely, we take an element $\sigma \in S_n$ and decompose it into the product of disjoint cycles. The lengthes of cycles form a partition of n that is independent of the choice of σ in the conjugacy class. We assign this partition to the conjugacy class of σ .

We would like to emphasize that 2) does not establish any preferred bijection between the irreducible representations of S_n and the partitions of n. To establish such a bijection is our goal in this part. We will follow a "new" approach to the representation theory of the groups S_n due to Okounkov and Vershik, [OV]. Our exposition follows [K, Section 2]. For a "traditional" approach based on Young symmetrizers, the reader is welcome to consult [E] or [F].

2. INDUCTIVE APPROACH

A key observation is that symmetric groups for different n are embedded into one another: $\{1\} = S_1 \subset S_2 \subset S_3 \ldots \subset S_{n-1} \subset S_n \subset \ldots$, where we view S_{n-1} as the subgroup of S_n fixing $n \in \{1, \ldots, n\}$. We could try to use "induction", i.e., to study the irreducible representations of S_n by restricting them to S_{n-1} . In fact, this naive idea does not quite work, but this is our starting point.

2.1. Centralizer $Z_B(A)$ and restrictions of representations. We start with the following question: given a finite dimensional semisimple associative algebra A and its semisimple subalgebra B, understand the restriction of $V \in Irr(A)$ (the set of isomorphism classes of finite dimensional irreducible A-modules) to B. The answer to this question is controlled by the subalgebra $Z_B(A) \subset A$ (the centralizer of B in A) defined by $Z_B(A) = \{a \in A | ba = ab, \forall b \in B\}$. More precisely, we have the following fact, where, recall that $Hom_B(U, V)$ stands for the space of B-module homomorphisms $U \to V$.

Lemma 2.1. We have an isomorphism $Z_B(A) = \bigoplus_{U,V} \operatorname{End}(\operatorname{Hom}_B(U,V))$, where the sum is taken over all pairs $(U,V) \in \operatorname{Irr}(B) \times \operatorname{Irr}(A)$ satisfying $\operatorname{Hom}_B(U,V) \neq \{0\}$.

In other words, the algebra $Z_B(A)$ is semisimple and the irreducible $Z_B(A)$ -modules are precisely the nonzero multiplicity spaces $\operatorname{Hom}_B(U, V)$. *Proof.* Since A is semisimple, it can be identified with $\bigoplus_{V \in \operatorname{Irr}(A)} \operatorname{End}(V)$, see Proposition 4.2 from Lecture 0. In this realization, we have $Z_B(A) = \bigoplus_{V \in \operatorname{Irr}(A)} \operatorname{End}_B(V)$. Recall from Lecture 0, Section 3.4, that

$$\operatorname{End}_B(V) = \bigoplus_U \operatorname{End}(\operatorname{Hom}_B(U, V)),$$

where the summation is taken over all $U \in Irr(B)$ such that $Hom_B(U, V) \neq \{0\}$.

Here is a corollary of this lemma that will be very useful for us in what follows.

Corollary 2.2. The following two conditions are equivalent:

(1) For any $U \in Irr(B), V \in Irr(A)$, we have dim Hom_B $(U, V) \leq 1$.

(2) $Z_B(A)$ is commutative.

Proof. The algebra $Z_B(A) = \bigoplus_{U,V} \operatorname{End}(\operatorname{Hom}_B(U,V))$ is commutative if and only if the summands are. For a nonzero vector space W, $\operatorname{End}(W) = \operatorname{Mat}_{\dim W}(\mathbb{C})$ is commutative if and only if dim W = 1. This implies that $(1) \Leftrightarrow (2)$.

What this corollary gives us is that if (2) is satisfied, then any irreducible A-module uniquely decomposes into the sum of irreducible B-modules, meaning that the summands are uniquely determined as subspaces.

