#### Deep Learning for Energy Efficient Cloud Computing

Dr. Xue Lin Northeastern University Nov 30, 2017 ES2



#### Outline

- Deep reinforcement learning (DRL) background
- Cloud computing resource allocation application
- Hybrid electric vehicle powertrain control application
- Deep learning acceleration with structured matrices



#### **Deep Reinforcement Learning**





# DeepMind

#### **Deep Reinforcement Learning**

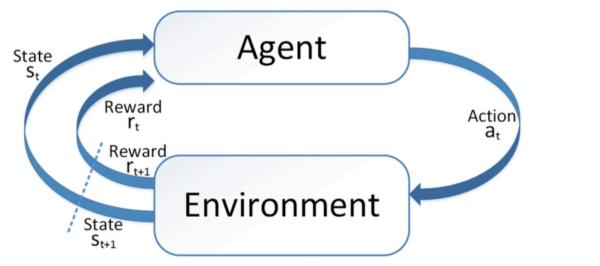
From Google DeepMind Control of complicated systems with large state space



Autonomous Driving

### **Reinforcement Learning Basics**

- Agent-Environment Interaction System
  - Agent: decision-maker take actions to maximize a discounted accumulative reward
  - Environment: everything outside the agent present its state and award to the agent
  - A sequence of interactions at discrete time steps



# Reinforcement Learning Algorithm and Limitation

#### • Algorithm

• Exploration-exploitation when choosing the action

Algorithm 1 TD( $\lambda$ )-Learning Algorithm

- 1: Initialize Q(s,a) arbitrarily for all the state-action pairs.
- 2: for each time step t do
- 3: Choose action  $a_t$  for state  $s_t$  using the explorationexploitation policy.
- 4: Take action  $a_t$ , observe reward  $r_{t+1}$  and next state  $s_{t+1}$ .

5: 
$$\delta \leftarrow r_{t+1} + \gamma \cdot \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t).$$

6: 
$$e(s_t, a_t) \leftarrow e(s_t, a_t) + 1.$$

7: for all state-action pair (s, a) do

8: 
$$Q(s,a) \leftarrow Q(s,a) + \alpha \cdot e(s,a) \cdot \delta$$
.

- 9:  $e(s,a) \leftarrow \gamma \cdot \lambda \cdot e(s,a).$
- 10: **end for**
- 11: end for
- Limitation
  - Convergence rate is proportional to the number of state-action pairs
  - Difficult to solve problems with high dimensional state and action spaces, such as AlphaGO and autonomous driving.

### Deep Reinforcement Learning Overview

- Agent-Environment Interaction System
- Offline DNN construction phase
  - Train a DNN that computes Q(s,a) value for a given state-action pair
  - Training data (Q(s,a) samples) can be accumulated from model-based procedure or actual measurement data
- Online deep Q-learning phase
  - At a decision epoch, the agent performs inference using the DNN to obtain the  $Q(s_k,a)$  value estimate for each action a
  - $_{\circ}~$  Action with the maximum Q(s\_k,a) value is selected with probability 1- $\varepsilon$
  - $_{\circ}~$  Q values are updated with the observed new state and received reward
- DNN is updated by new Q values at the end of execution sequence

#### Deep Reinforcement Learning Algorithm

#### Algorithm 1 The General DRL Framework

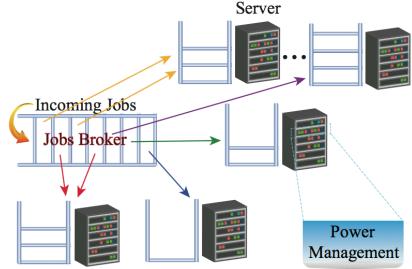
#### Offline:

- 1: Extract real data profiles using certain control policies and obtain the corresponding state transition profiles and Q(s, a) value estimates;
- Store the state transition profiles and Q(s, a) value estimates in experience memory D with capacity N<sub>D</sub>;
- 3: Iterations may be needed in the above procedure;
- 4: Pre-train a DNN with features (s, a) and outcome Q(s, a); Online:
- 5: for each execution sequence do
- 6: for at each decision epoch  $t_k$  do
- 7: With probability  $\epsilon$  select a random action, otherwise  $a_k = \operatorname{argmax}_a Q(s_k, a)$ , in which  $Q(s_k, a)$  is derived (estimated) from DNN;
- 8: Perform system control using the chosen action;
- 9: Observe state transition at next decision epoch  $t_{k+1}$  with new state  $s_{k+1}$ , receive reward  $r_k(s_k, a_k)$  during time period  $[t_k, t_{k+1})$ ;
- 10: Store transition  $(s_k, a_k, r_k, s_{k+1})$  in  $\mathcal{D}$ ;
- 11: Updating  $Q(s_k, a_k)$  based on  $r_k(s_k, a_k)$  and  $\max_{a'} Q(s_{k+1}, a')$  based on Q-learning updating rule;
- 12: end for
- 13: Update DNN parameters  $\theta$  using new Q-value estimates;
- 14: end for

Online computational complexity is low

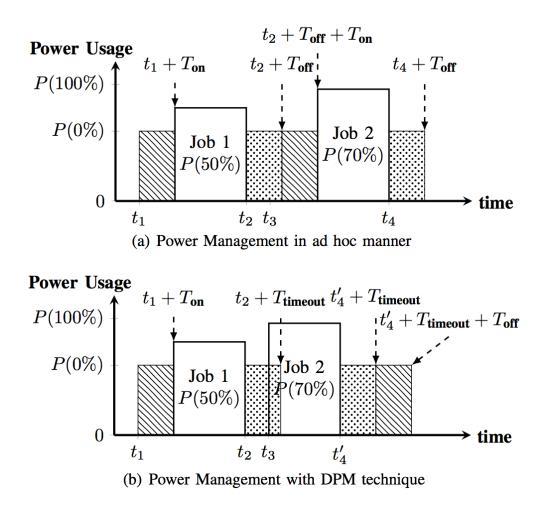
#### Cloud Computing System Modeling (Global)

- A server cluster with M physical servers that offer D types of resources
- When a job comes, the (global) job broker dispatches it to one of the servers for processing
- Each server queues all assigned jobs and allocates resources for them in a first-come-first-serve manner



#### Cloud Computing System Modeling (Local)

- Each server performs power management by turning on/off
- The global job assignment and local server power management effect the overall power
   consumption and system
   performance



## DRL-Based Global Control

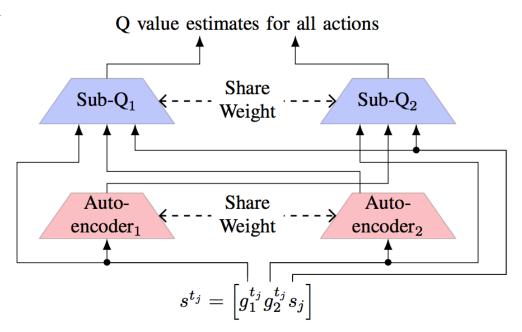
- Event-driven continuous-time decision-making model to ensure enumerable action space
  - Decision epoch coincides with arrival time of a new job
  - Action is then the target server for processing the new job
- State representation: server cluster state + job state

$$egin{array}{rcl} s^{t_j} &=& ig[s^{t_j}_c, s_jig] = igg[g^{t_j}_1, \cdots, g^{t_j}_K, s_jigg] \ &=& ig[u^{t_j}_{11}, \cdots, u^{t_j}_{1|D|}, \cdots, u^{t_j}_{|M||D|}, u_{j1}, \cdots, u_{j|D|}, d_jig] \end{array}$$

- Reward:
  - Hot spot avoidance
  - Power consumption
  - $_{\circ}$  Job latency

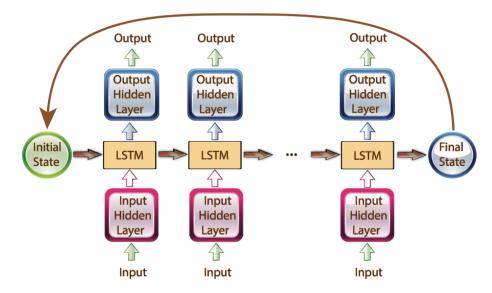
## **Global Control - Offline DNN Construction Phase**

