EOMM: An Engagement Optimized Matchmaking Framework

Posted Leave a comment

Matchmaking connects multiple players to participate in online player-versus-player games. Current matchmaking systems depend on a single core strategy: create fair games at all times. These systems pair similarly skilled players on the assumption that a fair game is best player experience. We demonstrate, however, that this intuitive assumption sometimes fails and that matchmaking based on fairness is not optimal for engagement. Therefore, we propose an Engagement Optimized Matchmaking (EOMM) framework that maximizes overall player engagement. We prove that equal-skill based matchmaking is a special case of EOMM on a highly simplified assumption that rarely holds in reality. Our simulation on real data from a popular game made by Electronic Arts,Inc. (EA) supports our theoretical results, showing significant improvement in enhancing player engagement compared to existing matchmaking methods.

The Art of Drafting: A Team-Oriented Hero Recommendation System for Multiplayer Online Battle Arena Games

Posted Leave a comment

Hero drafting is a challenging problem in MOBA (MultiPlayer Online Battle Arena) games due to the complex hero-to-hero relationships to consider. We propose a novel hero recommendation system that suggests heroes to add to an existing team while maximizing the team’s prospect for victory. To that end, we model the drafting between two teams as a combinatorial game and use Monte Carlo Tree Search (MCTS) for estimating the values of hero combinations. Our empirical evaluation shows that hero teams drafted by our recommendation algorithm have significantly a higher win rate against teams constructed by other baseline and state-of-the-art strategies.