Coherent sheaves on elliptic curves.

Aleksei Pakharev

April 5, 2017

Abstract

We describe the abelian category of coherent sheaves on an elliptic curve, and construct an action of a central extension of $\text{SL}_2(\mathbb{Z})$ on the derived category.

Contents

1 Coherent sheaves on elliptic curve 1
2 (Semi)stable sheaves 2
3 Euler form 4
4 Derived category of coherent sheaves 5
5 $\text{SL}_2(\mathbb{Z})$ action 6
6 Classification of indecomposable sheaves 7
7 Braid group relations 8

1 Coherent sheaves on elliptic curve

Definition 1.1. An elliptic curve over a field k is a nonsingular projective algebraic curve of genus 1 over k with a fixed k-rational point.

Remark 1.2. If the characteristic of k is neither 2 nor 3, an elliptic curve can be alternately defined as the subvariety of \mathbb{P}^2_k defined by an equation $y^2z = x^3 - pxz^2 - qz^3$, where $p, q \in k$, and the polynomial $x^3 - pxz^2 - qz^3$ is square-free. In this case, the fixed point is $(0 : 1 : 0)$.

Remark 1.3. Over the field of complex numbers, there is even a simpler description. An elliptic curve is precisely a quotient \mathbb{C}/Λ of \mathbb{C} by a nondegenerate lattice $\Lambda \subset \mathbb{C}$ of rank 2.

Remark 1.4. Any elliptic curve carries a structure of a group, with the fixed point being the identity.
Fix an elliptic curve X over a field k. We do not assume that k is algebraically closed, since the main example is the finite field \mathbb{F}_q.

Recall that a coherent sheaf F on X is a sheaf of modules over O such that for every open affine $U \subset X$ the restriction $F|_U$ is isomorphic to \hat{N} for some finitely generated $O(U)$-module N.

Example 1.5. The structure sheaf O is indeed a coherent sheaf. Also, one can consider the ideal sheaf $m_x = O(-x)$ corresponding to a closed point $x \in X$. Then the cokernel of the inclusion $O(-x) \to O$ is the so called skyscraper sheaf O_x, which is coherent as well.

Theorem 1.6. Coherent sheaves on X form an abelian category $\text{Coh}(X)$.

Theorem 1.7 (Global version of Serre theorem). Any coherent sheaf F on a smooth projective variety of dimension n over a field k admits a resolution $F_n \to F_{n-1} \to \ldots \to F_1 \to F_0$ where each F_i is finitely generated and locally free (\simeq vector bundle).

Theorem 1.8 (Grothendieck’s finiteness theorem). Any coherent sheaf F on a smooth projective variety of dimension n over a field k has finite dimensional cohomologies over k.

Corollary 1.9. For any coherent sheaves F and G the space $\text{Hom}(F,G)$ has finite dimension over k, since $\text{Hom}(F,G) = \Gamma(\text{Hom}(F,G), X) = H^0(\text{Hom}(F,G), X)$.

Theorem 1.10 (Grothendieck’s vanishing theorem). Any coherent sheaf F on a smooth projective variety of dimension n over a field k has no i-th cohomologies for $i > n$.

Definition 1.11. An abelian category \mathcal{C} is called hereditary if $\text{Ext}^2(\cdot, \cdot) = 0$.

Corollary 1.12. The category $\text{Coh}(X)$ is hereditary.

2 (Semi)stable sheaves

To a coherent sheaf we can associate two numbers, the Euler characteristic $\chi(F)$ and the rank $\text{rk}(F)$.

Definition 2.1. The Euler characteristic $\chi(F)$ is the alternating sum $\sum_{i} (-1)^i \dim_k H^i(F, X)$. In our case, it is equal to $\dim_k H^0(F, X) - \dim_k H^1(F, X)$.

Definition 2.2. The rank $\text{rk}(F)$ is the dimension of the stalk F_ξ of F at a generic point ξ of X over the residue field. It is independent of ξ.

Example 2.3. We have $\chi(O) = 0$, $\text{rk}(O) = 1$, $\chi(O_x) = 1$, $\text{rk}(O_x) = 0$.

Proposition 2.4. Given a short exact sequence $0 \to F' \to F \to F'' \to 0$, we have $\chi(F) = \chi(F') + \chi(F'')$ and $\text{rk}(F) = \text{rk}(F') + \text{rk}(F'')$.

