
Deep Learning for Energy Efficient Cloud
Computing

Dr. Xue Lin
Northeastern University
Nov 30, 2017 ES2

1

Outline

•  Deep reinforcement learning (DRL) background

•  Cloud computing resource allocation application

•  Hybrid electric vehicle powertrain control application

•  Deep learning acceleration with structured matrices

2

Deep Reinforcement Learning

3

Deep Reinforcement Learning
From Google DeepMind
Control of complicated systems with
large state space

Autonomous Driving

Reinforcement Learning Basics

•  Agent-Environment Interaction System
o  Agent: decision-maker – take actions to maximize a discounted

accumulative reward

o  Environment: everything outside the agent – present its state and award

to the agent

o  A sequence of interactions at discrete time steps

4

Reinforcement Learning Algorithm and Limitation

•  Algorithm
o  Exploration-exploitation when choosing the action

•  Limitation
o  Convergence rate is proportional to the number of state-action pairs
o  Difficult to solve problems with high dimensional state and action spaces,

such as AlphaGO and autonomous driving. 5

Deep Reinforcement Learning Overview

•  Agent-Environment Interaction System

•  Offline DNN construction phase
o  Train a DNN that computes Q(s,a) value for a given state-action pair

o  Training data (Q(s,a) samples) can be accumulated from model-based

procedure or actual measurement data

•  Online deep Q-learning phase
o  At a decision epoch, the agent performs inference using the DNN to

obtain the Q(sk,a) value estimate for each action a

o  Action with the maximum Q(sk,a) value is selected with probability 1-ϵ

o  Q values are updated with the observed new state and received reward

•  DNN is updated by new Q values at the end of execution sequence 6

Deep Reinforcement Learning Algorithm

7

Online computational
complexity is low

Cloud Computing System Modeling (Global)

•  A server cluster with M physical

servers that offer D types of resources

•  When a job comes, the (global) job

broker dispatches it to one of the

servers for processing

•  Each server queues all assigned jobs

and allocates resources for them in a

first-come-first-serve manner

8

Cloud Computing System Modeling (Local)

•  Each server performs

power management by

turning on/off

•  The global job assignment

and local server power

management effect the

overall power

consumption and system

performance

9

DRL-Based Global Control

•  Event-driven continuous-time decision-making model to ensure

enumerable action space
o  Decision epoch coincides with arrival time of a new job

o  Action is then the target server for processing the new job

•  State representation: server cluster state + job state

•  Reward:
o  Hot spot avoidance

o  Power consumption

o  Job latency 10

Global Control - Offline DNN Construction Phase

•  To reduce training time for this high dimensional state space, use

representation learning and weight sharing
o  Autoencoder to extract low-dimensional high-level representation of the

state of server group k, denoted by gk

o  Train sub-network Sub-Qk with

gk, sj and all other gk’ as input

features

o  Introduce weight sharing for

all K autoencoders and sub-

networks for reduced training

time and shared samples
11

Local Server Power Management

•  For controlling the turning on/off of each local server

•  Consist of LSTM-based workload predictor and model-free,

continuous-time Q-learning-based adaptive power management
o  Workload predictor provides partial observation of the actual future

workload characteristics i.e., inter-arrival times of jobs

12

Local Server Power Management

•  For controlling the turning on/off of each local server

•  Consist of LSTM-based workload predictor and model-free,

continuous-time Q-learning-based adaptive power management
o  Workload predictor provides partial observation of the actual future

workload characteristics i.e., inter-arrival times of jobs

o  Q-learning determines whether to turn on/off the server [action] based on

the server mode (active, idle, or sleep) and the predicted job inter-arrival

time [state]

13

Simulation Setup

•  Compare among
o  The proposed DRL method including both the global control and the local

server power management

o  DRL for the global control WITHOUT local server power management

o  Baseline round-robin virtual machine allocation method

•  Google cluster data trace
o  One-month job trace of the Google server cluster

o  Include job arrival times, durations, and resource requirements

14

Simulation Results

15

Hybrid Electric Vehicle - Introduction

•  Hybrid electric vehicle (HEV) Propulsion
o  Internal combustion engine (ICE)

o  Electric motor (EM)

•  Compared to ICE vehicles, HEVs can achieve
o  Higher fuel economy

o  Lower pollutant emission

•  HEVs on the market
o  Toyota Prius, Honda Insight, Ford Fusion Hybrid

o  Plug-in HEV: Chevrolet Volt, BYD F3DM

16

DRL-Based HEV Power Management

17

•  Model-free, Discrete-time system

•  State Representation
o  Power demand

o  Vehicle speed

o  Battery pack charge level

•  Action
o  Battery discharging current

o  Gear ratio

•  Reward
o  Fuel consumption in each time step

Simulation Setup

•  HEV parameters

•  Real-world and synthetic driving profiles (vehicle speed and

acceleration traces)

18

Simulation Result

19

Deep Learning Acceleration with Structured Matrices

•  Deep neural networks (DNNs) consist of multiple cascaded layers

with millions to hundreds of millions of parameters (weights)

•  By using structured weight matrices and the corresponding FFT-

based matrix-vector multiplication algorithms, the storage and

computation complexities of each layer can be reduced from O(n2) to

O(n), and from O(n2) to O(nlogn).

