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A CONJECTURE OF EVANS
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(Communicated by Jim Haglund)

Abstract. In a recent paper, Evans relates twisted Kloosterman sheaf sums
to Gaussian hypergeometric functions, and he formulates a number of con-
jectures relating certain twisted Kloosterman sheaf sums to the coefficients of
modular forms. Here we prove one of his conjectures for a fourth order twisted
Kloosterman sheaf sum Tn of the quadratic character on F×

p . In the course of
the proof we develop reductions for twisted moments of Kloosterman sums and
apply these in the end to derive a congruence relation for Tn with generalized

Apéry numbers.

1. Introduction and statement of results

Fix an odd prime p, and let Fp be the finite field with p elements. For any
multiplicative character χ on F×

p , we extend χ to a function on Fp by setting

χ(0) = 0. Let ε and φ be the trivial and quadratic characters on F×
p . Also let

ψ : Fp → C be the additive character x �→ e2πix/p.
We shall write x for the multiplicative inverse of x ∈ F×

p . For a ∈ F×
p , the

classical Kloosterman sum is

(1.1) K(a) :=
∑

x∈F×
p

ψ(x+ ax).

The nth twisted Kloosterman sheaf sum of φ is
(1.2)

Tn :=
∑
a∈F×

p

φ(a)(g(a)n + g(a)n−1h(a) + g(a)n−2h(a)2 + · · ·+ g(a)h(a)n−1 + h(a)n),

where g(a) and h(a) are the roots of the polynomial

(1.3) X2 +K(a)X + p.

We study a conjecture of Evans (see below) that relates T4 to the coefficient a(p)
of the unique normalized newform in S4(Γ0(8)), which is given by

(1.4)

∞∑
n=1

a(n)qn := q

∞∏
n=1

(1− q2n)4(1− q4n)4 = q− 4q3 − 2q5 +24q7 − 11q9 − · · · .
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To do so, we employ the Gaussian hypergeometric series. For multiplicative char-
acters A and B on Fp, define the normalized Jacobi sum(

A

B

)
=

B(−1)

p
J(A,B) =

B(−1)

p

∑
x∈Fp

A(x)B(1− x).

For multiplicative characters A0, . . . , An and B1, . . . , Bn on Fp, Greene [7] defined
the Gaussian hypergeometric series over Fp by

n+1Fn

(
A0, A1, . . . An

B1, . . . Bn

∣∣x) =
p

p− 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
· · ·

(
Anχ

Bnχ

)
χ(x),

where the sum is over all multiplicative characters χ on Fp (see also [11]). We will
be interested in the case where the top parameters are the quadratic character φ
and the bottom ones the trivial character ε. For brevity we write this function as

(1.5) n+1Fn(x) = n+1Fn

(
φ, φ, . . . φ

ε, . . . ε

∣∣x) =
p

p− 1

∑
χ

(
φχ

χ

)n+1

χ(x).

In [2] and [3], Ahlgren and Ono prove p34F3(1) = −a(p) − p by showing that
the coefficients a(p) and the hypergeometric values p34F3(1) count points on the
“Calabi-Yau” variety

{(x, y, z, w) ∈ (F×
p )

4 | x+
1

x
+ y +

1

y
+ z +

1

z
+ w +

1

w
= 0}.

With this result, Evans’ Conjecture can be stated as follows.

Conjecture (Evans, [5]). If p is an odd prime, then

T4

p
= p34F3(1) + p.

We prove the following theorem:

Theorem 1.1. Evans’ Conjecture is true.

Ahlgren and Ono’s work in [3] was motivated by Beukers’ Conjecture relating

the coefficient a(p) to the Apéry number1 A
(
p−1
2

)
, where

(1.6) A(n) :=
n∑

j=0

(
n+ j

j

)2(
n

j

)2

.

Beukers’ conjecture says that

(1.7) A

(
p− 1

2

)
≡ a(p) mod p2.

Ahlgren and Ono proved this conjecture using combinatorial properties of 4F3(1)
and the relation p34F3(1) = −a(p)− p [3]. Motivated by these results, we derive a
hypergeometric expression for the sum Tn and apply work of Ahlgren and Ono on
hypergeometric congruences to prove the following.