Definition 2.5. The slope $\mu(F)$ of a nontrivial coherent sheaf F is the quotient $\chi(F)/\text{rk}(F)$. In the case $\text{rk}(F) = 0$ we set $\mu(F) = \infty$.

Lemma 2.6. Given a short exact sequence $0 \to F' \to F \to F'' \to 0$, we have three options:
\[\mu(F') < \mu(F) < \mu(F''); \]
\[\mu(F') = \mu(F) = \mu(F''); \]
\[\mu(F') > \mu(F) > \mu(F''). \]

Proof. We have
\[
\begin{align*}
\mu(F') &= \frac{\chi(F')}{\text{rk}(F')}, \\
\mu(F'') &= \frac{\chi(F'')}{\text{rk}(F'')}, \\
\mu(F) &= \frac{\chi(F)}{\text{rk}(F)} = \frac{\chi(F') + \chi(F'')}{\text{rk}(F') + \text{rk}(F'')}.
\end{align*}
\]
Since both \(\text{rk}(F') \) and \(\text{rk}(F'') \) are nonnegative, we indeed get the lemma.

Definition 2.7. A coherent sheaf \(F \) is called **stable** (resp. **semistable**) if for any nontrivial short exact sequence \(0 \to F' \to F \to F'' \to 0 \) we have \(\mu(F') < \mu(F) \) (resp. \(\mu(F') \leq \mu(F) \)).

General theory gives us the following

Theorem 2.8 ([1] Harder-Narasimhan filtration). For a coherent sheaf \(F \), there is a unique filtration
\[
0 = F_0 \subset F_1 \subset \ldots \subset F_n \subset F_{n+1} = F
\]
such that all \(A_i = F_{i+1}/F_i \) are semistable and \(\mu(A_i) > \mu(A_{i+1}) \) for each \(i \).

In our case, we can derive much stronger proposition. Before stating it, note two useful statements.

Proposition 2.9. If \(F \) and \(G \) are semistable sheaves, and \(\mu(F) > \mu(G) \), then \(\text{Hom}(F, G) = 0 \).

Proof. Suppose we have a nontrivial map \(f : F \to G \). Then \(\mu(F) \leq \mu(F/\ker f) = \mu(\text{im } f) \leq \mu(G) \). Contradiction.

Another property of \(\text{Coh}(X) \) we will need is

Proposition 2.10 (Calabi-Yau property). For any two coherent sheaves \(F \) and \(G \), there is an isomorphism \(\text{Hom}(F, G) \simeq \text{Ext}^1(G, F)^* \).

Proof. From Remark 1.4 we know that the canonical bundle \(K \) is trivial, \(K \simeq \mathcal{O} \). Also by Serre duality we get
\[
\text{Hom}(F, G) = \text{Ext}^0(F, G) \simeq \text{Ext}^1(G, F \otimes K)^* = \text{Ext}^1(G, F)^*.
\]

We are ready to prove
Theorem 2.11. Any nontrivial coherent sheaf is a direct sum of indecomposable semistable sheaves.

Proof. We only need to prove that any indecomposable sheaf is semistable. Suppose some indecomposable sheaf F is not semistable. Then the Harder-Narasimhan filtration of F is nontrivial. Consider only the case of length 1 filtration, it captures the main idea. So, we have a short exact sequence $0 \to F' \to F \to F'' \to 0$, where both F' and F'' are semistable, and $\mu(F') > \mu(F'')$. By Proposition 2.9 we get $\text{Hom}(F', F'') = 0$. By Proposition 2.10 we obtain $\text{Ext}^1(F'', F') = \text{Hom}(F', F'')^* = 0$. Therefore the exact sequence splits, contradiction with the assumption that F is indecomposable.

Definition 2.12. Denote the full subcategory of semistable coherent sheaves on X of slope μ by C_μ.

Proposition 2.13. The category C_μ is abelian, artinian, and closed under extensions. The simple objects in C_μ are stable sheaves of slope μ.

Corollary 2.14. $\text{Coh}(X)$ is the direct sum of all C_μ (on the level of objects).

3 Euler form

Since rk and χ are well defined on $K_0(\text{Coh}(X))$, we can consider

Definition 3.1. The Euler form $\langle \mathcal{F}, \mathcal{G} \rangle$ of two elements $\mathcal{F}, \mathcal{G} \in K_0(\text{Coh}(X))$ is equal to $\dim \text{Hom}(\mathcal{F}, \mathcal{G}) - \dim \text{Ext}^1(\mathcal{F}, \mathcal{G})$.