20

 5

3.2. Structured Matrices
An ݊-by-݊ matrix ۯ is called a

structured matrix when it has a low
displacement rank [45] ߛ. More pre-
cisely, with the proper choice of op-
erator matrices ۻ and ۼ, if the Syl-
vester displacement (ۯ)ۼ,ۻ׏
∶= ۯۻ and the Stein dis-
placement ∆(ۯ)ۼ,ۻ ∶= ۯ ۼۯۻ− of
matrix ۯ have a rank ߛ bounded by
a value that is independent of the size
of ۯ, then matrix ۯ is referred to as
a structured matrix with a low dis-
placement rank [45]. This statement is true even when matrix ۯ itself is a full-rank matrix. Fig. 5 illus-
trates a series of commonly used structured matrices, including a Circulant matrix, a Cauchy matrix, a
Toeplitz matrix, a Hankel matrix, and a Vandermonde matrix.

One of the most important characteristics of structured matrices is their low number of independent
variables. The number of independent parameters is O(݊) for an n-by-n structured matrix instead of
O(݊ଶ), which indicates that the storage complexity can be potentially reduced to O(݊). The definition
and analysis of structured matrices have been generalized to the case of m-by-n matrices where ݉ ≠ ݊,
e.g., the block-circulant matrices [47]. Besides, the computational complexity for many matrix operations,
such as matrix-vector multiplication, matrix inversion, etc., can be significantly reduced when operating
on the structured ones. These fast algorithms have been summarized, analyzed, and further improved in
Co-PI Pan’s published books and papers [45]-[65].
4. Proposed Framework of Simultaneous Reduction in Computational and Storage Complexities

In this section, we present the proposed framework that achieves a simultaneous reduction in computa-
tional complexity and weight storage for DNNs using structured matrices. The proposed framework is
mathematically sound in that we prove that it will converge to the same “effectiveness” (to be defined in
Section 4.1) as DNNs without weight compression, as shall be described in Task 1. This task will serve as
the theoretical foundation of the proposed work. The proposed framework is systematic, and effective
inference and training algorithms are developed, which can be utilized for different DNN types and appli-
cation domains. Tasks 2 and 3 present the proposed fast inference/training algorithms for the fully-
connected and convolutional layers, respectively. Finally, our framework is fundamental and general and
can be applied to different software/hardware platforms, as well as new computing paradigms. Task 4
describes high-performance and energy-efficient implementations of the proposed approach on high-
performance computing systems, low-power embedded systems, as well as emerging computing para-
digms and hardware devices.
4.1. Task 1: Theoretical Analysis of Structured Matrix-based Neural Networks (NNs)

With a substantial reduction of weight storage from O(n2) to O(n) in each layer, cautious DNN re-
searchers need to know whether the proposed structured matrix-based framework will consistently yield
the same, or at least similar, overall accuracy as compared with DNNs without compression. Testing on
existing benchmarks is insufficient given the rapid emergence of new application domains, new DNN
structures, and new data-sets. Instead, it is highly desirable to develop a theoretical framework to prove
that the “effectiveness” of the structured matrix-based DNNs will (asymptotically) approach that of DNNs
without compression (using unstructured weight matrices). The framework to be established in this task
will make the proposed project theoretically sound and distinct from the prior work [22][23][26][27], and
should result in wider adoption of the proposed work in a broad set of applications.

Considering that the DNN is actually a multi-layer, large-scale neural network, we tend to perform the
more general analysis by providing a theoretical framework on a more general class of neural networks,
thereby yielding a conclusion with a higher degree of generality. The proposed theoretical framework
comprises two sub-tasks: 1) To verify the universal approximation property of the structured matrix-

Fig. 5: Examples of commonly used structured matrices, i.e.,

Circulant, Cauchy, Toeplitz, Hankel, and Vandermonde matrices.

