Final Exam Topics:

- Average rate of change, limit definition of derivative
- Computing derivatives (product/quotient/chain rules)
- Logarithmic, inverse, implicit differentiation
- Parametric curves and derivatives, velocity/speed/acceleration
- Related rates
- Minimum and maximum values, crit points + classification, increasing and decreasing behavior, concavity, inflection points
- L’Hôpital’s rule
- Applied optimization
- Antiderivatives
- Riemann sums + definite integrals, Fund Thm of Calculus
- Evaluating definite and indefinite integrals, substitution
- Areas under and between curves
Problem 1

(Fa14, #10) A box with an open top is to be constructed with 600 in2 of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.
(Fa14, #10) A box with an open top is to be constructed with 600 in2 of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

Answer:
(Fa14, #10) A box with an open top is to be constructed with 600 in2 of material. The length of the base is to be twice its width. Find the dimensions that maximize the volume of the box.

Answer: Width w, height h, length $l = 2w$, vol $V = lwh = 2w^2h$. Base has area $2w^2$, two sides have area wh, and the other two sides have area $2wh$. Hence total area is $2w^2 + 6wh$, so $2w^2 + 6wh = 600$, thus $h = \frac{300-w^2}{3w}$.

Then $V = 2w^2 \cdot \frac{300-w^2}{3w} = 200w - \frac{2}{3}w^3$ so $V' = 200 - 2w^2$ which is zero when $w = 10$ in. Sign diagram for V' shows $w = 10$ in is a global max. So dimensions are $w = 10$ in, $l = 20$ in, $h = \frac{20}{3}$ in.
Problem 2

Find the area of the region lying under the curve $y = 2x - x^2$ and above the x-axis.
Problem 2

Find the area of the region lying under the curve $y = 2x - x^2$ and above the x-axis.

Answer:
Find the area of the region lying under the curve \(y = 2x - x^2 \) and above the \(x \)-axis.

Answer: The curve intersects the \(x \)-axis when \(2x - x^2 = 0 \) so that \(x = 0, 2 \). Then the desired area is

\[
\int_{0}^{2} (2x - x^2) \, dx = x^2 - \frac{1}{3}x^3 \bigg|_{x=0}^{2} = \frac{4}{3}.
\]
(Fa14, #11a) Compute \(\int (7 + 8x)^{49} \, dx \).
(Fa14, #11a) Compute \(\int (7 + 8x)^{49} \, dx \).

Answer:
Problem 3

(Fa14, #11a) Compute \(\int (7 + 8x)^{49} \, dx \).

Answer: Substituting \(u = 7 + 8x \) with \(du = 8 \, dx \) yields

\[
I = \int u^{49} \cdot \frac{1}{8} \, du = \frac{1}{400} u^{50} + C = \frac{1}{400} (7 + 8x)^{50} + C.
\]
Interlude!
(Fa14, #13) Find the area bounded by $y = x^2 - 5x + 3$ and $y = -x^2 + x - 1$.

Answer: The curves intersect when $x^2 - 5x + 3 = -x^2 + x - 1$ so that $2x^2 - 6x + 4 = 0$. Factoring gives $2(x - 1)(x - 2) = 0$ so intersection points are at $x = 1, 2$. Testing at $x = 3/2$, or comparing the graphs, shows that $y = -x^2 + x - 1$ is the top curve and $y = x^2 - 5x + 3$ is the bottom curve. Hence area is $\int_1^2 [\text{top} - \text{bottom}] \, dx = \int_1^2 (-2x^2 + 6x - 4) \, dx = \left[-\frac{2}{3}x^3 + 3x^2 - 4x \right]_1^2 = \frac{1}{3}$.
Problem 4

(Fa14, #13) Find the area bounded by \(y = x^2 - 5x + 3 \) and \(y = -x^2 + x - 1 \).

Answer:
Problem 4

(Fa14, #13) Find the area bounded by \(y = x^2 - 5x + 3 \) and \(y = -x^2 + x - 1 \).

Answer: The curves intersect when \(x^2 - 5x + 3 = -x^2 + x - 1 \) so that \(2x^2 - 6x + 4 = 0 \). Factoring gives \(2(x - 1)(x - 2) = 0 \) so intersection points are at \(x = 1, 2 \).

Testing at \(x = 3/2 \), or comparing the graphs, shows that \(y = -x^2 + x - 1 \) is the top curve and \(y = x^2 - 5x + 3 \) is the bottom curve.