Proposition 3.2. We have $\langle \mathcal{F}, \mathcal{G} \rangle = \text{rk}(\mathcal{F})\chi(\mathcal{G}) - \chi(\mathcal{F})\text{rk}(\mathcal{G})$.

Proof. First notice that the RHS only depends on the classes of \mathcal{F} and \mathcal{G} in the Grothendieck group $K_0(\text{Coh}(X))$. Therefore it is sufficient to check the equality for some generators of the Grothendieck group, for example, for locally free sheaves. If \mathcal{F} is locally free, the LHS reduces to $\chi(\mathcal{F}^\vee \otimes \mathcal{G})$. Note that in the case of elliptic curve, the Hirzebruch-Riemann-Roch theorem gives us that $\chi(\mathcal{E}) = \deg(\mathcal{E})$ for any coherent sheaf \mathcal{E}. Applying it here, we get

$$LHS = \chi(\mathcal{F}^\vee \otimes \mathcal{G}) = \deg(\mathcal{F}^\vee \otimes \mathcal{G}) = \text{rk}(\mathcal{F})\deg(\mathcal{G}) - \deg(\mathcal{F})\text{rk}(\mathcal{G}) = \text{rk}(\mathcal{F})\chi(\mathcal{G}) - \chi(\mathcal{F})\text{rk}(\mathcal{G}) = RHS.$$

Definition 3.3. The charge map is $Z = (\text{rk}, \chi): K_0(\text{Coh}(X)) \to \mathbb{Z}^2$.

It is surjective, since we have both $(1, 0)$ and $(0, 1)$ in the image. We have a canonical nondegenerate volume form on \mathbb{Z}^2, $\langle (a, b), (c, d) \rangle = ad - bc$, and it is equal to the push-forward of the Euler form.

Proposition 3.4. The kernel of the Euler form coincides with the kernel of Z, equivalently, $K_0(\text{Coh}(X))/\ker \langle , \rangle \cong \mathbb{Z}^2$.

4
Also we can now write some relations between different C_μ and C_μ'.

Proposition 3.5. Suppose \mathcal{F} and \mathcal{F}' are indecomposable, and $Z(\mathcal{F}) = (r, \chi)$, $Z(\mathcal{F}') = (r', \chi')$.

- If $\chi/r > \chi'/r'$, then $\text{Hom}(\mathcal{F}, \mathcal{F}') = 0$, $\dim \text{Ext}^1(\mathcal{F}, \mathcal{F}') = \chi r' - \chi' r$;
- If $\chi/r < \chi'/r'$, then $\dim \text{Hom}(\mathcal{F}, \mathcal{F}') = \chi' r - \chi r'$, $\text{Ext}^1(\mathcal{F}, \mathcal{F}') = 0$.

Proof. By Proposition 2.10 and Proposition 2.9 we know that

- if $\chi/r > \chi'/r'$, then $\text{Hom}(\mathcal{F}, \mathcal{F}') = 0$;
- if $\chi/r < \chi'/r'$, then $\text{Ext}^1(\mathcal{F}, \mathcal{F}') = 0$.

Proposition 3.2 concludes the proof. □

4 Derived category of coherent sheaves

Let us show that Corollary 1.12 implies a neat description of the derived category $D^b(\text{Coh}(X))$ of bounded complexes of coherent sheaves on X.

Theorem 4.1. Suppose \mathcal{C} is a hereditary abelian category. Then any object $L \in D^b(\mathcal{C})$ is isomorphic to the sum of its cohomologies, i.e. $L = \bigoplus_i H^i L[-i]$.