Remark 2.3. It is instructive to describe the structure of a $Z_B(A)$ -module on $\operatorname{Hom}_B(U, V)$ without referring to the decomposition $A = \bigoplus \operatorname{End}(V)$. Let $z \in Z_B(A)$ and $\varphi \in \operatorname{Hom}_B(U, V)$. We define $z \cdot \varphi \in \operatorname{Hom}_B(U, V)$ by $[z \cdot \varphi](u) = z \cdot \varphi(u)$, for all $u \in U$. To check that this is well defined and is compatible with the previous module structure (see Section 3.4 of Lecture 0) is left to the reader.

2.2. The structure of $Z_m(n)$. We take $A = \mathbb{C}S_n$ and $B = \mathbb{C}S_m$, where m < n. We write $Z_m(n)$ for $Z_B(A)$. We are interested in finding generators for the algebra $Z_m(n)$.

Theorem 2.4. The algebra $Z_m(n)$ is generated by the subalgebra $Z_m(m)$, the subgroup $S_{[m+1,n]} \subset S_n$ (fixing $1, \ldots, m$ and permuting $m+1, \ldots, n$) and the Jucys-Murphy elements $L_k := \sum_{i=1}^{k-1} (ik)$, where k ranges from m+1 to n.

Note that $L_1 = 0$.

Proof. The proof is in several steps.

Step 1. Let $H \subset G$ be finite groups. Then we have a basis in $Z_{\mathbb{C}H}(\mathbb{C}G)$ indexed by the H-conjugacy classes in G. Namely, to a class c we assign an element $b_c \in Z_{\mathbb{C}H}(\mathbb{C}G)$ given by $z_c := \sum_{g \in c} g$. This is a straightforward generalization of Proposition 5.2 in Lecture 0.

Step 2. Let $G = S_n$, $H = S_m$. Recall that the G-conjugacy classes in G are parameterized by cycle types, e.g., in S_6 we have a conjugacy class (***)(**). The H-conjugacy classes are parameterized by class types with marked elements $m + 1, \ldots, n$, e.g., we have the following S_4 -conjugacy classes in S_6 : (56*)(**), (65*)(**), (6**)(5*), (***)(56), etc. Note that $b_{(*k)} = L_k - \sum_{j=m+1}^{k-1} (jk)$ for k > m. In particular, $L_k \in Z_m(n)$. To a class c we assign its degree deg c that, by definition, is equal to the number of elements in $\{1, \ldots, n\}$ moved by an element in c (this is independent of the choice of the element).

Step 3. Let A be the subalgebra in $\mathbb{C}S_n$ generated by $Z_m(m), S_{[m+1,n]}, L_{m+1}, \ldots, L_n$. It is easy to see that $A \subset Z_m(n)$. To prove the opposite inclusion, assume that $b_c \notin A$ for some c. We pick c of minimal degree with this property. In the next four steps we will arrive at a contradiction. Step 4. Assume, first, that c has more than one cycle of length at least 2. Break c into the union of two cycle types c', c'', e.g., if c = (6**)(5*), then we can take c' = (6**), c'' = (5*). Note that

$$b_{c'}b_{c''} = \alpha b_c + \sum_{c_0, \deg c_0 < \deg c} \alpha_{c_0}b_{c_0},$$

where $\alpha > 0$. By our inductive assumption, $b_{c_0} \in A$ and $b_{c'}b_{c''} \in A$. So $b_c \in A$, which contradicts the choice of c.

Step 5. Now let us pick a cycle $(i_1, i_2, \ldots, i_k) \in S_n$ and consider the product $(i_1, \ldots, i_k)(i_s, j)$. If $j \notin \{i_1, \ldots, i_k\}$, then we get $(i_1, \ldots, i_s, j, i_{s+1}, \ldots, i_k)$. If $j \in \{i_1, \ldots, i_k\}$, then $(i_1, \ldots, i_k)(i_kj)$ either splits into the product of two cycles of total degree k or is a cycle of degree k - 1.