1Apéry used the numbers A(n) in his famous proof that ζ(3) is irrational [4].
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Theorem 1.2. For λ ∈ Fp, define the generalized Apéry number by

(1.8) A(p, λ) :=

p−1
2∑

j=0

( p−1
2

j

)2(p−1
2 + j

j

)
λpj

for λ ∈ F×
p and A(p, 0) = 1. Then, if n is a positive integer,

(1.9)

Tn+3 ≡ (−1)n+1p
∑

x1,...,xn∈F×
p

A

(
p,

(x1 + · · ·+ xn + 1)(x1 + · · ·+ xn + 1)

4

)
mod p2.

We briefly outline the structure of the paper. In the first section we provide
background information on Gaussian hypergeometric functions. Next we prove
reductions for Tn, including a purely hypergeometric expression as a sum of 3F2’s.
We then apply a finite field analogue of Clausen’s theorem to the specific n = 4
case. To complete the proof of Theorem 1.1, we express both T4 and p34F3(1) as a
“trace” of squares of 2F1’s. In the last section we prove Theorem 1.2.

2. Preliminaries on Gaussian hypergeometric functions

Here we state some basic results on Gaussian hypergeometric functions. Any
Gaussian hypergeometric function can be expressed as a “Diophantine” sum over
Fp [7]. We recall that for x �= 0,

2F1(x) =
φ(−1)

p

∑
y∈F×

p

φ(y)φ(1− y)φ(1− xy),(2.1)

3F2(x) =
1

p2

∑
y,z∈F×

p

φ(y)φ(1− y)φ(z)φ(1− z)φ(1− xyz).(2.2)

Note. We note that 3F2(0) = 2F1(0) = 0 according to Greene’s conventions given
in the introduction. However, it is also natural to define 3F2(0) and 2F1(0) by the
right hand sides of the equalities above. We will take this convention for the rest
of the paper because it simplifies the statements of Theorems 3.1 and 1.2.

Like their classical counterparts, Gaussian hypergeometric functions satisfy many
transformation laws. In this paper we need the following two transformations, which
are applications of Theorems 4.2 and 4.4 of [7].

Lemma 2.1. For x �= 0, 1, we have

2F1(x) = φ(−1)2F1(1− x),(2.3)

2F1(x) = φ(x)2F1(1/x).(2.4)

In what follows, we will need to express a 3F2 as a square of a 2F1. To do so,
we use a special case of a formula provided by Evans and Greene in Theorem 1.7
of [6].

Lemma 2.2. If t �= 0,±1, then

3F2

(
1

1− t2

)
= φ(t2 − 1)

(
−1

p
+ 2F1

(
1− t

2

)2
)
.

The following expression for p34F3(1) as a trace of squares of 2F1’s is proven in
Lemma 2.2 of [3].
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Lemma 2.3. We have that

p34F3(1) = p2
∑

x∈F×
p

φ(x)2F1(x)
2.

Finally, we will need two special evaluations of hypergeometric functions from
Corollary 11.12 and Theorem 11.14 of [11].

Lemma 2.4. We have that

2F1(−1) =

{
0 if p ≡ 3 mod 4,

2x(−1)
x+y+1

2

p if p ≡ 1 mod 4, x2 + y2 = p, and x odd,
(2.5)

3F2(1) =

{
0 if p ≡ 3 mod 4,
4x2−2p

p2 if p ≡ 1 mod 4, x2 + y2 = p, and x odd.
(2.6)

3. Reductions of twisted Kloosterman sums

Using the relations g(a) + h(a) = −K(a) and g(a)h(a) = p, which follow from
(1.3), the polynomial g(a)n+g(a)n−1h(a)+· · ·+g(a)h(a)n−1+h(a)n can be written
as a polynomial in K(a) with coefficients in Z. Therefore Tn can be written as a
linear combination of the twisted Kloosterman moments

(3.1) S(m) =
∑
a∈F×

p

φ(a)K(a)m.

In this section we give general reductions for such exponential sums, relate them
to hypergeometric functions, and specialize to the case T4.

3.1. Reductions of Tn. The next proposition reduces the exponential sum S(m) =∑
a∈F×

p
φ(a)K(a)m to a symmetric sum of quadratic characters.