Proof. Let L be a complex $\ldots \to L_i \to L_{i+1} \to \ldots$. Fix any i. We have a short exact sequence $0 \to \ker d^{-1} \to L^{-1} \to \text{im } d^{-1} \to 0$. Apply $R\text{Hom}(H^i L, -)$. This gives rise to an exact sequence $\text{Ext}^1(H^i L, L^{-1}) \to \text{Ext}^1(H^i L, \text{im } d^{-1}) \to \text{Ext}^2(H^i L, \ker d^{-1})$. Since $\text{Coh}(X)$ is hereditary, we obtain a surjection from $\text{Ext}^1(H^i L, L^{-1})$ to $\text{Ext}^1(H^i L, \text{im } d^{-1})$. In particular, there exists M^i such that the following diagram commutes

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & L^{-1} & \longrightarrow & M^i & \longrightarrow & H^i L & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \text{im } d^{-1} & \longrightarrow & \ker d^i & \longrightarrow & H^i L & \longrightarrow & 0
\end{array}
\]

Then the following morphism

\[
\begin{array}{ccccccccc}
& \ldots & \longrightarrow & 0 & \longrightarrow & 0 & \longrightarrow & H^i L & \longrightarrow & 0 & \longrightarrow & \ldots \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
& \ldots & \longrightarrow & 0 & \longrightarrow & L^{-1} & \longrightarrow & M^i & \longrightarrow & 0 & \longrightarrow & \ldots
\end{array}
\]

of complexes is a quasi-isomorphism. If we compose its inverse with the morphism

\[
\begin{array}{ccccccccc}
& \ldots & \longrightarrow & 0 & \longrightarrow & L^{-1} & \longrightarrow & M^i & \longrightarrow & 0 & \longrightarrow & \ldots \\
& & \downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
& \ldots & \longrightarrow & L^{-2} & \longrightarrow & L^{-1} & \longrightarrow & L^i & \longrightarrow & L^{i+1} & \longrightarrow & \ldots
\end{array}
\]

we get a morphism $H^i L[-i] \to L$ in $D^b(\text{Coh}(X))$ which is isomorphism in the i-th cohomology, and zero elsewhere. Therefore, if we sum up all this morphisms, we obtain an isomorphism $\bigoplus_i H^i L[-i] \to L$. □
Corollary 4.2. The derived category $D^b(\text{Coh}(X))$ is the direct sum of \mathbb{Z} copies of $\text{Coh}(X)$, a sheaf \mathcal{F} in the i-th copy goes to \mathcal{F}.

Since $K_0(D^b(\text{Coh}(X))) = K_0(\text{Coh}(X))$, Z is defined on $K_0(D^b(\text{Coh}(X)))$ as well. Note that $Z(\mathcal{F}[i]) = (-1)^i Z(\mathcal{F})$.

Remark 4.3. The corollary works for any smooth projective curve X. Another example of a hereditary category is the category of representations of a quiver.

5 SL$_2(\mathbb{Z})$ action

Proposition 3.2 suggests to define $\langle L, M \rangle = \sum (-1)^i \dim \text{Hom}(L, M[i])$ for any two objects $L, M \in D^b(\text{Coh}(X))$. Therefore the Euler form is preserved by any autoequivalence of $D^b(\text{Coh}(X))$. In other words, any autoequivalence $f \in \text{Aut}(D^b(\text{Coh}(X)))$ gives a corresponding automorphism of \mathbb{Z}^2 preserving the volume form, i.e. gives an element $\pi(f) \in \text{SL}_2(\mathbb{Z})$.

Definition 5.1. Say that an object $\mathcal{E} \in D^b(\text{Coh}(X))$ is spherical if $\text{Hom}(\mathcal{E}, \mathcal{E}) = k$ (and consequently $\text{Hom}(\mathcal{E}, \mathcal{E}[1]) = k$).

Example 5.2. The structure sheaf \mathcal{O} and the skyscraper sheaf at a rational k-point are spherical.

Definition 5.3. A Fourier-Mukai transform with a kernel $\mathcal{L} \in D^b(\text{Coh}(X \times Y))$ is a functor $\Phi_\mathcal{L}: D^b(\text{Coh}(X)) \to D^b(\text{Coh}(Y))$ which sends an object $\mathcal{F} \in D^b(\text{Coh}(X))$ to $R\pi_{2*}(\pi_1^*\mathcal{F} \otimes^L \mathcal{L})$, where $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are the natural projections.

Definition 5.4. For a spherical object $\mathcal{E} \in D^b(\text{Coh}(X))$, which is a complex of locally free sheaves, we can define a twist functor $T_\mathcal{E}: D^b(\text{Coh}(X)) \to D^b(\text{Coh}(X))$ to be equal to a Fourier-Mukai transform with the kernel $\text{cone}(\mathcal{E}^\vee \boxtimes \mathcal{E} \to \mathcal{O}_\Delta) \in D^b(\text{Coh}(X \times Y))$.

