• Integers, induction, divisibility, the Euclidean algorithm and GCDs, prime factorizations, rings
 ○ Suggested review: HW #1-#2, HW #3 problem 7.
 ○ Suggested reading: lecture notes 1.1-1.3.

• \(\mathbb{Z}/m\mathbb{Z} \), units and zero divisors, Chinese remainder theorem, powers and orders, theorems of Fermat/Wilson/Euler, the Euler \(\varphi \)-function, computing orders, repeating decimals
 ○ Suggested review: HW #2-4, HW #5 problems 1, 2.
 ○ Suggested reading: lecture notes 2.1-2.4

• Cryptography, Rabin and RSA encryption, zero-knowledge proofs, Primality testing, factorization algorithms
 ○ Suggested review: HW #5 problems 4/5/7, HW #6, HW #7 problem 1
 ○ Suggested reading: lecture notes 3.1-3.6

• Integral domains and Euclidean domains, irreducible and prime elements, unique factorization
 ○ Suggested review: HW #7 problems 2, 3, 5, and 6, HW #8 problem 5.
 ○ Suggested reading: lecture notes 4.1.1-4.1.4

• Modular arithmetic and \(R/rR \), units and zero divisors, Chinese remainder theorem + Euler’s theorem + Fermat’s theorem in \(R/rR \)
 ○ Suggested review: HW #8 problems 1-4, HW #10 problem 4d.
 ○ Suggested reading: lecture notes 4.2.1-4.2.2.

• Polynomial roots and factorization, Finite fields, counting irreducible polynomials in \(\mathbb{F}_p[x] \), primitive roots
 ○ Suggested review: HW #5 problem 3, HW #9 problems 1-6
 ○ Suggested reading: lecture notes 4.3.1-4.3.3, Lectures 24-26.

• Modular arithmetic and factorization in \(\mathbb{Z}[i] \), sums of two squares, Pythagorean triples
 ○ Suggested review: HW #10.

• Polynomial congruences, Hensel’s lemma
 ○ Suggested review: HW #11 problem 2, 6(b)
 ○ Suggested reading: lecture notes 5.1, Lecture 29.

• Quadratic residues, Legendre symbols, Euler’s criterion
 ○ Suggested review: HW #11 problems 1, 3(a), 6(a), 9(a).

• Quadratic reciprocity, Jacobi symbols, evaluating Legendre/Jacobi symbols with quadratic reciprocity
 ○ Suggested review: HW #11 problems 3(b), 4.
 ○ Suggested reading: lecture notes 5.3.1 + 5.4.1 + 5.4.3, Lecture 31.

• Characterizing quadratic residues, primes dividing quadratics, Berlekamp’s algorithm, Solovay-Strassen
 ○ Suggested review: HW #11 problems 5, 7, 8, 9(bc).
 ○ Suggested reading: lecture notes 5.5.1-5.5.4, Lecture 32.