Step 6. Now suppose that the cycle in c has both an element from $\{1, \ldots, m\}$ (does not matter which, we denote it by *) and $k \in \{m + 1, \ldots, n\}$. We may assume that k is right after * in the cycle. Let c' denote the cycle obtained from c by deleting k. Then $b_{c'}L_k = \alpha b_c + \sum_{c_0} \alpha_{c_0} b_{c_0}$, where the summation is over c_0 that are products of two disjoint cycles with deg $c_0 = \deg c$ or have deg $c_0 < \deg c$. This is a consequence of Step 5, as the left hand side is the sum of products of pairs of cycles that share a common element, k. Similarly to Step 4, we arrive at a contradiction with the choice of c.

Step 7. So either the elements in the only cycle of c are all from $\{1, \ldots, m\}$, in which case $b_c \in Z_m(m)$, or are all from $\{m + 1, \ldots, n\}$, in which case $b_c \in S_{[m+1,n]}$. Contradiction. \Box

Corollary 2.5. The following is true.

(1) $Z_m(m)$ lies in the center of $Z_m(n)$.

(2) The algebra $Z_{n-1}(n)$ is commutative.

Proof. The algebra $Z_m(n)$ commutes with $\mathbb{C}S_m$ and $Z_m(m) \subset Z_m(n) \cap \mathbb{C}S_m$. So $Z_m(m)$ is in the center of $Z_m(n)$.

The algebra $Z_{n-1}(n)$ is generated by $Z_{n-1}(n-1)$ and L_n . Since the former is central, the algebra $Z_{n-1}(n)$ is commutative.

3. Basis and weights

We will use Corollary 2.5 to construct a basis in $\bigoplus_{V \in Irr(S_n)} V$ and encode elements of this basis with *n*-tuples of complex numbers to be called *weights*.

3.1. Branching graph. Basis elements will be labelled by paths in a graph that is called the branching graph for the symmetric groups. The vertices of this graph will be $\bigsqcup_{n\geq 1} \operatorname{Irr}(S_n)$. We draw a single arrow between $V^{n-1} \in \operatorname{Irr}(S_{n-1}), V^n \in \operatorname{Irr}(S_n)$ if $\operatorname{Hom}_{S_{n-1}}(V^{n-1}, V^n)$ has dimension 1 (by Corollary 2.5 the only other option is 0). There are no other edges.

Paths in the branching graph label bases in Hom spaces. For vertices $V^m \in \operatorname{Irr}(S_m), V^n \in \operatorname{Irr}(S_n)$ with m < n, denote by $\operatorname{Path}(V^m, V^n)$ the set of paths from V^m to V^n .

Lemma 3.1. There is a basis in $\operatorname{Hom}_{S_m}(V^m, V^n)$ indexed by $\operatorname{Path}(V^m, V^n)$.

Proof. We have $V^n = \bigoplus_{V^{n-1}, V^{n-1} \to V^n} V^{n-1}$. Now decompose V^{n-1} into the sum of irreducible representations of S_{n-2} . Plugging this decomposition into the sum above, we get

$$V^n = \bigoplus_{V^{n-2}, P \in \mathsf{Path}(V^{n-2}, V^n)} V_P^{n-2},$$

where V_P^{n-2} denotes the copy of V_n embedded into V^n via $V^{n-2} \hookrightarrow V^{n-1} \hookrightarrow V^n$, where $P = V^{n-2} \to V^{n-1} \to V^n$. We continue in this manner and get

$$V^n = \bigoplus_{V^m, P \in \mathsf{Path}(V^m, V^n)} V_P^m.$$

Let $\varphi_P \in \operatorname{Hom}_{S_m}(V^m, V^n)$ be the embedding of $V^m \xrightarrow{\sim} V_P^m \subset V^n$. We see that $\varphi_P, P \in \operatorname{Path}(V^m, V^n)$, is a basis in $\operatorname{Hom}_{S_m}(V^m, V^n)$.

