
Math 4571 (Advanced Linear
Algebra)

Lecture #31

Quadratic Forms (Part 2):

The Second Derivatives Test in Rn

Sylvester’s Law of Inertia

This material represents §5.2.3 + §5.2.4 from the course notes.



Overview

In the previous lecture, we introduced quadratic forms and how to
diagonalize quadratic forms on Rn using the spectral theorem.
We now continue with a few additional applications of the study of
quadratic forms to analysis and geometry in Rn.



Critical Points, I

Our next application is to establish a general version of the second
derivative(s) test from calculus.

A very basic application of calculus is to find minimum and
maximum values of functions (of one or several variables).

For a function f , the partial derivative fx is the rate of change
of a function as x varies and the other variables are held fixed.

Thus, any local minimum or maximum of a differentiable
function must occur at a critical point, where all the partial
derivatives are zero.

However, once all critical points are identified, it can be
difficult to determine whether the critical points are actually
local minima or local maxima, especially for functions of more
than one or two variables.

The purpose of the second derivatives test is to allow us to
classify critical points easily.



Critical Points, II

We briefly review the terminology for critical points for a function
f of several variables.

A local minimum is a critical point where f nearby is always
bigger.

A local maximum is a critical point where f nearby is always
smaller.

A saddle point is a critical point where f nearby is bigger in
some directions and smaller in others.

Formally, the “nearby” condition means that for any ε > 0
there exists a point within a distance ε of the critical point
with the given property.



Critical Points, III

Examples: The function f (x , y) = x2 + y2 has a local minimum at
its critical point (0, 0).



Critical Points, IV

Examples: The function f (x , y) = −x2 − y2 has a local maximum
at its critical point (0, 0).



Critical Points, V

Examples: The function h(x , y) = x2 − y2 has a saddle point at its
critical point (0, 0).

Saddle points are so named
because their graphs have a
similar shape to this “saddle
surface”: along one direction
the point looks like a local
minimum, and along another
direction the point looks like a
local maximum.



Second Derivatives Test, I

We can use quadratic forms to prove the famous “second
derivatives test” from multivariable calculus:

Theorem (Second Derivatives Test in Rn)

Suppose f is a function of n variables x1, . . . , xn that is
twice-differentiable and P is a critical point of f , so that
fxi (P) = 0 for each i . Let H be the Hessian matrix, whose
(i , j)-entry is the second-order partial derivative fxixj (P).

If all eigenvalues of H are positive then P is a local minimum.

If all eigenvalues of H are negative then P is a local maximum.

If H has at least one eigenvalue of each sign then P is a
saddle point.

In all other cases (where H has at least one zero eigenvalue
and does not have one of each sign) the test is inconclusive.



Second Derivatives Test, II

Proof:

By translating appropriately, assume that P is at the origin.

By the multivariable version of Taylor’s theorem in Rn, the
function f (x1, . . . , xn)− f (P) will be closely approximated by
its degree-2 Taylor polynomial T , which has the form

T =
∑

1≤i≤j≤n ai ,jxixi , where ai ,j =

{
fxi ,xi (P)/2 for i = j

fxi ,xj (P) for i 6= j
.

Now observe T is a quadratic form whose associated bilinear
form has matrix H/2.

We can then classify the behavior of f at the critical point by
diagonalizing this quadratic form. The only needed
information is the values of the eigenvalues, since they will
determine the local behavior of f near P.



Second Derivatives Test, III

Proof (continued):

With new coordinates x ′1, . . . , x
′
n, f (x1, . . . , xn)− f (P) =

1
2λ1(x ′1)2 + · · ·+ 1

2λn(x ′n)2 + O[(x ′1)2 + · · ·+ (x ′n)2].

If all λi > 0, the error term is smaller than the remaining
terms. Then f (x1, . . . , xn)− f (P) > 0 sufficiently close to P,
so P is a local minimum.

Likewise, if all λi < 0, we see f (x1, . . . , xn)− f (P) < 0
sufficiently close to P, so P is a local maximum.

If λi > 0 and λj < 0, then approaching P along xi
(respectively, along xj) yields values of f greater than at P
(respectively, less than at P), so P is a saddle point.

