Lecture: Monday-Wednesday-Thursday, 10:30am-11:35am, Richards Hall 140.

Instructor: Evan Dummit, Lake Hall 571, edummit@northeastern.edu

Instructor Office Hours: Monday-Thursday 11:45am-1:00pm + 3:00-4:00pm, or by appointment, in Lake Hall 571.

Problem Sessions: Tuesday 9am-noon, location TBA.

Course Webpage: https://web.northeastern.edu/dummit/teaching_sp20_3527.html

Course Textbook: The instructor will write lecture notes for the course (in lieu of an official textbook) as the semester progresses. The course will roughly follow the presentation from Silverman’s “A Friendly Introduction to Number Theory”, but it is not necessary to purchase the textbook for this course.

Prerequisites: No explicit prerequisite, but Math 1365 (Introduction to Mathematical Reasoning) or another course introducing proof is recommended.

Course Philosophy: This course covers the fundamentals of elementary number theory from both the computational and the theoretical perspectives. Classically, number theory involved studying the integers \mathbb{Z} and solving equations in integers, while the modern perspective on number theory generalizes and extends these ideas to other settings such as $\mathbb{Z}[i]$ (the Gaussian integers) and $F[x]$ (polynomials with coefficients from a field F). The primary theme of Math 3571 is to develop arithmetic inside \mathbb{Z}, and then explore the similarities and differences between \mathbb{Z}, $\mathbb{Z}[i]$, and $F[x]$.

Due to the abstract nature of the material, Math 3571 is a proof-based course with an emphasis on problem-solving. The style of the lectures and assignments reflect this philosophy: much time will be spent discussing theorems and their proofs, along with examples and applications that extend our understanding of the underlying concepts. Correspondingly, many of the problems on the homework assignments and exams will ask for you to write proofs or explore unusual examples (or counterexamples).

At the end of the course, you will have a solid grasp of the arithmetic of the integers and how these properties extend to other number systems like the Gaussian integers and polynomials, along with some of their applications in other areas like cryptography. Success in this course thereby demands facility with the basic concepts, with the underlying theory, and with its applications.

Grades: Your course grade consists of 20% homework, 40% midterms, and 40% final exam.

The homework score consists of the average of the written assignment scores, with the lowest score dropped. There will be two 1-hour midterm exams (20% each) and a 2-hour final exam (40%).

An overall raw score of 92% will be at least an A, 89% will be at least an A-, 86% will be at least a B+, 82% will be at least a B, 79% will be at least a B-, 76% will be at least a C+, 72% will be at least a C, and 69% will be at least a C-.

If you feel that an assignment or exam has been misgraded, please talk to the instructor directly. Requests for regrading will not be considered more than two days past the date the assignment or exam was returned.

Exams: There will be two 1-hour midterm exams, along with a 2-hour common final exam.

If you miss an examination for any reason, you will receive a 0; make-up exams will not be given.

The midterms are in class and scheduled for Thursday, February 20th and Wednesday, April 1st. The final exam is scheduled TBA.

Homework Assignments: Written assignments will be assigned weekly and due by 4pm, typically on Wednesdays.

Problem sessions will be held weekly on Tuesdays. The problem sessions provide you a place to work collaboratively on the homework assignments with help from the TA. It is highly recommended to start work on the assignments early: many problems will require substantial thought and effort to solve, even if the solution is ultimately fairly short. Do not fall into the trap of only starting the assignment the evening before it is due!

The lowest assignment grade is dropped to provide a cushion if an emergency arises and you cannot complete an assignment. For logistical reasons, extensions cannot be granted under any circumstances.

