1. Part (a) was worth 6 points and part (b) was worth 4 points.

 (a) We just check the parts of the subspace criterion. Note that the vectors in \(S \) have the form \(\langle x_1, x_2, x_3, x_1 + x_2 \rangle \).

 - [S1]: The zero vector satisfies both conditions.
 - [S2]: If \(v = \langle x_1, x_2, x_3, x_1 + x_2 \rangle \) and \(w = \langle y_1, y_2, y_3, y_1 + y_2 \rangle \) then
 \[
 v + w = \langle x_1 + y_1, x_1 + y_1, x_3 + y_3, (x_1 + y_1) + (x_2 + y_2) \rangle
 \]
 which is of the desired form.
 - [S3]: If \(v = \langle x_1, x_2, x_3, x_1 + x_2 \rangle \) then \(cv = \langle cx_1, cx_2, cx_3, cx_1 + cx_2 \rangle \) which is of the desired form.

 (b) As noted above, the vectors in \(S \) are those of the form \(\langle x_1, x_2, x_3, x_1 + x_2 \rangle \). Since \(\langle x_1, x_2, x_3, x_1 + x_2 \rangle = x_1 \langle 1, 0, 0, 0, 1 \rangle + x_2 \langle 0, 1, 0, 0, 1 \rangle + x_3 \langle 0, 0, 1, 1, 0 \rangle \), we see that \(\langle 1, 0, 0, 0, 1 \rangle, \langle 0, 1, 0, 0, 1 \rangle, \langle 0, 0, 1, 1, 0 \rangle \) span \(S \). Furthermore, since they are clearly linearly independent, they are a basis for \(S \). So we get the basis \(\{\langle 1, 0, 0, 0, 1 \rangle, \langle 0, 1, 0, 0, 1 \rangle, \langle 0, 0, 1, 1, 0 \rangle\} \) and get \(\dim(S) = 3 \).

2. Part (a) was worth 5 points each, part (b) was worth 6 points, and part (c) was worth 1 point.

 (a) Suppose that we have a dependence \(b_1(v_1 - v_2) + b_2(v_2 - v_3) + \cdots + b_{n-1}(v_{n-1} - v_n) + b_n v_n = 0 \). Expanding and rearranging yields \(b_1 v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + \cdots + (b_n - b_{n-1})v_n = 0 \). But now since \(S \) is linearly independent, each coefficient must be zero: this gives \(b_1 = b_2 - b_1 = b_3 - b_2 = \cdots = b_n - b_{n-1} = 0 \), so clearly each of \(b_1, b_2, \ldots, b_n \) must be zero.

 (b) Suppose \(w \) is in \(V \). If \(T \) spans \(V \), then there exist scalars \(a_1, a_2, \ldots, a_n \) such that \(w = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n \). In order to show that \(T \) spans \(V \), we need to show that there exist scalars \(b_1, b_2, \ldots, b_n \) such that \(w = b_1(v_1 - v_2) + b_2(v_2 - v_3) + \cdots + b_{n-1}(v_{n-1} - v_n) + b_n v_n \). Expanding and collecting terms yields \(w = b_1 v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + \cdots + (b_n - b_{n-1})v_n \). Comparing this to the linear combination we had for \(w \) above, we should try \(b_1 = a_1, b_2 - b_1 = a_2, b_3 - b_2 = a_3, \ldots, b_n - b_{n-1} = a_n \). This yields \(b_1 = a_1, b_2 = a_1 + a_2, b_3 = a_1 + a_2 + a_3, \ldots, b_n = a_1 + a_2 + \cdots + a_n \). So, by the calculation above, we can write \(w = a_1(v_1 - v_2) + (a_1 + a_2)(v_2 - v_3) + \cdots + (a_1 + \cdots + a_n)v_n \), meaning that \(w \) is in \(\text{span}(T) \).

 (c) If \(S \) is a basis for \(V \), then since \(S \) spans \(V \), part (a) implies \(T \) spans \(V \). Also, since \(S \) is linearly independent, part (b) implies \(T \) is linearly independent. Then \(T \) spans \(V \) and is linearly independent, so it is a basis.