Theorem 5.5 ([2]). For a spherical object $\mathcal{E} \in D^b(\text{Coh}(X))$ the twist functor $T_\mathcal{E}$ is an exact equivalence which sends an object \mathcal{F} to $\text{cone}(\text{RHom}(\mathcal{E}, \mathcal{F}) \otimes^L \mathcal{E} \boxtimes \mathcal{F})$.

Remark 5.6. The evaluation works by applying $\text{ev}: \text{Ext}^i(\mathcal{E}, \mathcal{F}) \otimes \mathcal{E}[-i] \to \mathcal{F}$ on each grading.

Let us see how $T_\mathcal{E}$ acts on Grothendieck group.

Proposition 5.7. The action of $T_\mathcal{E}$ on $K_0(D^b(\text{Coh}(X)))$ is given by $[\mathcal{F}] \mapsto [\mathcal{F}] - \langle \mathcal{E}, \mathcal{F} \rangle [\mathcal{F}]$.

Proof. Indeed, $[T_\mathcal{E}(\mathcal{F})] = [\mathcal{F}] - [\text{RHom}(\mathcal{E}, \mathcal{F}) \otimes^L \mathcal{E}] = [\mathcal{F}] - \langle \mathcal{E}, \mathcal{F} \rangle [\mathcal{F}]$. □

Corollary 5.8. $\pi(T_\mathcal{O}) = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array} \right)$, $\pi(T_{\mathcal{O}_x}) = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right)$.

Proof. Since \mathbb{Z}^2 are generated by the charges of \mathcal{O} and \mathcal{O}_x, we can check this on \mathcal{O} and \mathcal{O}_x only.

$T_\mathcal{O}([\mathcal{O}]) = [\mathcal{O}] - \langle \mathcal{O}, \mathcal{O} \rangle [\mathcal{O}] = [\mathcal{O}]$,

$T_\mathcal{O}([\mathcal{O}_x]) = [\mathcal{O}_x] - \langle \mathcal{O}_x, \mathcal{O}_x \rangle [\mathcal{O}_x] = [\mathcal{O}_x] - [\mathcal{O}]$,

$T_{\mathcal{O}_x}([\mathcal{O}]) = [\mathcal{O}] - \langle \mathcal{O}_x, \mathcal{O} \rangle [\mathcal{O}_x] = [\mathcal{O}] + [\mathcal{O}_x]$,

$T_{\mathcal{O}_x}([\mathcal{O}_x]) = [\mathcal{O}_x] - \langle \mathcal{O}_x, \mathcal{O}_x \rangle [\mathcal{O}_x] = [\mathcal{O}_x]$. □
Proposition 5.9. T_{O_x} is in fact just the tensor product with $O(x)$.

Proof. The formula for the adjoint of a Fourier-Mukai transform gives that the inverse of T_{O_x} is the Fourier-Mukai transform with the kernel $\text{cocone}(O_\Delta \to O_{(x,x)})$. The map inside a cocone is nonzero. But any nonzero map $O_\Delta \to O_{(x,x)}$ is a nonzero multiple of the natural surjection $O_\Delta \to O_{(x,x)}$. Therefore the cocone is equal to the kernel of this map, or just $O_\Delta \otimes \pi_1^*(O(-x))$. Now note that the sheaf O_Δ in the kernel trivializes all pullbacks and pushforwards we do to the identity maps between sheaves on X and on $\Delta \simeq X$. The proposition follows.

The matrices $\pi(T_O)$ and $\pi(T_{O_x})$ generate $\text{SL}_2(\mathbb{Z})$, therefore, $\pi: \text{Aut}(D^b(\text{Coh}(X))) \to \text{SL}_2(\mathbb{Z})$ is surjective.

6 Classification of indecomposable sheaves

Note that indecomposable torsion sheaves lie in C_∞, and generate C_∞. Moreover, we have

Theorem 6.1. Indecomposable torsion sheaves are parametrized by a positive integer $s > 0$ and a closed point $x \in X$. The corresponding torsion sheaf is $O/O(-sx)$.

Proof. Indeed, we reduce to the case of one point, then the local ring is PID, and the claim follows.

In addition to that, $\text{SL}_2(\mathbb{Z})$ action allows us to prove

Theorem 6.2. For each $\mu \in \mathbb{Q}$ we have a canonical isomorphism $C_\mu \simeq C_\infty$.