The other cases are inconclusive because we can take (for
example) the functions f = x2

1 + x4
2 and g = x2

1 − x4
2 : then H

has a single nonzero eigenvalue (corresponding to x1), but f
has a local minimum while g has a saddle point.



Second Derivatives Test, IV

Example: Classify the critical point at (0, 0) for the function
f (x , y) = 2x2 + xy + 4y2.

We compute the Hessian matrix: we have fxx = 4,
fxy = fyx = 1, and fyy = 8, so evaluating these at (0, 0) yields

H =

[
4 1
1 8

]
.

The characteristic polynomial of H is
p(t) = det(tI2 − H) = t2 − 12t + 31, whose roots are
λ = 3±

√
2.

Since the eigenvalues are both positive, the critical point is a
local minimum .



Second Derivatives Test, IV

Example: Classify the critical point at (0, 0) for the function
f (x , y) = 2x2 + xy + 4y2.

We compute the Hessian matrix: we have fxx = 4,
fxy = fyx = 1, and fyy = 8, so evaluating these at (0, 0) yields

H =

[
4 1
1 8

]
.

The characteristic polynomial of H is
p(t) = det(tI2 − H) = t2 − 12t + 31, whose roots are
λ = 3±

√
2.

Since the eigenvalues are both positive, the critical point is a
local minimum .



Second Derivatives Test, V

Example: Classify the critical point at (0, 0) for the function
f (x , y) = x2 + 3xy − 6y2 + x5y3.

We compute the Hessian matrix: we have fxx = 2 + 20x3y3,
fxy = fyx = 3 + 15x4y2, and fyy = −6 + 6x5y , so evaluating

these at (0, 0) yields H =

[
2 3
3 −6

]
.

The characteristic polynomial of H is
p(t) = det(tI2 − H) = t2 − 4t − 21 = (t − 7)(t + 3).

Since the eigenvalues are −7 and 3, there is an eigenvalue of
each sign, so the critical point is a saddle point .



Second Derivatives Test, V

Example: Classify the critical point at (0, 0) for the function
f (x , y) = x2 + 3xy − 6y2 + x5y3.

We compute the Hessian matrix: we have fxx = 2 + 20x3y3,
fxy = fyx = 3 + 15x4y2, and fyy = −6 + 6x5y , so evaluating

these at (0, 0) yields H =

[
2 3
3 −6

]
.

The characteristic polynomial of H is
p(t) = det(tI2 − H) = t2 − 4t − 21 = (t − 7)(t + 3).

Since the eigenvalues are −7 and 3, there is an eigenvalue of
each sign, so the critical point is a saddle point .



Second Derivatives Test, VI

Example: Classify the critical point at (0, 0, 0) for the function
f (x , y , z) = 3x2 + 2xy − xz + y2 − yz + z2.

We compute the Hessian matrix: we have fxx = 6,
fxy = fyx = 2, fxz = fzx = −1, fyy = 2, fyz = fzy = −1, and

fzz = 2, so H =

 6 2 −1
2 2 −1
−1 −1 2

.

The characteristic polynomial of H is
p(t) = det(tI2−H) = t3−10t2+22t−12 = (t−2)(t2−8t+6),
whose roots are λ = 2, 4±

√
10.

Since the eigenvalues are all positive, the critical point is a
local minimum .



Second Derivatives Test, VI

Example: Classify the critical point at (0, 0, 0) for the function
f (x , y , z) = 3x2 + 2xy − xz + y2 − yz + z2.

We compute the Hessian matrix: we have fxx = 6,
fxy = fyx = 2, fxz = fzx = −1, fyy = 2, fyz = fzy = −1, and

fzz = 2, so H =

 6 2 −1
2 2 −1
−1 −1 2

.

The characteristic polynomial of H is
p(t) = det(tI2−H) = t3−10t2+22t−12 = (t−2)(t2−8t+6),
whose roots are λ = 2, 4±

√
10.

Since the eigenvalues are all positive, the critical point is a
local minimum .