3. Each part was worth 4 points.

 (a) We check the two requirements:

 - [T1]: We have \(S(A + B) = (A + B) + (A + B)^T = (A + AT^T) + (B + BT^T) = S(A) + S(B) \).
 - [T2]: We have \(S(cA) = (cA)^T + (cA)^T = c(A + AT^T) = cS(A) \).

 (b) We have \(S\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \quad S\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \) and \(S\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \). Therefore we see \([S]_B^B = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \).

 (c) Row-reducing \(S \) yields the reduced row-echelon form \(E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \).
4. Equivalently, we must show that T is an isomorphism.

- Approach 1: The condition $T^3 = I$ is equivalent to $T \circ T^2 = I = T^2 \circ T$; thus T has a two-sided inverse given by T^2, so T is an isomorphism.
- Approach 2: First suppose $v \in \ker(T)$ so that $T(v) = 0$. Then applying T^2 yields $v = T^3(v) = T^2(0) = 0$ so $\ker(T) = \{0\}$ and so T is one-to-one. Now let $w \in V$ be arbitrary: then $T[T^2(w)] = T^3(w) = w$, and so $w \in \im(T)$ and so T is onto.

5. By the nullity-rank theorem, we know that $\dim(\ker(T)) + \dim(\im(T)) = \dim(V) = 300$. Also, since $\im(T)$ is a subspace of W, we have $\dim(\im(T)) \leq \dim(W) = 200$. Hence $\dim(\ker(T)) = 300 - \dim(\im(T)) \geq 300 - 200 = 100$, as required.

6. Parts (b) and (c) were worth 4 points, and parts (a) and (d) were worth 3 points.

 (a) Suppose w is in $\im(T)$. Then there exists v with $w = T(v)$. Then $T(w) = T(T(v)) = 0$, meaning that w is in $\ker(T)$. Thus, $\im(T)$ is contained in $\ker(T)$.

 (b) By part (a), $\dim(\im(T)) \leq \dim(\ker(T))$, and by nullity-rank, $\dim(\im(T)) + \dim(\ker(T)) = 2$. Thus, $\dim(\im(T))$ is either 0 or 1. But the dimension of the image cannot be zero, since this would imply that T is the zero transformation. Thus, $\dim(\im(T)) = 1$.

 (c) Since $\{v, w\}$ has size 2 = $\dim(\mathbb{R}^2)$ it is enough to show that v and w are linearly independent. But if $0 = av + bw$ then $0 = T(0) = T(av + bw) = aT(v) + bT(w) = bv$, so since v is nonzero, $b = 0$. Then $av = 0$ so $a = 0$. So $\{v, w\}$ is linearly independent, hence a basis.

 (d) Since $T(v) = 0 = 0v + 0w$ and $T(w) = v = 1v + 0w$, the matrix is $[T]_\beta^\alpha = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ as claimed.

7. Each item was worth 1.25 points (with the total rounded up to the nearest integer).

 (a) False since $P_3(\mathbb{R})$ has dimension 4, any spanning set must contain at least 4 vectors; the given set has only 3.

 (b) False the zero space has dimension 0. (The dimension of any other space is positive.)

 (c) True any basis must have exactly 8 elements.

 (d) True if $\dim(V) = n$ then as we showed, a set of n vectors spans V if and only if it is linearly independent.

 (e) False the set spans $\im(T)$ but is not necessarily linearly independent.

 (f) False although the two dimensions are consistent with the nullity-rank theorem, the map cannot have rank 3 because the target space only has dimension 2.

 (g) True the map $T(A) = 2A^T$ has an inverse map $T^{-1}(A) = \frac{1}{2}A^T$ so it is an isomorphism.

 (h) False because V could be infinite-dimensional, neither condition implies the other.

 (i) True both spaces have the same dimension $(\dim V) \cdot (\dim W)$ so they are isomorphic.

 (j) False the matrix $[I]_\alpha^\beta$ will only be the identity matrix when $\alpha = \beta$.

 (k) True the statement $[S T]_\alpha^\beta = [S]_\alpha^\gamma [T]_\gamma^\beta$ is a correct application of the composition formula.

 (l) True we can take $Q = [I]_\beta^\alpha$ to be the change-of-basis matrix from β-coordinates to α-coordinates.