Proposition 3.1. For an integer m ≥ 1, we have that

S(m+ 1) = pφ(−1)
∑

x1,...,xm∈F×
p

φ(x1 + · · ·+ xm + 1)φ(x1 + · · ·+ xm + 1).

Proof. By definition, we have that∑
a∈F×

p

φ(a)K(a)m+1

=
∑
a∈F×

p

φ(a)
∑

x1,...,xm,y∈F×
p

ψ(x1 + · · ·+ xm + y + a(x1 + · · ·+ xm + y))

=
∑

x1,...,xm,y∈F×
p

ψ(x1 + · · ·+ xm + y)
∑
a∈F×

p

φ(a)ψ(a(x1 + · · ·+ xm + y)).

If x1 + · · ·+ xm + y = 0, then the sum on a vanishes, so we may multiply by

φ(x1 + · · ·+ xm + y)2 =

{
0 if x1 + · · ·+ xm + y = 0,
1 otherwise
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inside the sum on x1, . . . , xm, y. Thus we have∑
a∈F×

p

φ(a)K(a)m+1 =
∑

x1,...,xm,y∈F×
p

φ(
∑

i xi + y)ψ(
∑

i xi + y)

×
∑
a∈F×

p

φ(a(
∑

i xi + y))ψ(a(
∑

i xi + y))

= G(φ)
∑

x1,...,xm,y∈F×
p

φ(
∑

i xi + y)ψ(
∑

i xi + y),

where G(φ) =
∑

a∈F×
p
φ(a)ψ(a) is the usual Gauss sum. Making the change of

variables (x1, . . . , xm, y) �→ (x1y, x2y, . . . , xmy, y), we have∑
a∈F×

p

φ(a)K(a)m+1 = G(φ)
∑

x1,...,xm∈F×
p

φ(
∑

i xi + 1)
∑
y∈F×

p

φ(y)ψ(y(
∑

i xi + 1)).

As before, we can multiply by φ(
∑

i xi + 1)2 to get∑
a∈F×

p

φ(a)K(a)m+1 = G(φ)
∑

x1,...,xm∈F×
p

φ(
∑

i xi + 1)φ(
∑

i xi + 1)

×
∑
y∈F×

p

φ(y(
∑

i xi + 1))ψ(y(
∑

i xi + 1))

= G(φ)2
∑

x1,...,xm∈F×
p

φ(
∑

i xi + 1)φ(
∑

i xi + 1).

Since G(φ)2 = pφ(−1) by Proposition 6.3.2 of [8], this finishes the proof. �

Remark. Note in particular that S(2) = −p. Also, the sum S(1)=
∑

a∈F×
p
φ(a)K(a)

is not covered by the proposition, but it is easy to evaluate S(1) = G(φ)2 = pφ(−1)
directly.

The form of the character sum in the proposition motivates the study of the
auxiliary function

(3.2) Q(a, b) =
∑

x,y∈F×
p

φ(x+ y + a)φ(x+ y + b)

for a, b ∈ Fp. The function Q(a, b) serves as the connection between twisted Kloost-
erman sheaf sums and hypergeometric functions.

Proposition 3.2. If a, b ∈ Fp are not both zero, then Q(a, b) = p2φ(−1)3F2

(
ab

4

)
+

pφ(ab). Additionally, Q(0, 0) = −(p− 1)φ(−1).

Proof. First, we may assume that a �= 0 by interchanging a and b (if necessary)
because the sum is clearly symmetric in a and b. Now, for c ∈ F×

p , d ∈ Fp, we note
the well-known formula∑

x∈Fp

φ(cx2 + dx+ e) =

{
(p− 1)φ(c) if d2 − 4ce = 0,
−φ(c) if d2 − 4ce �= 0.
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Applying the change of variables (x+ y, xy) �→ (s, r) yields

Q(a, b) =
∑

s∈Fp,r∈F×
p

φ(s+ a)φ(s/r + b)[1 + φ(s2 − 4r)]

=
∑

s∈Fp,r∈F×
p

φ(s+ a)φ(s/r + b) +
∑
r∈Fp

φ(a)φ(b)φ(−4r)

+
∑

r,s∈F×
p

φ(s+ a)φ(s/r + b)φ(s2 − 4r).