Compression Ratio and Test Accuracy

•  We can achieve significant model compression ratios for different

applications and network structures with only 1~2% accuracy loss

21

∂L
∂wi j

=
k

Â
l=1

∂L
∂ail

∂ail

∂wi j
=

∂L
∂ai

∂ai

∂wi j
,

∂L
∂x j

=
p

Â
i=1

k

Â
l=1

∂L
∂ail

∂ail

∂x j
=

p

Â
i=1

∂L
∂ai

∂ai

∂x j
. (4)

We have proved that ∂ai
∂wi j

and ∂ai
∂x j

are block-circulant matrices. Therefore, ∂L
∂wi j

and ∂L
∂ai

∂ai
∂x j

can be calculated
as “FFT!element-wise multiplication!IFFT” and is equivalent to O(n logn) computational complexity
per layer. In our solution, the inference and training constitute an integrated framework where the reduction
of computational complexity can be gained for both. We directly train the vectors wi j’s in each layer using
(4). Clearly, the network after such training procedure naturally follows the block-circulant matrix structure.
It is a key advantage of our solution compared with prior works which require additional steps on a trained
neural network.
CONV Layer Inference and Training

We generalize the concept of “block-circulant structure” to the rank-4 tensor (F in Eqn. (2)) in the
CONV layer, i.e., all the slices of the form F (·, ·,c, p) are circulant matrices. Next, we reformulate the
inference and training algorithms of the CONV layer to matrix operations. We use the inference process as
an example, and the training process can be formulated in a similar way.

Software tools such as Caffe and TensorFlow provide an efficient methodology of transforming tensor-
based operations in the CONV layer to matrix-based operations [55, 56], in order to enhance the implemen-
tation efficiency (GPUs are optimized for matrix operations.) Therefore, Eqn. (2) is reformulated to the
matrix multiplication Y = XF, where X 2 R(W�r+1)(H�r+1)⇥Cr2 , Y 2 R(W�r+1)(H�r+1)⇥P, and F 2 RCr2⇥P.

Recall that the slice of F (·, ·,c, p) is a circulant matrix. Then according to the reshaping principle
between F and F, we can prove that F is actually a block-circulant matrix [57]. Hence the fast multiplication
approach for block circulant matrix, as the “FFT!component-wise multiplication!IFFT” procedure, can
now be applied to accelerate Y = XF, thereby resulting in the acceleration of (2). The computational
complexity for (2) is reduced from O(WHr2CP) to O(WHQ logQ), where Q = max(r2C,P).
Sample Results on Compression Ratio and Test Accuracy

SVHN
CNN

CIFAR
Narrow
ResNet

CIFAR
Wide
ResNet

ImageNet
AlexNet

MNIST
MLP

TIMIT
RNN

DRL
Medical

MNIST
CNN

DataSet:
Network:

Figure 3: Weight storage reduction results.

Figure 3 illustrate the weight storage (model size) reduc-
tion results on various network models, data sets, and ap-
plications, when the accuracy degradation is constrained to
be less than 1% by optimizing the block size. 16-bit weight
quantization is adopted in the proposed framework, which is
widely accepted to result in negligible accuracy degradation
[6, 8, 9, 24]. The network models (and data sets) include
DCNNs (LeNet-5 [58] for MNIST data set [59], custom-
designed DCNNs for SVHN [60], narrow and wide ResNet
[49] for CIFAR-10 [61], AlexNet [62] for ImageNet data set
[63]), MLP (for MNIST only due to the limited capability
of MLP on colored images), LSTM-based RNN (for TIMIT data set [64]), and DRL for medical diagno-
sis and treatment (CIBMTR database [65]). The applications include image recognition (MNIST, SVHN,
CIFAR-10 and ImageNet), speech recognition (TIMIT data set), and medical applications.

The reasons for the significant model size reduction are (i) weight parameter reduction, and (ii) weight
quantization. The first contributes to 41.5⇥ – 128⇥ parameter reduction whereas the latter contributes to
2⇥ model size reduction compared with 32-bit floating point representation. These results clearly outper-
form the baseline methods [44, 45] that result in 12⇥ parameter reduction in LeNet-5 and 9⇥ for AlexNet.
Moreover, another crucial property of our method is that the parameter storage after compression is regu-
lar, whereas [44, 45] result in irregular weight storage patterns. The irregularity in reference work requires
additional index per weight and impacts the available parallelism degree [6, 47, 66].
B. Design Optimization of a Reconfigurable and Cross-Platform Inference Framework

We propose the design and optimization of a reconfigurable, cross-platform inference engine, for var-
ious DNN types, different models, and application platforms. We take the FC layer as an example of
illustration, and the CONV layer can be computed in a similar way because it is also formulated as the
“FFT!component-wise multiplication!IFFT” procedure. The other types of layers such as POOL have

4

•  Thank you!

22

