Math 4571: Advanced Linear Algebra

Midterm 1 (Instructor: Dummit)
February 13th, 2020

NAME (please print legibly): ________________________________
Your University ID Number: ________________________________

• Show all work and justify all answers. You MUST provide complete, clear responses for each problem, except when otherwise indicated. A correct answer without sufficient work may not receive full credit!

• You may appeal to any theorems, propositions, etc. covered at any point in the course, but please make clear what results you are using.

• In problems with multiple parts, you may use the results of previous parts in later parts, even if you did not solve the earlier parts correctly.

• You are responsible for checking that this exam has all 8 pages.

Pledge of Honesty
I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: __

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Let \(V = \mathbb{R}^5 \) and let \(S \) be the set of vectors \(\langle x_1, x_2, x_3, x_4, x_5 \rangle \in V \) such that \(x_5 = x_1 + x_2 \) and \(x_3 = x_4 \).

(a) Prove that \(S \) is a subspace of \(V \).

(b) Find a basis for \(S \) and the dimension of \(S \).
2. (12 points) In a vector space V, let

$$A = \{v_1, v_2, \ldots, v_{n-1}, v_n\}$$
$$B = \{v_1 - v_2, v_2 - v_3, \ldots, v_{n-1} - v_n, v_n\}.$$

(a) Suppose A is linearly independent. Prove that B is also linearly independent.

(b) Suppose A spans V. Prove that B also spans V.

(c) Suppose A is a basis for V. Prove that B is a basis for V.
3. **(12 points)** Let $S : M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be the linear transformation $S(A) = A + A^T$.

(a) Show that S is a linear transformation.

(b) Find $[S]_\beta$ for the standard basis $\beta = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

(c) Find a basis for ker(S) and for im(S).
4. (8 points) Suppose $T: V \to V$ is a linear transformation with the property that T^3 is the identity transformation. Prove that T is one-to-one and onto.

5. (8 points) Suppose $T: V \to W$ is a linear transformation, where $\dim(V) = 300$ and $\dim(W) = 200$. Show that $\dim(\ker T) \geq 100$.

6. (14 points) Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that T^2 is the zero transformation, but T is not.

(a) Show that the kernel of T contains the image of T.

(b) Show that $\dim(\text{im}(T)) = 1$.

(c) Let \mathbf{v} be a nonzero vector in $\text{im}(T)$, where $T(\mathbf{w}) = \mathbf{v}$. Prove that $\beta = \{\mathbf{v}, \mathbf{w}\}$ is a basis of \mathbb{R}^2. (Hint: Apply T to a linear dependence.)

(d) With $\beta = \{\mathbf{v}, \mathbf{w}\}$ as in part (c), show that the matrix $[T]_{\beta} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
7. (16 points) For each of the following, circle the correct response (there is no partial credit or penalty for wrong answers, and no work is required). Assume \(T : V \to W \) is a linear transformation, where \(V \) and \(W \) are not necessarily finite-dimensional.

True False The set \(\{1 + t^2, t - t^2 + t^3, 3 - 2t + t^3\} \) spans \(P_3(\mathbb{R}) \).

True False The dimension of a vector space is always positive.

True False If \(\dim(V) = 8 \), then no basis of \(V \) can have exactly 6 elements.

True False If \(\dim(V) = 8 \) and \(S \) contains 8 vectors, then \(S \) spans \(V \) if and only if \(S \) is linearly independent.

True False If \(\{v_1, \ldots, v_n\} \) is a basis of \(V \), then \(\{T(v_1), \ldots, T(v_n)\} \) is a basis for \(\text{im}(T) \).

True False There exists a linear map \(T : \mathbb{R}^5 \to \mathbb{R}^2 \) with nullity 2 and rank 3.

True False The map \(T : M_{2 \times 3}(\mathbb{R}) \to M_{3 \times 2}(\mathbb{R}) \) with \(T(A) = 2A^T \) is an isomorphism.

True False If \(T : V \to V \) is linear, then \(T \) is one-to-one if and only if \(T \) is onto.

Now assume that the vector spaces \(V \) and \(W \) are finite-dimensional, that \(\alpha, \beta, \) and \(\gamma \) are ordered bases of \(V, V, \) and \(W \) respectively, and that \(S \) and \(T \) are linear transformations.

True False \(\mathcal{L}(V, W) \) is isomorphic to \(\mathcal{L}(W, V) \).

True False If \(I : V \to V \) is the identity map, then \([I]_{\alpha}^{\beta} \) is always the identity matrix.

True False If \(S : V \to W \) and \(T : W \to V \), then \([ST]_{\gamma}^{\beta} = [S]_{\beta}^{\gamma}[T]_{\gamma}^{\beta} \).

True False For any \(T : V \to V \), there always exists an invertible matrix \(Q \) such that \([T]_{\beta}^{\alpha} = Q^{-1}[T]_{\alpha}^{\alpha}Q \).
Blank page for scratch work.