Jon Bundon's lectures

Today: Baby example: categorification of the \(\mathbb{Q}_N \)-module \(\Lambda^m \mathbb{C}^N \otimes \Lambda^m \mathbb{C}^N \)

Notation \(t = \text{diagonal matrix in } \mathbb{Q}_N \)

\[E_i \in t^*, \quad \alpha_i = E_i - E_{i+1} \quad \mathcal{P} = \bigoplus_{i=1}^N \mathbb{Z}E_i \text{ weight lattice} \]

\(\mathbb{C}^N \)-basis \(v_1, \ldots, v_N \)

\[v_i \xrightarrow{f_i} v_{i+1} \quad \text{wt}(v_i) = E_i \]

\(\Lambda^m = \Lambda^m \mathbb{C}^N \otimes \Lambda^m \mathbb{C}^N \) has the *monomial basis*

\[(v_{i_1} \wedge \ldots \wedge v_{i_m}) \otimes (v_{j_1} \wedge \ldots \wedge v_{j_n}) \]

\[i_1 \geq \ldots \geq i_m \quad j_1 \geq \ldots \geq j_n \]

Notational gimmick Index the monomial basis by \(\beta = \text{markers} \)

\[\alpha, \beta, \ldots \]

e.g. \(\psi_a = (v_2 \wedge v_7 \wedge v_8) \otimes (v_4 \wedge v_2 \wedge v_3) \)

So we get a line decorated with \(X, 0, >, < \)

\(\text{wt}(\psi_a) = E_4 + 2E_2 + E_7 + E_5 + E_6 \)

coef 1 \(> \) or \(< \) coef 2 \(\leftrightarrow X \) coef 0 \(\longleftrightarrow 0 \)

So \(\text{wt}(\psi_a) = \text{wt}(\psi_b) \iff 0, X \) are in the same positions (the "core" of the marker) \(\alpha \sim \beta \) (lineage relation)
2.

- What order on markers

\[a \leq b \] is generated by \[\mathbf{1} \leq \mathbf{1} \]

- Given: Define or de cat-

\[E_{i, F_u} : G^0 \]

\[\text{biadjoint} \quad i = 1, \ldots, N - 1 \]

So that

\[\xi (G) \otimes G \equiv \Lambda^{m,n} \]

\[\langle E_{i, j}, [F_u] \rangle \rightarrow e_{i,j} \]

(this is essentially due to Khovanov)

- For this, we'll define a f.d. algebra \(K \)

\[\mathcal{E} = K - \text{mod f.d.} \]

- Actually, \(\mathcal{E} = \bigoplus_{\mathbf{rep}} \mathcal{E}_\alpha \)

\[\xi \alpha \xrightarrow{[E_{i, j}]} \mathcal{E}_{\alpha + \alpha_{i, j}} \]

\[K = \bigoplus_{\mathbf{rep}} K_\alpha \]
Khorosov algebra K

Take $a \in \mathcal{B}$

Ca left arc diagram

- right arc diagram

"clue with counterclockwise arcs"

NO CROSSINGS!

right arc diagram is constructed similarly and it is the mirror image of the left arc diagram.

Given $a \sim b \sim c$, consider α_b (the vertex arc marked with C)

We say this is consistently oriented if every arc is C or $\sim C$ and all the "left" rays are below the "right" rays.

Similarly we have β_c

And we can give $\alpha_b \beta_c$ (so b gives orientation of circle)

\[\alpha_b \beta_c \]
Def K has basis abc \nRightarrow $a \sim b \sim c$ in β consistently oriented.

Multiplication

$$abc \times def = \begin{cases}
0, & \text{if } c \neq d \\
abc \cdot cef, & \text{if } c = d
\end{cases}$$

(See the claim is that after "surgery" this is a sum of basic diagrams.)

Surgery rules:

- $\bigcirc \rightarrow \bigcirc$
- $\bigcirc \rightarrow \bigcirc$
- $\bigcirc \rightarrow 0$ (zero)

Think of $\mathbb{C}[x]/(x^2), \ x = \bigcirc$ (motivation comes from TOFT)
For splitting circle \((\text{comultiplication } 1 \mapsto 1 \otimes x + x \otimes 1, \ x \mapsto x \otimes x) \)

\[
\begin{align*}
\circ & \rightarrow \circ \otimes \circ + \circ \otimes \circ \\
\circ & \rightarrow \circ \otimes \circ \\
\circ & \rightarrow \circ \otimes \circ
\end{align*}
\]

Surgeries involving rays

\[
\begin{align*}
\circ & \rightarrow \circ \\
\circ & \rightarrow \circ
\end{align*}
\]

\[
\begin{align*}
\circ & \rightarrow \circ \otimes \circ
\end{align*}
\]

\[
\begin{align*}
\circ & \rightarrow \circ
\end{align*}
\]

Let's go back to the example
As opposed to other diagrammatic algebras, multiplication here is not local.
It's not obvious that this is well-defined and associative.