- To reduce training time for this high dimensional state space, use representation learning and weight sharing
  - $_{\circ}~$  Autoencoder to extract low-dimensional high-level representation of the state of server group k, denoted by  $g_k$
  - Train sub-network Sub-Q<sub>k</sub> with
     g<sub>k</sub>, s<sub>j</sub> and all other g<sub>k</sub>, as input
     features
  - Introduce weight sharing for
     all K autoencoders and sub networks for reduced training
     time and shared samples



#### Local Server Power Management

- For controlling the turning on/off of each local server
- Consist of LSTM-based workload predictor and model-free, continuous-time Q-learning-based adaptive power management
  - Workload predictor provides partial observation of the actual future workload characteristics i.e., inter-arrival times of jobs



#### Local Server Power Management

- For controlling the turning on/off of each local server
- Consist of LSTM-based workload predictor and model-free, continuous-time Q-learning-based adaptive power management
  - Workload predictor provides partial observation of the actual future workload characteristics i.e., inter-arrival times of jobs
  - Q-learning determines whether to turn on/off the server [action] based on the server mode (active, idle, or sleep) and the predicted job inter-arrival time [state]

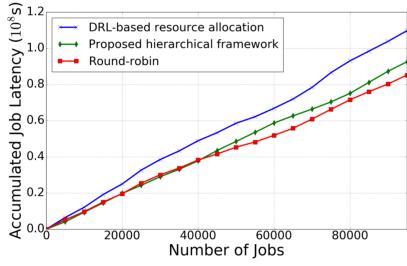


### Simulation Setup

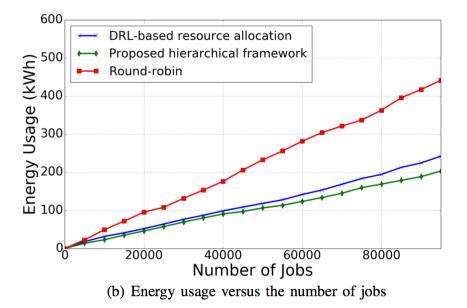
- Compare among
  - The proposed DRL method including both the global control and the local server power management
  - DRL for the global control WITHOUT local server power management
  - Baseline round-robin virtual machine allocation method
- Google cluster data trace
  - $_{\circ}~$  One-month job trace of the Google server cluster
  - <sup>o</sup> Include job arrival times, durations, and resource requirements



#### Simulation Results



(a) Accumulated job latency versus the number of jobs



## Hybrid Electric Vehicle - Introduction

- Hybrid electric vehicle (HEV) Propulsion
  - Internal combustion engine (ICE)
  - Electric motor (EM)
- Compared to ICE vehicles, HEVs can achieve
  - Higher fuel economy
  - Lower pollutant emission
- HEVs on the market
  - Toyota Prius, Honda Insight, Ford Fusion Hybrid
  - Plug-in HEV: Chevrolet Volt, BYD F3DM

# **DRL-Based HEV Power Management**

- Model-free, Discrete-time system
- State Representation
  - Power demand
  - Vehicle speed
  - Battery pack charge level
- Action
  - Battery discharging current
  - Gear ratio
- Reward
  - Fuel consumption in each time step



#### Simulation Setup

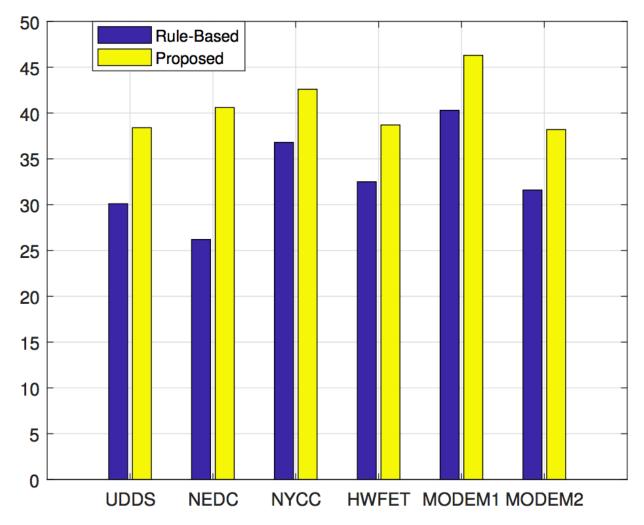
#### • HEV parameters

| Vehicle                      | Transmission       | ICE             |
|------------------------------|--------------------|-----------------|
| m = 1254kg                   | $ ho_{reg} = 1.75$ | Peak power 41kW |
| $C_{R} = 0.009$              | $\eta_{reg}=0.98$  | Peak eff. 34%   |
| $C_{D} = 0.335$              | $\eta_{gb} = 0.98$ | EM              |
| $A_F = 2m^2$                 | R(k) = [13.5;7.6;  | Peak power 56kW |
| $r_{wh} = 0.282m$            | 5.0;3.8;2,8]       | Peak eff. 92%   |
| Battery                      |                    |                 |
| Capacity 25 A.h Voltage 240V |                    |                 |