Proof. Indeed, let μ be equal to a/b for coprime a and b. Choose some $\gamma \in \text{SL}_2(\mathbb{Z})$ which sends (a,b) to $(0,1)$, and lift it to an autoequivalence $\bar{f} \in \text{Aut}(D^b(\text{Coh}(X)))$ of the derived category. Take any indecomposable sheaf $\mathcal{F} \in C_\mu$. Then $\bar{f}(\mathcal{F})$ is an indecomposable object in $D^b(\text{Coh}(X))$ with the slope ∞. Therefore, it is of form $\mathcal{G}[k]$, where \mathcal{G} is a torsion sheaf, and k is some integer. Denote by $\bar{f}: C_\mu \to C_\infty$ a map which sends an indecomposable sheaf \mathcal{F} to a sheaf \mathcal{G} defined in this way. It is easy to see that if we begin with the inverse matrix f^{-1}, then we get a map $\bar{f}^{-1}: C_\infty \to C_\mu$ which is inverse to \bar{f}. Also \bar{f} does not depend on a lift \bar{f}. So C_μ and C_∞ are canonically isomorphic.

Summarizing, we have

Theorem 6.3. Indecomposable sheaves are parametrized by a pair (rk, χ) in the right half of \mathbb{Z}^2 and a closed point $x \in X$.

Let us show how this describes indecomposable sheaves with charges $(1,1)$ and $(1,0)$.

Proposition 6.4.

$T_O(O) = O, \ T_{O}(O(x)) = O_x, \ T_{O_x}(O) = O(x), \ T_{O_x}(O_x) = O_x.$
Proof. The second line is a consequence of Proposition 5.9. The first line is an easy computation based on Theorem 5.5.

Proposition 6.5. The indecomposable sheaves of charge \((1, 1)\) are the sheaves \(\mathcal{O}(x)\). The indecomposable sheaves of charge \((1, 0)\) are the sheaves \(\mathcal{O}(x - y)\).

Proof. The autoequivalence \(T^{-1}_{\mathcal{O}}\) maps the charge \((0, 1)\) to \((1, 1)\), so we can use it to obtain the indecomposables of charge \((1, 1)\). Given an indecomposable \(\mathcal{O}_x\) of charge \((0, 1)\), its image is \(\mathcal{O}(x)\) by Proposition 6.4. The first part follows.

Then we can apply \(T^{-1}_{\mathcal{O}}\) to the latter indecomposables. We get that the indecomposables of charge \((1, 0)\) are \(\mathcal{O}(x - y)\).

7 Braid group relations

For matrices \(A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\) and \(B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\) we have the following relations

\[
ABA = BAB \\
(AB)^3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}
\]

We expect similar relations to hold for \(T_{\mathcal{O}}\) and \(T_{\mathcal{O}_x}\).

Theorem 7.1 ([2]).

\[
T_{\mathcal{O}}T_{\mathcal{O}_x}T_{\mathcal{O}} \simeq T_{\mathcal{O}_x}T_{\mathcal{O}}T_{\mathcal{O}_x} \\
(T_{\mathcal{O}}T_{\mathcal{O}_x})^3 \simeq i^*[1],
\]

where \(i: X \to X\) is the inverse map of \(X\).

We can prove the braid relation using the following

Proposition 7.2 ([2]). Given two spherical objects \(E_1\) and \(E_2\), we have

\[
T_{E_1}T_{E_2} = T_{E_2(E_1)}T_{E_1}
\]

Proof. Using the computations in Proposition 6.4, we can write

\[
T_{\mathcal{O}}T_{\mathcal{O}_x}T_{\mathcal{O}} = T_{\mathcal{O}}T_{\mathcal{O}_x}T_{\mathcal{O}_x} = T_{\mathcal{O}_xT_{\mathcal{O}(x)}}T_{\mathcal{O}_x} = T_{\mathcal{O}_xT_{\mathcal{O}(x)}}T_{\mathcal{O}_xT_{\mathcal{O}_x}} = T_{\mathcal{O}_xT_{\mathcal{O}_xT_{\mathcal{O}_x}}}.
\]

This shows that \(T_{\mathcal{O}}\) and \(T_{\mathcal{O}_x}\) generate the group \(\widetilde{\text{SL}}_2(\mathbb{Z})\) in \(Aut(D^b(Coh(X)))\), the central extension of \(\text{SL}_2(\mathbb{Z})\) by \(\mathbb{Z}\).

References