The first sum equals pφ(ab) by the note above, and the second sum clearly vanishes.
Substituting (r, s) �→ (ra2s2/4,−as) in the third sum yields∑

r,s∈F×
p

φ(r)φ(s+ a)φ(s+ br)φ(s2 − 4r)

=
∑

r,s∈F×
p

φ(r)φ(−as+ a)φ(−as+ bra2s2/4)φ(1− r)

= φ(−1)
∑

r,s∈F×
p

φ(s)φ(r)φ(1− s)φ(1− absr/4)φ(1− r)

= φ(−1)p23F2

(
ab

4

)
.

For the last statement of the proposition, we have

Q(0, 0) =
∑

x,y∈F×
p

φ(x+ y)2φ(xy) =
∑

x∈F×
p

−φ(−x2) = −(p− 1)φ(−1).

�

Remark. The specific evaluation of Q(a, b) in the case a = b = 1 is the subject of two
notable early papers. The Lehmers gave the first evaluation of the sum, directly
rewriting Q(1, 1) as a Jacobsthal sum via a complicated change of variables [9].
A later paper by Mordell revisits their method and finds a simpler path that also
eventually leads to Jacobsthal sums [10]. The more general method here also allows
for direct evaluation of Q(1, 1) = φ(−1)p23F2(1/4) + p, as 3F2(1/4) has an explicit
evaluation as given in Theorem 11.17 of [11].

If we now define for positive integers m the sum

(3.3) G(m) :=
∑

x1,...,xm∈F×
p

3F2

(
(x1 + x2 + · · ·+ xm + 1)(x1 + · · ·+ xm + 1)

4

)
,

we have the following result.

Theorem 3.1. For m ≥ 1, there is a recurrence

(3.4) S(m+ 3) = p3G(m) + pS(m+ 1)− p2C(m),

where C(m) is the number of simultaneous solutions to the congruences x1 + · · ·+
xm = −1 and x1 + · · ·+ xm = −1.
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Proof. Applying Propositions 3.1 and 3.2, we have

S(m+ 3) = pφ(−1)
∑

x1,...,xm+2∈F×
p

φ(x1 + · · ·+ xm+2 + 1)φ(x1 + · · ·+ xm+2 + 1)

= pφ(−1)
∑

x1,...,xm∈F×
p

Q(x1 + · · ·+ xm + 1, x1 + · · ·+ xm + 1)

= p3G(m)+p2φ(−1)
∑

x1,...,xm∈F×
p

φ ((x1 +· · ·+ xm + 1)(x1 +· · ·+ xm + 1))

+ pφ(−1)(Q(0, 0)− p2φ(−1)3F2(0))C(m)

= p3G(m) + pS(m+ 1)− p2C(m),

where the last term is a correction stemming from the fact that

Q(0, 0)− p2φ(−1)3F2(0) = −pφ(−1),

and this correction must be made exactly C(m) times. �
Remark. This result allows us to express Tn as a linear combination of 3F2’s, S(1),
S(2), S(3) and the constants C(m).

3.2. Simplifications of T4. A calculation using the relations g(a)+h(a) = −K(a)
and g(a)h(a) = p shows that

g(a)4 + g(a)3h(a) + g(a)2h(a)2 + g(a)h(a)3 + h(a)4 = K(a)4 − 3pK(a)2 + p2.

Therefore we have that
(3.5)

T4 =
∑
a∈F×

p

φ(a)(K(a)4 − 3pK(a)2 + p2) =
∑
a∈F×

p

φ(a)K(a)4 − 3p
∑
a∈F×

p

φ(a)K(a)2.

We can now apply the results from the previous section to reduce T4. To ease
notation, we define a function F : F×

p → C by

(3.6) F (a) := Q(a+ 1, a+ 1).

Lemma 3.1. We have

T4 = pφ(−1)
∑
x∈F×

p

F (x) + 3p2.

Proof. Write T4 = S(4)− 3pS(2) as in (3.5) and apply Proposition 3.1. �
Lemma 3.2. For a �= 0,±1, we have that

F (a) = p2φ(a)2F1(−a)2.