Remark 3.2. Note that the element φ_P is defined uniquely up to proportionality. Also note that if $P_2 \in \mathsf{Path}(V^k, V^m), P_1 \in \mathsf{Path}(V^m, V^n)$, then $\varphi_{P_1} \circ \varphi_{P_2}$ is proportional to $\varphi_{P_1P_2}$, where $P_1P_2 \in \mathsf{Path}(V^k, V^n)$ is the concatenation of P_1 and P_2 .

3.2. **Basis and weights.** If in Lemma 3.1 we take m = 1, we will get a basis in $\operatorname{Hom}_{S_1}(V^1, V^n) = \operatorname{Hom}(\mathbb{C}, V^n) = V^n$, we will write v_P for φ_P in this case. By the construction, if $P = V^1 \rightarrow V^2 \rightarrow \ldots \rightarrow V^n$, then v_P lies in V^1 uniquely embedded into V^2 that is uniquely embedded into V^3 , etc.

Lemma 3.3. The following is true.

- (1) The vector v_P is an eigenvector for all Jucys-Murphy elements $L_k, k = 1, ..., n$.
- (2) The eigenvalue of L_k on v_P depends only on the V^{k-1} and V^k components in $P = V^1 \to V^2 \to \ldots \to V^n$.

We postpone the proof a little bit, to give a definition and an example.

Definition 3.4. Define the weight $w_P = (w_1, \ldots, w_n) \in \mathbb{C}^n$ of the path P (or of the basis vector v_P) by $L_k v_P = w_k v_P, k = 1, \ldots, n$.

Example 3.5. Consider the reflection representation \mathbb{R}^n of S_n . It can be realized as the submodule $\{(x_1, \ldots, x_n) | x_1 + \ldots + x_n = 0\}$ in the permutation representation \mathbb{C}^n of S_n . The restriction of \mathbb{R}^n to S_{n-1} decomposes as $\mathbb{R}^{n-1} \oplus \mathbb{T}^{n-1}$, where we write \mathbb{T}^{n-1} for the trivial representation of S_{n-1} . The copy of \mathbb{R}^{n-1} is realized as $\{(x_1, \ldots, x_n) | x_1 + \ldots + x_{n-1} = 0, x_n = 0\}$, while the copy of \mathbb{T}^{n-1} is spanned by $(1, \ldots, 1, 1 - n)$. The paths indexing the basis in \mathbb{R}^n are

$$P_m := T^1 \to T^2 \to T^{m-1} \to R^m \to R^{m+1} \to \dots \to R^n, m = 2, \dots, n.$$

The corresponding basis vector is $v_{P_m} = (1, ..., 1, 1 - m, 0, ..., 0)$. The weight w_{P_m} equals (0, 1, ..., m - 2, -1, m - 1, ..., n - 2).

Proof of Lemma 3.3. Note that v_P lies in the unique copy of V^{k-1} in V^k . It is enough to check that L_k acts on that copy of V^{k-1} by a scalar (that depends only on V^{k-1} , V^k because $L_k \in \mathbb{C}S_k$). But L_k commutes with $\mathbb{C}S_{k-1}$ and so the operator of multiplication by L_k gives an element in $\operatorname{Hom}_{S_{k-1}}(V^{k-1}, V^k)$. Since the dimension of the latter space is 1, the multiplication by L_{k-1} gives an endomorphism of the S_{k-1} -module V^{k-1} . This endomorphism is scalar by the Schur lemma.

3.3. Maximal commutative subalgebra. A natural question to ask at this point is: can two different paths $P \in \mathsf{Path}(V^1, V^n), P' \in \mathsf{Path}(V^1, V'^n)$ give the same weight? Here we will see that the answer is "no": a weight determines a path uniquely.

Consider the subalgebra $A \subset \mathbb{C}S_n$ consisting of all elements a such that all v_P are eigenvectors for a. In other words, if we identify $\operatorname{End}(V^n)$ with $\operatorname{Mat}_{\dim V^n}(\mathbb{C})$ using the basis $v_P, P \in \operatorname{Path}(V^1, V^n)$, and $\mathbb{C}S_n$ with $\bigoplus_{V^n \in \operatorname{Irr}(S_n)} \operatorname{End}(V^n)$, then A is the direct sum of the

subalgebras of diagonal matrices in $\operatorname{Mat}_{\dim V^n}(\mathbb{C})$. Note that A is a maximal commutative subalgebra in $\mathbb{C}S_n$.