Written assignments should be organized carefully, neatly, and in complete sentences, with concise well-reasoned logical arguments. Cite any external resources used, and clearly label all problems. If you collaborated with any other students, write the names of all collaborators on the top of your assignment. If your assignment is more than one page long, use a staple or paperclip to affix the pages together. Failure to adhere to any of these guidelines may result in point deductions, at the grader’s discretion.
Course Schedule: The course and lecture notes are tentatively organized into five chapters, as follows:

Weeks 1-4: Chapter 1 ~ Integers and Modular Arithmetic: The integers, induction, properties of arithmetic (gcds, the Euclidean algorithm, primes and factorization), modular congruences and modular arithmetic, theorems of Fermat and Euler, the Chinese remainder theorem, repeating decimals

Weeks 5-6: Chapter 2 ~ Applications to Cryptography: History of cryptography, Rabin and RSA cryptosystems, Diffie-Hellman key exchange, zero-knowledge protocols, primality testing and factorization algorithms

Week 7: Midterm 1, covers chapters 1-2.

Weeks 8-10: Chapter 3 ~ Unique Factorization and Applications: Integral domains, arithmetic in $F[x]$ and $\mathbb{Z}[i]$, modular arithmetic in Euclidean domains, finite fields, Fermat’s theorem on sums of two squares

Weeks 10-12: Chapter 4 ~ Squares and Quadratic Reciprocity: Polynomial congruences and Hensel’s lemma, quadratic residues and nonresidues, Legendre and Jacobi symbols, quadratic reciprocity and its applications

Week 12: Midterm 2, covers chapters 3-4.

Weeks 13-14: Chapter 5 ~ Diophantine Equations: Introduction to diophantine equations, linear diophantine equations, Frobenius coin problem, Pythagorean triples, overview of Wiles’s theorem

Collaboration Policy: Mathematics is fundamentally a collaborative endeavor, and discussing the course material with others is an excellent way to solidify your own understanding. However, it is critical not to outsource your learning! You cannot expect to retain knowledge if you do not solve your homework problems yourself, whether because you relied on other people to explain to you how to do the problems, or because you relied too heavily on technological assistance.

On written assignments, you may work together with other people, but you must write up your work independently. If you use any external resources (e.g., wikipedia, stackexchange, other books beyond the course text or notes, other people, etc.) you must say what results you are citing and where they are from. If you happen to find a solution to an assigned problem online or elsewhere, it is academically dishonest to copy the solution and present it as your own work.

Please also note that 80% of your course grade is determined by the exams, on which collaboration is not allowed.

Attendance Policy: It is expected that you will attend every class. This course moves very fast, and it is quite possible to fall behind even if you only miss one day. If you miss class for any reason, it is highly advisable to consult the course lecture notes to catch up, and you may also wish to obtain notes from another student. It is your responsibility to be aware of all information announced in class, including modifications to the course syllabus or schedule, even if you are absent.

If you will be absent from a class activity due to a religious observance or practice, or for participation in a university-sanctioned event (e.g., university athletics), it is your responsibility to inform the instructor during the first week of class and provide appropriate documentation if required. Your instructor will work with you on alternative and reasonable arrangements for any time missed.

Statement on Academic Integrity: A commitment to the principles of academic integrity is essential to the mission of Northeastern University. Academic dishonesty violates the most fundamental values of an intellectual community and undermines the achievements of the entire University. Violations of academic integrity include (but are not limited to) cheating on assignments or exams, fabrication or misrepresentation of data or other work, plagiarism, unauthorized collaboration, and facilitation of others’ dishonesty. Possible sanctions include (but are not limited to) warnings, grade penalties, course failure, suspension, and expulsion.

Statement on Accommodations: Any student with a disability is encouraged to meet with the instructor during the first week of classes to discuss accommodations. The student must bring a current Memorandum of Accommodations from the Office of Student Disability Services.

Statement on Classroom Behavior: Disruptive classroom behavior will not be tolerated.

In general, any behavior that impedes the ability of your fellow students to learn will be viewed as disruptive. Examples of disruptive behavior include, but are not limited to, ringing cell phones, listening to an audio player during class, constant talking, eating food noisily, or laptop usage (except for note-taking).

Statement on Inclusivity: Faculty are encouraged to address students by their preferred name and gender pronoun.

If you would like to be addressed using a specific name or pronoun, please let your instructor know.

Statement on Evaluations: Students are requested to complete the TRACE evaluations at the end of the course.

Miscellaneous Disclaimer: The instructor reserves the right to change course policies, including the evaluation scheme of the course. Notice will be given in the event of any substantial changes.