Proof. By Proposition 3.2, for a �= 0,−1, we have that

(3.7) F (a) = pφ(a) + p2φ(−1)3F2

(
(a+ 1)2

4a

)
.

Taking t = a−1
a+1 in Lemma 2.2, we get

p2φ(−1)3F2

(
(a+ 1)2

4a

)
= φ(a)

(
−p+ p22F1

(
1

1 + a

)2
)
,

and so F (a) = p2φ(a)2F1(1/(1 + a))2. Applying the two transformations in Lem-
ma 2.1 completes the proof. �
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We will need two special evaluations of F at ±1, the points excluded from the
previous lemma.

Lemma 3.3. We have that

φ(−1)F (1) = p2φ(−1)2F1(−1)2 − p,(3.8)

φ(−1)F (−1) = p22F1(1)
2 − p.(3.9)

Proof. By Proposition 3.2 we have F (1) = p + p2φ(−1)3F2(1), and so the first
identity follows directly from Lemma 2.4. Note that

φ(−1)F (−1) = φ(−1)
∑

x,y∈F×
p

φ(x+ y)φ(x+ y) = φ(−1)
∑

x,y∈F×
p

φ(xy)φ(x+ y)2

= −φ(−1)
∑

x+y=0

φ(xy) = −(p− 1),

and the Diophantine representation in (2.1) for 2F1 implies that p22F1(1)
2 = 1.

This proves (3.9). �

4. Proof of Theorem 1.1

By successively applying Lemmas 3.1, 3.2, and 3.3, we have

T4

p
= 3p+ φ(−1)

∑
x∈F×

p

F (x)

= 3p+ φ(−1)F (1) + φ(−1)F (−1) + p2
∑

x∈F×
p \{±1}

φ(−x)2F1(−x)2

= 3p+ (φ(−1)F (1)− p2φ(−1)2F1(−1)2) + (φ(−1)F (−1)− p22F1(1)
2)

+ p2
∑

x∈F×
p

φ(x)2F1(x)
2

= p+ p2
∑

x∈F×
p

φ(x)2F1(x)
2.

Applying Lemma 2.3 yields

T4

p
= p34F3(1) + p.

5. Apéry-type congruences

For the proof of Theorem 1.2, we recall a result of Ahlgren [1].

Theorem 5.1 (Ahlgren). If p is an odd prime and 1 ≤ λ ≤ p− 1, then define

A(p, λ) :=

p−1
2∑

j=0

(p−1
2

j

)2( p−1
2 + j

j

)
λpj ,

B(p, λ) :=

p−1
2∑

j=0

(p−1
2

j

)2( p−1
2 + j

j

)
λj ·

⎧⎨
⎩1 +

1

2

p−1
2 +j∑

i= p+1
2

1

i
+ 3j

p−1
2 +j∑

i=1+j

1

i

⎫⎬
⎭ .

Then we have

(5.1) p23F2(λ) ≡ A(p, λ) + pB(p, λ) mod p2.
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Remark. If we define A(p, 0) = 1 and B(p, 0) = 0, then the results self-evidently
hold for λ = 0 as well. We will use this definition in our proof below.

Proof of Theorem 1.2. By Proposition 3.1, pS(m) ≡ 0 mod p2. Therefore, Theo-
rems 3.1 and 5.1 together show that

S(m+ 3) ≡
∑

x1,...,xm∈F×
p

p33F2

(
(x1 + x2 + · · ·+ xm + 1)(x1 + · · ·+ xm + 1)

4

)

≡ p
∑

x1,...,xm∈F×
p

A

(
p,

(x1 + · · ·+ xm + 1)(x1 + · · ·+ xm + 1)

4

)
mod p2.

Proposition 3.1 shows that the moments S(k) vanish modulo p, hence writing Tn

as a linear combination of moments gives Tn ≡ (−1)nS(n) mod p2. �

Remark. The number of simultaneous solutions to the congruences x1 + x2 + · · ·+
xp = a and x1 + x2 + · · · + xp = b is equal to 0 mod p for all (a, b) except for
a = b = 0, where the number of solutions is −1 mod p. Applying this fact yields
that Tm+p ≡ −Tm mod p2.
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