Positive-Definiteness, I

A fundamental component of the classification in the second
derivatives test was the behavior of the quadratic form (and in
particular, whether it was “always positive” or “always negative”
for nonzero inputs).

This behavior is quite important and we will record it:

Definition

A quadratic form on a real vector space is positive definite if
Q(v) > 0 for every nonzero vector v ∈ V , and it is
negative definite if Q(v) < 0 for every nonzero vector v ∈ V .

Example:

If V is a real inner product space, then the square of the norm
||v||2 = 〈v, v〉 is a positive-definite quadratic form on V .

Indeed, the positive-definiteness condition is precisely axiom
[I3] from the definition of the inner product.



Positive-Definiteness, II

We can in fact detect positive-definiteness for quadratic forms on
finite-dimensional spaces by calculating the eigenvalues of the
associated matrix.

As noted in the proof of the second derivatives test, if a real
quadratic form is positive definite, then all the diagonal
entries in its diagonalization are positive. Likewise, if a real
quadratic form is negative definite, then all the diagonal
entries in its diagonalization are negative.

It is not hard to see that the converse of this statement holds
also, by considering the diagonalization: a real quadratic form
is positive definite if and only all its eigenvalues are positive,
while it is positive semidefinite if and only if all its eigenvalues
are nonnegative.



Positive-Definiteness, III

There are also useful weaker versions of these conditions:

Definition

We say Q is positive semidefinite if Q(v) ≥ 0 for all v ∈ V and
negative semidefinite if Q(v) ≤ 0 for all v ∈ V .

We can also detect these properties by examining eigenvalues:
positive semidefinite quadratic forms have nonnegative eigenvalues,
while negative semidefinite quadratic forms have nonpositive
eigenvalues.



Positive-Definiteness, IV

Example: Determine whether the quadratic form
Q[(x , y)] = 2x2 − 4xy + 4y2 on R2 is positive definite.

The associated matrix for the bilinear form is

[
2 −2
−2 4

]
whose eigenvalues are λ = 4±

√
10. Since these are both

positive, Q is positive definite .



Positive-Definiteness, IV

Example: Determine whether the quadratic form
Q[(x , y)] = 2x2 − 4xy + 4y2 on R2 is positive definite.

The associated matrix for the bilinear form is

[
2 −2
−2 4

]
whose eigenvalues are λ = 4±

√
10. Since these are both

positive, Q is positive definite .



Sylvester’s Law of Inertia, I

As our final topic, we will discuss the possible diagonal entries for
the diagonalization of a real quadratic form.

By making different choices of basis (e.g., by rescaling it or
selecting different row operations), we may obtain different
diagonalizations of a given real quadratic form.

For example, with the quadratic form Q(x , y) = x2 + 2y2,
which is already diagonal, if we change basis to x ′ = x/2,
y ′ = y/3, then we obtain Q(x , y) = 4(x ′)2 + 18(y ′)2.

Indeed, by rescaling, we may change any positive coefficient
to an arbitrary positive value and any negative coefficient to
an arbitrary negative value.

Our claim is that this is essentially the only possible change
we may make to the diagonalization over R.



Sylvester’s Law of Inertia, II

As our final topic, we will discuss the possible diagonal entries for
the diagonalization of a real quadratic form.

Theorem (Sylvester’s Law of Inertia)

Suppose V is a finite-dimensional real vector space and Q is a
quadratic form on V . Then the numbers of positive diagonal
entries, zero diagonal entries, and negative diagonal entries in any
diagonalization of Q is independent of the diagonalization.

The idea is: we decompose V as a direct sum of three spaces, one
on which Q acts as a positive-definite quadratic form (giving
positive diagonal entries), one on which Q acts as the zero map
(giving zero diagonal entries), and one on which Q acts as a
negative-definite quadratic form (giving negative diagonal entries).
These dimensions then depend only on Q, hence are invariant.



Sylvester’s Law of Inertia, III

Proof:

Since char(F ) 6= 2, we may equivalently work with the
symmetric bilinear form Φ associated to Q.

