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* Deep reinforcement learning (DRL) background

Cloud computing resource allocation application

Hybrid electric vehicle powertrain control application

* Deep learning acceleration with structured matrices
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Deep Reinforcement Learning

Q DeepMind

Deep Reinforcement Learning
From Google DeepMind
Control of complicated systems with

Autonomous Driving




Reinforcement Learning Basics

* Agent-Environment Interaction System
- Agent: decision-maker - take actions to maximize a discounted
accumulative reward
- Environment: everything outside the agent - present its state and award
to the agent

> A sequence of interactions at discrete time steps

Agent

Action
d¢

Environment




Reinforcement Learning Algorithm and Limitation

* Algorithm

- Exploration-exploitation when choosing the action

Algorithm 1 TD(A)-Learning Algorithm

1: Initialize Q(s,a) arbitrarily for all the state-action pairs.

2: for each time step ¢ do

3:  Choose action a; for state s; using the exploration-
exploitation policy.

4:  Take action a;, observe reward ry; 1 and next state sy 1.
5: 8¢ +y-maxy Q(siy1,d') — O(st,ar).

6:  e(st,ar) < e(ss,ar)+ 1.

7:  for all state-action pair (s,a) do

8: Q(s,a) < Q(s,a)+o-e(s,a)-d.

9: e(s,a) < v-A-e(s,a).

10:  end for

11: end for

* Limitation
- Convergence rate is proportional to the number of state-action pairs
- Difficult to solve problems with high dimensional state and action spaces,

such as AlphaGO and autonomous driving. 5
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Deep Reinforcement Learning Overview

* Agent-Environment Interaction System

e Offline DNN construction phase
- Train a DNN that computes Q(s,a) value for a given state-action pair
- Training data (Q(s,a) samples) can be accumulated from model-based
procedure or actual measurement data
® Online deep Q-learning phase
> At a decision epoch, the agent performs inference using the DNN to
obtain the Q(s;,a) value estimate for each action a
> Action with the maximum Q(s,,a) value is selected with probability 1-€

o Q values are updated with the observed new state and received reward

* DNNis updated by new Q values at the end of execution sequence



Deep Reinforcement Learning Algorithm

Algorithm 1 The General DRL Framework

Offline:

I: Extract real data profiles using certain control policies and
obtain the corresponding state transition profiles and Q(s, a)
value estimates;

2: Store the state transition profiles and (s, a) value estimates
in experience memory D with capacity Np;

3: Iterations may be needed in the above procedure;

4: Pre-train a DNN with features (s, a) and outcome Q(s, a);

Online: Online computational
5: for each execution sequence do Complexity is low
6:  for at each decision epoch £;. do
7: With probability € select a random action, otherwise
ap = argmax, Q(Sk,a), in which Q(sg, a) is derived
(estimated) from DNN;
8: Perform system control using the chosen action;
0: Observe state transition at next decision epoch £+ with

new state sp;1, receive reward 7 (S, ax) during time
period [ty tk+1);

10: Store transition (Sk, Gk, Tk, Sk4+1) In D;

11: Updating Q(Sk,ar) based on 7i(8k,ar) and
max,s Q(sk+1,a’) based on Q-learning updating
rule;

12:  end for

13:  Update DNN parameters € using new Q-value estimates;
14: end for 7
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Cloud Computing System Modeling (Global)

* A server cluster with M physical

Server

servers that offer D types of resources —incoming Jobs

°* When a job comes, the (global) job »

J FbH Broker |
/

\

broker dispatches it to one of the

v/

servers for processing ‘

E

* Each server queues all assigned jobs
and allocates resources for them in a

first-come-first-serve manner

E E

Management
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Cloud Computing System Modeling (Local)
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DRL-Based Global Control

* Event-driven continuous-time decision-making model to ensure

enumerable action space
> Decision epoch coincides with arrival time of a new job

o Action is then the target server for processing the new job

* State representation: server cluster state + job state

ti t; | Lt tj
§7 = [SCJ,Sj]—[gl,"',gK,Sj

_ tj tj tj , ,
ey [ull,--o ,ullDl,.-- 7u|M||D|7u31,... 7uj|D|7d]]
* Reward:

- Hot spot avoidance

- Power consumption

- Job latency 10
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Global Control - Offline DNN Construction Phase

* To reduce training time for this high dimensional state space, use

representation learning and weight sharing

> Autoencoder to extract low-dimensional high-level representation of the

state of server group k, denoted by g,

o Train sub-network Sub-Q, with

81 S; and all other g as input
features

> Introduce weight sharing for
all K autoencoders and sub-
networks for reduced training

time and shared samples

Q value estimates for all actions

T—V

Share
Sub-Q, " Weight T > Sub-Q,
T T ? A A i
| |
Auto- ___ Share N Auto-
encoder; Weight encoder,




Local Server Power Management

* For controlling the turning on/off of each local server

Consist of LSTM-based workload predictor and model-free,

continuous-time Q-learning-based adaptive power management

- Workload predictor provides partial observation of the actual future

workload characteristics i.e., inter-arrival times of jobs

Output Output

Output { Output

Hidden Hidden Hidden
Layer Layer Layer
@» LSTM (== |STM |==2> ... == |STM Q
Input Input Input
Hidden Hidden Hidden

Layer Layer Layer

12
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Local Server Power Management

* For controlling the turning on/off of each local server
* Consist of LSTM-based workload predictor and model-free,

continuous-time Q-learning-based adaptive power management

- Workload predictor provides partial observation of the actual future
workload characteristics i.e., inter-arrival times of jobs

o Q-learning determines whether to turn on/off the server [action] based on
the server mode (active, idle, or sleep) and the predicted job inter-arrival

time [state]

13
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Simulation Setup

* Compare among
> The proposed DRL method including both the global control and the local
server power management
- DRL for the global control WITHOUT local server power management
- Baseline round-robin virtual machine allocation method
* Google cluster data trace
- One-month job trace of the Google server cluster

- Include job arrival times, durations, and resource requirements

14
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Hybrid Electric Vehicle - Introduction

* Hybrid electric vehicle (HEV) Propulsion
- Internal combustion engine (ICE)
o Electric motor (EM)
* Compared to ICE vehicles, HEVs can achieve
- Higher fuel economy
- Lower pollutant emission
* HEVs on the market

- Toyota Prius, Honda Insight, Ford Fusion Hybrid
> Plug-in HEV: Chevrolet Volt, BYD F3DM

16
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DRL-Based HEV Power Management

* Model-free, Discrete-time system

* State Representation
- Power demand
- Vehicle speed
- Battery pack charge level
* Action
- Battery discharging current
- Gear ratio
* Reward

> Fuel consumption in each time step

17
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Simulation Setup

* HEV parameters

Vehicle Transmission ICE
m = 1254kg Preg = 1.75 Peak power 41kW
Cr = 0.009 Nreg = 0.98 Peak eff. 34%
Cp = 0.335 Ngp = 0.98 EM
Ap = 2m? R(k) = [13.5;7.6; | Peak power 56kW
rwh = 0.282m 5.0;3.8;2,8] Peak eff. 92%
Battery
Capacity 25 A.h  Voltage 240V

* Real-world and synthetic driving profiles (vehicle speed and

acceleration traces)

18
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Simulation Result
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Deep Learning Acceleration with Structured Matrices

* Deep neural networks (DNNs) consist of multiple cascaded layers
with millions to hundreds of millions of parameters (weights)

* By using structured weight matrices and the corresponding FFT-
based matrix-vector multiplication algorithms, the storage and
computation complexities of each layer can be reduced from O(n2?) to

O(n), and from O(n?) to O(nlogn).
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Compression Ratio and Test Accuracy

* We can achieve significant model compression ratios for different

applications and network structures with only 1~2% accuracy loss

DataSet: MNIST SVHN CIFAR CIFARImageNet MNIST TIMIT DRL
Network: CNN CNN Narrow Wide AlexNet MLP RNN Medical
ResNet ResNet
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Model Size Reduction
for Whole Network
o

-
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* Thank you!