Hence area is \(\int_1^2 [\text{top} - \text{bottom}] \, dx = \int_1^2 (-2x^2 + 6x - 4) \, dx = \left[-\frac{2}{3}x^3 + 3x^2 - 4x \right]_1^2 = \frac{1}{3} \).
(Fa14, #11b) Compute \(\int_{\pi}^{2\pi} \frac{3 \sin x}{2 + \cos x} \, dx \).
(Fa14, #11b) Compute \(\int_{\pi}^{2\pi} \frac{3 \sin x}{2 + \cos x} \, dx \).

Answer:
Problem 5

(Fa14, #11b) Compute \(\int_{\pi}^{2\pi} \frac{3 \sin x}{2 + \cos x} \, dx \).

Answer: Substitute \(u = 2 + \cos x \) with \(du = -\sin x \, dx \). Then \(x = \pi \) corresponds to \(u = 1 \) and \(x = 2\pi \) corresponds to \(u = 3 \), so then we obtain \(I = \int_{1}^{3} \frac{-3}{u} \, du = -\ln(u) \bigg|_{1}^{3} = -3 \ln 3 \).
Interlude!

![Four cats](image-url)
Problem 6

(Fa15, #10) Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius r and height h of the cup that minimizes the cost.
Problem 6

(Fa15, #10) Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius r and height h of the cup that minimizes the cost.

Answer:
Problem 6

(Fa15, #10) Suppose we need to construct a coffee cup in the shape of a circular cylinder that holds 128π cubic centimeters. The cup has no top! The cost per square centimeter of material for the sides of the cup is 1 cent, and for the bottom of the cup the cost per square centimeter is 2 cents. Find the radius r and height h of the cup that minimizes the cost.

Answer: Volume is $V = \pi r^2 h$ cm3, so $r^2 h = 128$ hence $h = \frac{128}{r^2}$. Area of sides is $2\pi rh$ cm2, area of base is πr^2 cm2, so total cost is $C = 2\pi rh + 2\pi r^2 = 2\pi (\frac{128}{r} + r^2)$ cents.

So $C'(r) = 2\pi (-\frac{128}{r^2} + 2r)$ which is zero for $r = 4$ cm, and is the global min by C' sign diagram. So $\boxed{r = 4 \text{ cm and } h = 8 \text{ cm}}$.
(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}x^2$. Find $f(2)$ and $(f^{-1})'(10)$.
(Fa14, #7) Consider the function $f(x) = x^3 + \frac{1}{2}x^2$. Find $f(2)$ and $(f^{-1})'(10)$.

Answer:
(Fa14, #7) Consider the function \(f(x) = x^3 + \frac{1}{2}x^2 \). Find \(f(2) \) and \((f^{-1})'(10) \).

Answer: Note that \(f'(x) = 3x^2 + x \).

Clearly \(f(2) = 10 \), meaning that \(f^{-1}(10) = 2 \).

Then by the inverse function differentiation formula,

\[
(f^{-1})'(10) = \frac{1}{f'(f^{-1}(10))} = \frac{1}{f'(2)} = \frac{1}{14}.
\]
Interlude!
(Fa14, #10) Find the area of the region bounded by the graphs of
\(f(x) = x^2 - x - 1 \) and \(g(x) = x + 2 \).
Problem 8

(Fa14, #10) Find the area of the region bounded by the graphs of \(f(x) = x^2 - x - 1 \) and \(g(x) = x + 2 \).

Answer:
Problem 8

(Fa14, #10) Find the area of the region bounded by the graphs of \(f(x) = x^2 - x - 1 \) and \(g(x) = x + 2 \).

Answer: The curves intersect when \(x^2 - x - 1 = x + 2 \) so that \(x^2 - 2x - 3 = 0 \). Factoring gives \((x - 3)(x + 1) = 0 \) so intersection points are at \(x = -1, 3 \).

Testing at \(x = 0 \), or comparing the graphs, shows that \(y = x + 2 \) is the top curve and \(y = x^2 - x - 1 \) is the bottom curve.

Hence area is \(\int_{-1}^{3} \left[\text{top} - \text{bottom} \right] \, dx = \int_{-1}^{3} (-x^2 + 2x + 3) \, dx = \left[-\frac{1}{3}x^3 + x^2 + 3x \right]_{x=-1}^{3} = \left[-\frac{1}{3} \cdot 3^3 + 3^2 + 3 \cdot 3 \right] - \left[-\frac{1}{3} \cdot (-1)^3 + (-1)^2 + 3 \cdot (-1) \right] = \frac{32}{3} \).
(Fa14, #12) Compute the midpoint Riemann sum for $f(x) = x^2$ for the partition of the interval $[-\frac{1}{2}, 1]$ into 3 subintervals of equal length.
Problem 9

(Fa14, #12) Compute the midpoint Riemann sum for \(f(x) = x^2 \) for the partition of the interval \([-\frac{1}{2}, 1]\) into 3 subintervals of equal length.