Let V0 be the subspace of V given by
V0 = {v0 ∈ V : Φ(v0, v) = 0 for all v ∈ V }: then Φ acts as
the zero map on V0. Now write V = V0 ⊕ V1: we claim that
Φ is nondegenerate on V1.

To see this, suppose y ∈ V1 has Φ(y, v1) = 0 for all v1 ∈ V :
then for any w ∈ V we may write w = v0 + v1 for vi ∈ Vi , in
which case Φ(y,w) = Φ(y, v0) + Φ(y, v1) = 0. But this would
imply y ∈ V0 whence y = 0.

Thus, Φ is nondegenerate on V1.



Sylvester’s Law of Inertia, IV

Proof (continued more):

Now we show that if Φ is nondegenerate on V1, then V1

decomposes as a direct sum V1 = V+ ⊕ V−, where Φ is
positive-definite on V+ and negative-definite on V−.

Let V+ be the maximal subspace of V1 on which Φ is
positive-definite (since the condition is defined only on
individual vectors, this subspace is well-defined), and define
V− = {w ∈ V : Φ(v+,w) = 0 for all v+ ∈ V+}.
Then by an application of Gram-Schmidt (which in fact holds
for bilinear forms) via Φ, we see that V1 = V+ ⊕ V−.



Sylvester’s Law of Inertia, V

Proof (continued even yet still more):

It remains to show that Φ is negative-definite on V−, so let
z ∈ V− be nonzero. Then by assumption, Φ is not
positive-definite on V+ ⊕ 〈z〉, so there exists some nonzero
v = v+ + αz with v+ ∈ V+ and α ∈ R such that Φ(v, v) ≤ 0.

We cannot have α = 0 since then positive-definiteness would
imply v+ = 0. Since Φ(v, v) =
Φ(v+, v+) + 2αΦ(v+, z) +α2Φ(z, z) = Φ(v+, v+) +α2Φ(z, z),

we have Φ(z, z) =
1

α2
[Φ(v, v)− Φ(v+, v+)].

Then both terms are less than or equal to zero, and both
cannot be zero. Hence Φ(z, z) < 0 for all nonzero z ∈ V− and
so Φ is negative-definite on V−.



Sylvester’s Law of Inertia, VI

Proof (continued even further yet still additionally more also):

We now establish the result using from the direct sum
decomposition V = V0 ⊕ V+ ⊕ V−.

If we select any diagonalization, the restriction to the subspace
generated by the basis vectors with diagonal entries 0,
positive, negative is trivial, positive-definite, negative-definite
(respectively), and thus the number of such diagonal elements
is at least dim(V0), dim(V+), dim(V−) (respectively).

But since the total number of diagonal elements is
dim(V ) = dim(V0) + dim(V+) + dim(V−), we must have
equality everywhere.

Hence the numbers of positive diagonal entries, zero diagonal
entries, and negative diagonal entries in any diagonalization of
Q is independent of the choice of diagonalization, as claimed.



Sylvester’s Law of Inertia, VII

We will also mention that there is some classical terminology
associated with Sylvester’s law of inertia.

Definition

If Q is a quadratic form on Rn, the index of Q is the number of
positive diagonal entries (in any diagonalization) and the signature
is the difference between the number of positive and negative
diagonal entries.

Examples:

Q(x , y , z) = x2− y2− z2 on R3 has index 1 and signature −1.

Q(x , y , z) = x2 − z2 on R3 has index 1 and signature 0.

Q(x , y , z) = 5x2 + 4xy + 6y2 + 4yz + 7z2 on R3 has index 3
and signature 3, since we computed its diagonalization to
have diagonal entries 3, 6, 9.



Sylvester’s Law of Inertia, VIII

From our discussion of the spectral theorem, the index is equal to
the number of positive eigenvalues of the matrix associated to the
symmetric bilinear form, while the signature is the difference
between the number of positive eigenvalues and the number of
negative eigenvalues.

Some authors instead refer to the triple
(dim V+, dim V−, dim V0), or some appropriate permutation,
as the signature of the quadratic form. These three values
themselves are called the invariants of the form, and the value
of any two of them (along with the dimension of the ambient
space V ) is sufficient to find the value of the other one.

