Part I: No justifications are required for these problems. Answers will be graded on correctness.

1. Let V be a vector space with scalar field F and $\Phi : V \times V \to F$ be a bilinear form. Identify each of the following statements as true or false:

(a) Every $n \times n$ symmetric matrix over \mathbb{R} is congruent to a diagonal matrix.
(b) Every $n \times n$ symmetric matrix over an arbitrary field F is congruent to a diagonal matrix.
(c) The function $Q(x,y) = xy$ on \mathbb{R}^2 is a quadratic form.
(d) The function $Q(x,y) = x^2 - 4xy + xyz + z^2$ on \mathbb{R}^3 is a quadratic form.
(e) The function $Q(f) = \int_0^1 x f(x)^2 \, dx$ on $\mathbb{R}[x]$ is a quadratic form.
(f) The function $Q(A) = \det(A)$ on $M_{2\times2}(\mathbb{R})$ is a quadratic form.
(g) The function $Q(A) = \det(A)$ on $M_{3\times3}(\mathbb{R})$ is a quadratic form.
(h) Every quadratic form over \mathbb{R} is a bilinear form.
(i) Every quadratic form over an arbitrary field is a bilinear form.
(j) The second derivatives test will classify any critical point as a local minimum, local maximum, or saddle point.
(k) If both eigenvalues of the 2×2 real symmetric matrix S are positive, then the graph of $(x, y) \cdot S \cdot (x, y)^T = 1$ in \mathbb{R}^2 will be an ellipse.
(l) If one eigenvalue of the 2×2 real symmetric matrix S is zero and the other is nonzero, then the graph of $(x, y) \cdot S \cdot (x, y)^T = 1$ in \mathbb{R}^2 will be a hyperbola.

2. For each symmetric matrix S over each given field, find an invertible matrix Q and diagonal matrix D such that $Q^T S Q = D$:

(a) $S = \begin{bmatrix} 1 & 9 \\ 9 & 7 \end{bmatrix}$ over \mathbb{Q}.
(b) $S = \begin{bmatrix} 1 & 1 & -2 \\ 1 & 3 & 6 \\ -2 & 6 & 7 \end{bmatrix}$ over \mathbb{Q}.

3. Consider the bilinear form $\Phi((a,b), (c,d)) = 4ac - 2ad - 2bc + 7bd$ on \mathbb{R}^2 and let Q be the associated quadratic form.

(a) Write down Q explicitly and also find $[\Phi]_\beta$ for $\beta = \{(1,0), (0,1)\}$.
(b) Find an orthonormal basis γ for \mathbb{R}^2 such that $[\Phi]_\gamma$ is diagonal, and compute the diagonalization $[\Phi]_\gamma$.
(c) Describe the shape of the quadratic variety $Q(x, y) = 1$ in \mathbb{R}^2 as one of the 3 standard conic sections.
(d) Classify the critical point of the function $Q(x, y)$ at $(0,0)$ as a local minimum, local maximum, or saddle point.
(e) Calculate the signature and index of Q. Is Q positive definite? Positive semidefinite? Negative definite? Negative semidefinite?
4. Consider the quadratic form \(Q(x, y, z) = 11x^2 + 40xy - 16xz - 16y^2 - 16yz + 5z^2 \) on \(\mathbb{R}^3 \).

(a) Find the symmetric matrix associated to the underlying bilinear form for \(Q \) with respect to the standard basis \(\beta = \{(1,0,0), (0,1,0), (0,0,1)\} \).

(b) Give an explicit orthonormal change of basis that diagonalizes \(Q \), and find the resulting diagonalization.

(c) Describe the shape of the quadratic variety \(Q(x, y, z) = 1 \) in \(\mathbb{R}^3 \) as one of the 9 standard quadric surfaces.

(d) Classify the critical point of the function \(Q(x, y, z) \) at \((0,0,0)\) as a local minimum, local maximum, or saddle point.

(e) Calculate the signature and index of \(Q \). Is \(Q \) positive definite? Positive semidefinite? Negative definite? Negative semidefinite?

Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

5. Suppose that \(Q_1 \) and \(Q_2 \) are two quadratic forms on \(V \), and let \(\beta \in F \).

(a) Show that \(Q_1 + Q_2 \) is a quadratic form on \(V \). Note that \(Q_1 + Q_2 \) is defined pointwise, so \((Q_1 + Q_2)(v) = Q_1(v) + Q_2(v)\).

(b) Show that \(\beta Q_1 \) is a quadratic form on \(V \).

(c) Deduce that the set of all quadratic forms on \(V \) is a vector space.

6. Suppose \(T : V \to \mathbb{R} \) is a linear operator on the real inner product space \(V \) with inner product \(\langle \cdot, \cdot \rangle \). Define the map \(\Phi : V \times V \to F \) by setting \(\Phi(v, w) = \langle T(v), w \rangle \).

(a) Show that \(\Phi \) is a bilinear form on \(V \).

(b) Show that \(\Phi \) is symmetric if and only if \(T \) is Hermitian.

(c) If \(V \) is finite-dimensional, prove that \(\Phi \) is an inner product on \(V \) if and only if \(T \) is a positive-definite Hermitian operator. [Hint: Show that \(|I_{32}| \) requires all eigenvalues of \(T \) to be positive.]

7. In multivariable calculus, the following more explicit version of the second derivatives test is often taught:

- **Theorem (Second Derivatives Test in \(\mathbb{R}^2 \)):** Suppose \(P \) is a critical point of \(f(x, y) \), and let \(D \) be the value of the discriminant \(f_{xx}f_{yy} - f_{xy}^2 \) at \(P \). If \(D > 0 \) and \(f_{xx} > 0 \), then the critical point is a minimum. If \(D > 0 \) and \(f_{xx} < 0 \), then the critical point is a maximum. If \(D < 0 \), then the critical point is a saddle point. If \(D = 0 \), then the test is inconclusive.

Using our general version of the second derivatives test, prove this variation. [Hint: Note that \(D = \det(H) = \lambda_1 \lambda_2 \); then examine what information the sign of \(D \) yields about the eigenvalues \(\lambda_1, \lambda_2 \)].

8. Let \(S \) be an \(n \times n \) real symmetric matrix.

(a) Show that \(S \) is congruent to a matrix whose diagonal entries are all in the set \(\{-1, 0, 1\} \).

(b) Prove that, up to congruence, there are exactly \(\frac{1}{2}(n + 1)(n + 2) \) different real \(n \times n \) symmetric matrices.

\(^1\)The statement of this theorem is copied directly from my multivariable calculus course notes, in fact!