Remarks about K:

1. K is positively graded, $\deg(abc) = \# f$ clockwise over $\deg(C) = 0$, $\deg(C) = 2$
 (this is actually a Koszul grading)

2. $K_0 = \langle \overline{bb} \mid b \in \Sigma \rangle$

 $\overline{bb} = \overline{b} \overline{b}$ - mutually orthogonal idempotents.
 These are the primitive idempotents in K.

 So $P(b) = Kbb \rightarrow L(b)$
 (projective module)
 (irreducible)

3. $K = \bigoplus V(\lambda)$ where
 $V(\lambda)$ has basis $\{abc, a\overline{b} \overline{c}, a, b, c \text{ of weight } \lambda\}$

4. $\overline{abc} \overline{def} = \sum_{b \leq g \leq f} \sigma_1 \overline{agf}$
 $K_2 \neq 0$ iff λ in a weight of $\Lambda^{m,n}$

 Cellular basis \Rightarrow Quasi-hereditary algebra
 Standard module $\overline{V}(b), b \in \Sigma$
\[\mathcal{K}_0(\mathfrak{g}) \otimes_{\mathbb{C}} \mathbb{C} \cong \Lambda^{\mathfrak{m}} \]

\[\mathcal{V}(b) \mapsto v_b \]

Explicitly, one can compute that

\[\mathcal{L}(b) \mapsto \text{Lusztig canonical basis} \]

5. If \(\mathfrak{g} \) is regular, \(\mathfrak{g} = E_1 + \cdots + E_{m+1} \) (empty case) then

\[\mathfrak{g}_\mathfrak{a} = \mathfrak{k}_\mathfrak{a} \cdot \text{mod}_{\mathfrak{a}} \cong \text{Perv}(Gr_{m,m}) \text{ (with Schubert struc)} \]

Still need to get \(E_1 F_1 \)

Geometric bimodules

\[k_t \text{ is a } (k,k)-\text{bimodule} \quad \mapsto \quad k_t \otimes_k k \]

\(t \) here is a crossing in a matching

Fix \(\rho \), weights of \(\Lambda^\mathfrak{m} \)

\(k_t \) has basis

\[\begin{array}{cccc}
\mu & a & b & t \\
\nu & c & d & e \\
\end{array} \]

\(a \sim b \) of weight \(\mu \)

\(c \sim d \) of weight \(\nu \)

\[\text{st this is consistently oriented. The multiplication on the left/right is again by surgery. So } k_t \text{ is a bimodule.} \]
Thm \quad K_s \otimes K_t \cong K_{st}^{\oplus (2^\# \text{ of circles removed})}

What \textit{happens with}\, K_{st}^{\oplus (2^\# \text{ of circles removed})}\?

"Circle removed" means that concatenating it we may get floating circles that we need to remove.

So, in particular, the K_t category the Temperley-Lieb algebra for the principal where λ empty can.

\textbf{Note} \#1 K_t is projective both as left & right module.
\textbf{Note} \#2 $K_t \otimes K^\ast, K_t^+ \otimes K$ are biadjoint.

So we can now define E_i, F_i.

$$E_i := \bigoplus_{\gamma \in P} K_t(\gamma \otimes K)$$

s.t. both $\gamma, \gamma + \Delta$ are with of Δ_{mn}.

Where $t_\alpha(\lambda)$ is:
An explicit computation shows that E_i, E_j do categorify e_i, e_j.

So we have a "weak" categorification. To have an honest categorification, we need natural transformations

$$E_i \Rightarrow E_i \quad E_i E_j \Rightarrow E_j E_i$$

* The quiver Hecke category

\mathcal{H}_A — strict monoidal cat-y (so we write \otimes for vertical composition and \circ for horizontal comp)

Object

Generator $I = 2, \ldots, N - 1$ — simple roots

Morphism

$$\begin{array}{c}
\mathcal{H} - \mathcal{H} = \\
\text{Relation}
\end{array}$$

\[x_{ij} = \begin{cases}
0 & \text{if } i = j \\
1 & \text{if } |i - j| > 1 \\
1 + 1 & \text{if } |i - j| = 1
\end{cases} \]

\[X - X = X - X = \sum_{i,j} d_{ij} \]
\[
X - X = \begin{cases}
1 & \text{if } i = k = j + 1 \\
0 & \text{else}
\end{cases}
\]

Claim: We have a morphism (= strict monoidal maps)

\[
Q^H \xrightarrow{\Phi} \text{End}(G)
\]

Where \(x, I\) are defined as follows:

\(x\): defined by surgery: change clockwise circle to counterclockwise odd 2 str.