For nondegenerate forms, where there are no 0 entries (so
dim V0 = 0), the dimension of the space along with the value
of dim V+ − dim V− is sufficient to find dim V+ and dim V−.



Sylvester’s Law of Inertia, IX

As a corollary of Sylvester’s law of inertia, we can read off the
shape of a conic section or quadric surface (in all nondegenerate
cases, and also in many degenerate cases) simply by examining the
signs of the eigenvalues of the underlying quadratic form.

Examples:

The eigenvalues of the symmetric matrix associated to the
quadratic form Q(x , y) = x2 − 4xy are λ = 4,−1. Since one
eigenvalue is positive and the other is negative, the conic
Q(x , y) = 1 is a hyperbola.

The eigenvalues of the symmetric matrix associated to the
quadratic form Q(x , y) = 3x2 − 2xy + 3y2 are λ = 2, 4. Since
both eigenvalues are positive, the conic Q(x , y) = 1 is an
ellipse.



Sylvester’s Law of Inertia, X

Example: Determine the shape of the quadric surface
13x2 − 4xy + 10y2 − 8xz + 4yz + 13z2 = 1.

If Q(x , y , z) is the quadratic form above, the bilinear form has

associated matrix A =

 13 −2 −4
−2 10 2
−4 2 13

.

The characteristic polynomial is p(t) = det(tI3 − A) =
t3 − 144t2 + 6480t − 93312 = (t − 36)2(t − 72).

This means, upon diagonalizing Q(x , y , z), we will obtain the
equation 36(x ′)2 + 36(y ′)2 + 72(z ′)2 = 1. This is the equation
of an ellipsoid.

Again, the only information we really needed here, to see that
the quadratic variety is an ellipsoid, was that all the
eigenvalues were positive.



Sylvester’s Law of Inertia, X

Example: Determine the shape of the quadric surface
13x2 − 4xy + 10y2 − 8xz + 4yz + 13z2 = 1.

If Q(x , y , z) is the quadratic form above, the bilinear form has

associated matrix A =

 13 −2 −4
−2 10 2
−4 2 13

.

The characteristic polynomial is p(t) = det(tI3 − A) =
t3 − 144t2 + 6480t − 93312 = (t − 36)2(t − 72).

This means, upon diagonalizing Q(x , y , z), we will obtain the
equation 36(x ′)2 + 36(y ′)2 + 72(z ′)2 = 1. This is the equation
of an ellipsoid.

Again, the only information we really needed here, to see that
the quadratic variety is an ellipsoid, was that all the
eigenvalues were positive.



Quadratic Forms, Summary

We will end the lecture by remarking that the study of quadratic
forms touches on nearly every branch of mathematics.

We have already discussed some ties to linear algebra (in the
guise of bilinear forms and diagonalization), analysis (in the
classification of critical points), and geometry (in the analysis
of quadratic varieties and matrices acting on quadratic forms).

Also, the study of quadratic forms over Q turns out to be
intimately tied with many topics in number theory.

One very classical problem is to characterize integers that can
be written as the sum of two squares, which is a question
about integers represented by Q(x , y) = x2 + y2.

This family of problems is intimately related to a number of
very deep results in modern number theory (in particular, it
greatly motivated the development of class field theory).



It’s The End of Linear Algebra!

We reviewed local minima, local maxima, and saddle points.

We proved the second derivatives test for classifying critical points
of real-valued functions on Rn.

We proved Sylvester’s law of inertia and its implications for
classifications of quadratic varieties, and also discussed the
signature and index of a quadratic form.



But There’s Always More Algebra To Learn...

We’re now at the end of the course (except of course for the final).

I hope you enjoyed learning a bunch of linear algebra with me this
semester as much as I enjoyed teaching it. Linear algebra is an
incredibly fundamental subject, and I hope you’ve both gotten an
appreciation for the theoretical side, and also enjoyed the variety of
applications we’ve been able to discuss.

If you did in fact enjoy the course, I would greatly appreciate it if
you took the time to fill out the TRACE evaluations and mention
that fact.

Thanks, and good luck on the final!