Answer:
(Fa14, #12) Compute the midpoint Riemann sum for \(f(x) = x^2 \) for the partition of the interval \([-\frac{1}{2}, 1]\) into 3 subintervals of equal length.

Answer: The width of the subintervals is \(\frac{1 - (-1/2)}{3} = \frac{1}{2} \), and the subintervals are \([-\frac{1}{2}, 0], [0, \frac{1}{2}], [\frac{1}{2}, 1]\).

Then the Riemann sum is

\[
RS_{\text{mid}} = f(-\frac{1}{4}) \cdot \frac{1}{2} + f(\frac{1}{4}) \cdot \frac{1}{2} + f(\frac{3}{4}) \cdot \frac{1}{2} = \boxed{\frac{11}{32}}.
\]
Interlude!
Problem 10

(Sp17, #10c) Evaluate \(\int_{-\pi}^{\pi} \sin(x) \cos^2(x) \, dx \).

Answer:
Substitute \(u = \cos(x) \) so that \(du = -\sin(x) \, dx \). Then \(x = -\pi \) corresponds to \(u = -1 \) and \(x = \pi \) also corresponds to \(u = -1 \), so the integral is
\[
I = \int_{-1}^{-1} u^2 \, du = \left. -\frac{1}{3} u^3 \right|_{-1}^{-1} = 0.
\]
Problem 10

(Sp17, #10c) Evaluate $\int_{-\pi}^{\pi} \sin(x) \cos^2(x) \, dx$.

Answer:
(Sp17, #10c) Evaluate \(\int_{-\pi}^{\pi} \sin(x) \cos^2(x) \, dx \).

Answer: Substitute \(u = \cos(x) \) so that \(du = -\sin(x) \, dx \). Then \(x = -\pi \) corresponds to \(u = -1 \) and \(x = \pi \) also corresponds to \(u = -1 \), so the integral is \(I = \int_{-1}^{-1} u^2 \, du = -\frac{1}{3} u^3 \bigg|_{u=-1}^{-1} = 0 \).
Problem 11

Find the area of the finite region enclosed between the curves $y = 5x$ and $y = x^2 + 4$.

Answer:

The curves intersect when $5x = x^2 + 4$ so $x = 1, 4$. Using a test point or comparing graphs shows that $y = 5x$ is the top curve and $y = x^2 + 4$ is the bottom curve for $1 \leq x \leq 4$. Then the desired area is

$$\int_1^4 (5x - (x^2 + 4)) \, dx = \left(\frac{5}{2}x^2 - \frac{1}{3}x^3 - 4x \right) |_{x=1}^{x=4} = \frac{9}{2}.$$
Problem 11

Find the area of the finite region enclosed between the curves $y = 5x$ and $y = x^2 + 4$.

Answer:
Find the area of the finite region enclosed between the curves $y = 5x$ and $y = x^2 + 4$.

Answer: The curves intersect when $5x = x^2 + 4$ so $x = 1, 4$.

Using a test point or comparing graphs shows that $y = 5x$ is the top curve and $y = x^2 + 4$ is the bottom curve for $1 \leq x \leq 4$.

Then the desired area is

$$\int_1^4 (5x - x^2 - 4) \, dx = \left(\frac{5}{2}x^2 - \frac{1}{3}x^3 - 4x \right) \bigg|_{x=1}^{4} = \frac{9}{2}.$$
Interlude!
Problem 12

Evaluate \(\int \tan^3 x \sec^2 x \, dx \).
Problem 12

Evaluate \(\int \tan^3 x \sec^2 x \, dx \).

Answer:

Substitute \(u = \tan(x) \) so that \(du = \sec^2(x) \, dx \). Then

\[
I = \int u^2 \, du = \frac{1}{3} u^3 + C = \frac{1}{3} \tan^3(x) + C.
\]
Problem 12

Evaluate \(\int \tan^3 x \sec^2 x \, dx \).

Answer: Substitute \(u = \tan(x) \) so that \(du = \sec^2(x) \, dx \). Then

\[
I = \int u^2 \, du = \frac{1}{3} u^3 + C = \frac{1}{3} \tan^3(x) + C.
\]
Problem 13

(Fa14, #11d) Compute \(\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} \, dt \).
(Fa14, #11d) Compute \(\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} \, dt \).

Answer:
Problem 13

(Fa14, #11d) Compute $\int \frac{4t^4 - 3t + \sqrt[3]{t}}{t^2} \, dt$.

Answer: Distribute the integrand to obtain

$$I = \int \left(4t^2 - \frac{3}{t} + t^{-5/3} \right) \, dt = \frac{4}{3} t^3 - 3 \ln t - \frac{3}{2} t^{-2/3}.$$
End

Enjoy WeBWorK #12, and happy last day of fall classes!