There are two alternative descriptions of A.

Proposition 3.6. The following subalgebras of $\mathbb{C}S_n$ coincide.

- (i) A introduced above.
- (ii) A' generated by $Z_k(k), k = 1, \ldots, n$.
- (iii) A'' generated by L_1, \ldots, L_n .

Proof. We will prove that $A \subset A', A' \subset A''$, and $A'' \subset A$.

Proof of $A \subset A'$. We have a basis in A labelled by the paths $P \in \mathsf{Path}(V^1, V^n)$, where V^n runs over $\mathrm{Irr}(S_n)$. Namely, define e_P by $e_P v_{P'} = \delta_{PP'} v_{P'}$ (i.e., e_P is the diagonal matrix element corresponding to P). Let $P = V^1 \to V^2 \to \ldots \to V^n$.

Define $e_{V^m} \in \mathbb{C}S_m$ as the identity in the summand $\operatorname{End}(V^m)$ of $\mathbb{C}S_m = \bigoplus_{U \in \operatorname{Irr}(S_m)} \operatorname{End}(U)$ and zero in all other summands. This element is central, in other words, $e_{V^m} \in Z_m(m)$. Now consider the product $e_{V^1}e_{V^2}\ldots e_{V^n}$ and its action on $\bigoplus_{U^n \in \operatorname{Irr}(S_n)} U^n$. Applying e_{V^n} we project to the summand V^n . Applying $e_{V^{n-1}}$ next, we project to the summand V^{n-1} inside V^n . And so on. From the construction of the element v_P , we conclude that $e_{V^1}\ldots e_{V^n}$ coincides with e_P . Since $e_{V^1}\ldots e_{V^n} \in A'$, we see that $e_P \in A'$, and we are done.

Proof of $A' \subset A$. We prove this by induction on n: suppose that $Z_1(1) = \mathbb{C}, \ldots, Z_{n-1}(n-1)$ lie in the subalgebra generated by L_1, \ldots, L_{n-1} . Note that $Z_n(n) \subset Z_{n-1}(n)$. By Theorem 2.4, $Z_{n-1}(n)$ is generated by $Z_{n-1}(n-1)$ and L_n . So $Z_n(n) \subset A''$ and hence $A' \subset A''$.

Proof of $A'' \subset A$. By Lemma 3.3, every v_P is an eigenvector for L_k . So $L_k \in A$ for any k. The inclusion $A'' \subset A$ follows.

Corollary 3.7. If $P \neq P'$, then $w_P \neq w_{P'}$.

Proof. If $w_P = w_{P'}$, then every element $a \in A''$ acts on $v_P, v_{P'}$ with the same eigenvalue. But $e_P \in A''$ obviously does not have this property.

3.4. Road map. Let Wt(n) denote the set of all possible weights, this is a subset of \mathbb{C}^n . On Wt(n) we have an equivalence relation: we say that $w_P \sim w_{P'}$, if P, P' lead to the same irreducible V^n . What we need to do to classify $Irr(S_n)$ is to solve the following two problems:

a) Describe Wt(n).

b) Determine the equivalence relation \sim on Wt(n).

This will be done in the next lecture.

References

- [E] P. Etingof et al. Introduction to representation theory. Student Mathematical Library, 59. American Mathematical Society, Providence, RI, 2011. arXiv:0901.0827.
- [F] W. Fulton. Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
- [K] A. Kleshchev. Linear and projective representations of symmetric groups. Cambridge Tracts in Mathematics, 163. Cambridge University Press, Cambridge, 2005.
- [OV] A. Okounkov, A. Vershik. A new approach to representation theory of symmetric groups. Selecta Math. (N.S.) 2 (1996), no. 4, 581605.