1. (Calculations, I) Calculate (no justification required):
 (a) Find the Jordan canonical forms of
 \[
 \begin{pmatrix}
 -5 & 9 \\
 -4 & 7
 \end{pmatrix},
 \begin{pmatrix}
 3 & 1 \\
 -2 & 5
 \end{pmatrix},
 \begin{pmatrix}
 1 & 1 & -1 \\
 -2 & 3 & -2 \\
 -1 & 0 & 1
 \end{pmatrix},
 \begin{pmatrix}
 1 & 2 & 3 \\
 2 & 3 & 1 \\
 3 & 1 & 2
 \end{pmatrix}
 \] over \(\mathbb{C} \).
 (b) Find the Jordan canonical form of the \(n \times n \) all 1s matrix
 \[
 \begin{pmatrix}
 1 & 1 & \ldots & 1 \\
 1 & 1 & \ldots & 1 \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & 1 & \ldots & 1
 \end{pmatrix}
 \] over \(\mathbb{Q} \) and over \(\mathbb{F}_p \) (the field with \(p \) elements, \(p \) prime). [For the latter, the answer will depend on whether \(p \) divides \(n \) or not.]
 (c) Find the minimal and characteristic polynomials of the \(n \times n \) Jordan block with eigenvalue \(\lambda \).

2. (Calculations, II) Suppose the characteristic polynomial of the \(5 \times 5 \) matrix \(A \) is \(p(t) = t^3(t - 1)^2 \).
 (a) Find the eigenvalues of \(A \), and list all possible dimensions for each of the corresponding eigenspaces.
 (b) List all possible Jordan canonical forms of \(A \) up to equivalence.
 (c) If \(\ker(A) \) and \(\ker(A - I) \) are both 2-dimensional, what is the Jordan canonical form of \(A \)?

3. (Minimal Polynomial, II) Suppose \(A \) is an \(n \times n \) matrix over \(\mathbb{C} \) and that \(\lambda \) is an eigenvalue of \(A \).
 (a) Prove that \(\lambda \) is a root of the minimal polynomial of \(A \). Deduce that the minimal polynomial and the characteristic polynomial have the same roots.
 (b) Show that the exponent of \(t - \lambda \) in the minimal polynomial \(m(t) \) of \(A \) is the size of the largest Jordan block of eigenvalue \(\lambda \) in the Jordan canonical form of \(T \).
 (c) Show that the minimal polynomial of a \(2 \times 2 \) matrix uniquely determines its Jordan canonical form. Illustrate by finding the Jordan canonical forms of the \(2 \times 2 \) matrices with minimal polynomials \(m(t) = t^2 - t, t^2 + 1 \), and \(t - \lambda \).
 (d) Show the minimal and characteristic polynomials of a \(3 \times 3 \) matrix together uniquely determine its Jordan canonical form. Illustrate by finding the Jordan canonical forms of the \(3 \times 3 \) matrices with \((m(t), p(t)) \) equal to \((t, t^3), (t^2, t^3), (t^3, t^3), \) and \((t^2 - 1, t^3 - t^2 - t + 1) \).

4. Let \(A \in M_{n \times n}(\mathbb{C}) \). Show that the following are equivalent:
 (a) The ranks of \(A \) and \(A^2 \) are equal.
 (b) The multiplicity of 0 as a root of the minimal polynomial of \(A \) is at most 1.
 (c) There is an \(n \times n \) matrix \(X \) such that \(AXA = A, XAX = X, \) and \(AX = XB \).
 (d) If there are any, every Jordan block with eigenvalue 0 in the Jordan canonical form of \(A \) has size 1.
5. (Matrix Orders, I) Let F be an algebraically closed field and $G = GL_n(F)$ be the group of $n \times n$ invertible matrices over F.

(a) If A has finite order k in G, prove that all eigenvalues of A are kth roots of unity in F (i.e., elements $\alpha \in F$ for which $\alpha^k = 1$). [Hint: Use 3(a) and the fact that the minimal polynomial divides any polynomial annihilating A.]

(b) Show that if $\text{char}(F) = 0$, then the only Jordan blocks of finite order are the 1×1 blocks.

(c) Deduce that if $\text{char}(F) = 0$, then A has finite order if and only if it is diagonalizable and all its eigenvalues are roots of unity.

(d) [Optional] If $\text{char}(F) > 0$, prove that A has finite order if and only if all its eigenvalues are roots of unity.

• Remark: If F is not algebraically closed, the results of this problem still essentially hold, provided one works with the diagonalization and eigenvalues over a field extension K/F containing all the eigenvalues of G (e.g., the algebraic closure of F), since the order of $G \in GL_n(F)$ is the same in $GL_n(K)$.

6. (Matrix Orders, II) Let F be a field and $G = GL_n(F)$.

(a) If $\text{char}(F) \neq 2$, show that G has precisely n conjugacy classes of elements of order 2. [Hint: If g has order 2, then $g^2 - I = 0$.]

(b) If $\text{char}(F) = 2$, show that G has precisely $\lfloor n/2 \rfloor$ (the greatest integer $\leq n/2$) conjugacy classes of elements of order 2.

7. (Matrix Orders, III) Let K be a field where -1 is not a square, and let $G = GL_2(K)$.

(a) If $g \in G$, show that g has order 4 if and only if $\det(g) = 1$ and $\text{tr}(g) = 0$. [Hint: Consider the eigenvalues of g.]

(b) Find an explicit element $g \in G$ of order 4.

(c) Suppose there exist elements $a, b \in K$ with $a^2 + b^2 = -1$. Show that G contains two elements g, h of order 4 such that gh also has order 4.