• Real-world and synthetic driving profiles (vehicle speed and acceleration traces)

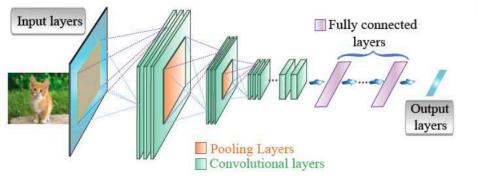


#### Simulation Result



#### Deep Learning Acceleration with Structured Matrices

- Deep neural networks (DNNs) consist of multiple cascaded layers with millions to hundreds of millions of parameters (weights)
- By using structured weight matrices and the corresponding FFTbased matrix-vector multiplication algorithms, the storage and computation complexities of each layer can be reduced from O(n<sup>2</sup>) to O(n), and from O(n<sup>2</sup>) to O(nlogn).

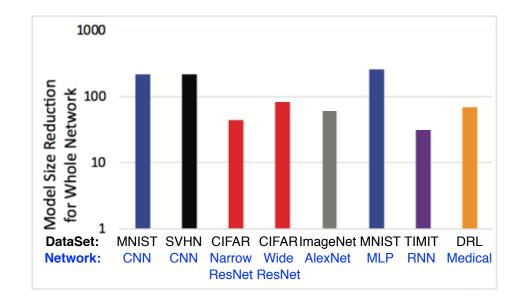


$$\begin{array}{cccc} \mathbf{Circulant} & \left(c_{n-j+i \mod n}\right)_{i,j=0}^{n-1} & \mathbf{Cauchy} & \left(1/(u_i - y_j)\right)_{i,j=0}^{n-1} \\ & \left(\begin{array}{cccc} c_0 & c_{n-1} & \cdots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & \cdots & c_2 \\ \vdots & c_1 & c_0 & \cdots & \vdots \\ c_{n-2} & \vdots & \vdots & \vdots & c_{n-1} \\ c_{n-1} & c_{n-2} & \cdots & c_1 & c_0 \end{array}\right) & \begin{pmatrix} 1/(u_0 - y_0) & \cdots & 1/(u_0 - y_{n-1}) \\ 1/(u_1 - y_0) & \cdots & 1/(u_1 - y_{n-1}) \\ \vdots & \vdots & \vdots & \vdots \\ 1/(u_{n-1} - y_0) & \cdots & 1/(u_{n-1} - y_{n-1}) \end{array}\right) \\ \\ \mathbf{Toeplitz} & \left(t_{i-j}\right)_{i,j=0}^{n-1} & \mathbf{Hankel} & \left(h_{i+j}\right)_{i,j=0}^{n-1} & \mathbf{Vandermonde} & \left(v_i^j\right)_{i,j=0}^{n-1} \\ & \left(\begin{array}{cccc} t_0 & t_{-1} & \cdots & t_{1-n} \\ t_1 & t_0 & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ t_{n-1} & \cdots & t_1 & t_0 \end{array}\right) & \begin{pmatrix} h_0 & h_1 & \cdots & h_{n-1} \\ h_1 & h_2 & \cdots & h_n \\ \vdots & \vdots & \cdots & \vdots \\ h_{n-1} & h_n & \cdots & h_{2n-2} \end{array}\right) & \begin{pmatrix} 1 & v_0 & \cdots & v_0^{n-1} \\ 1 & v_1 & \cdots & v_{n-1}^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & v_{n-1} & \cdots & v_{n-1}^{n-1} \end{array}\right) \\ \end{array}$$



#### Compression Ratio and Test Accuracy

• We can achieve significant model compression ratios for different applications and network structures with only 1~2% accuracy loss





• Thank you!