Characterizations of Quadratic, Cubic, and Quartic Residue Matrices

Evan P. Dummit
University of Rochester

AMS Contributed Paper Session in Number Theory
Joint Mathematics Meetings
January 4, 2017
Goals of talk:

1. Describe the construction of “quadratic residue matrices” and give a simple characterization of such matrices.
2. Generalize construction and characterization results to “cubic” and “quartic” residue matrices.
3. Mention generalization to function-field case.

These results are partly joint work with D. Dummit and H. Kisilevsky.
Recall: for \(p \) is an odd prime, the quadratic residue symbol is defined as:

\[
\left(\frac{a}{p} \right) = \begin{cases}
0 & \text{if } a \text{ is divisible by } p \\
+1 & \text{if } a \text{ is a nonzero square mod } p \\
-1 & \text{if } a \text{ is a nonsquare mod } p
\end{cases}
\]

Question 1

Suppose that \(p_1, p_2, \ldots, p_n \) are distinct odd primes. What possibilities are there for the collection of \(n^2 \) quadratic residue symbols \(\left(\frac{p_i}{p_j} \right) \) for \(1 \leq i, j \leq n \)?

This question originally arose in the context of studying “splitting configurations” of minimally tamely ramified multiquadratic extensions in algebraic number theory.
Sign Matrices and Quadratic Residue Matrices

We have \(n^2 \) pieces of data: let’s put them into a matrix!

Definition

The quadratic residue matrix associated to the distinct odd primes \(p_1, p_2, \ldots, p_n \) is the \(n \times n \) matrix \(M_{i,j} \) whose \((i,j)\)-entry is \(\left(\frac{p_i}{p_j} \right) \).

These matrices all have a particular form:

Definition

A sign matrix is a matrix with entries of 0 on the diagonal and \(\pm 1 \) off the diagonal.

By definition, every quadratic residue matrix is a sign matrix.
Quadratic Residue Matrices, I

Example

For the primes $p_1 = 3$, $p_2 = 7$, and $p_3 = 13$, the associated quadratic residue matrix is

$$M = \begin{pmatrix}
0 & -1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{pmatrix}.$$

Natural questions:

- Is there a nice way to tell if a given sign matrix is a quadratic residue matrix for some set of primes?
- How many quadratic residue matrices are there?
Can make a few simple observations:

- Classes of sign matrices and quadratic residue matrices are invariant under conjugation by permutation matrices.
- Quadratic reciprocity clearly imposes some conditions. Can neatly deal with them if we rearrange the primes first.
Quadratic Residue Matrices, II

Can make a few simple observations:

- Classes of sign matrices and quadratic residue matrices are invariant under conjugation by permutation matrices.
- Quadratic reciprocity clearly imposes some conditions. Can neatly deal with them if we rearrange the primes first.
- So: order p_1, \ldots, p_n so that the first s are $3 \bmod 4$ and the remaining $n - s$ are $1 \bmod 4$.
- Then the associated quadratic residue matrix has the form
 \[
 \begin{pmatrix}
 A & B \\
 B^t & S
 \end{pmatrix}
 \]
 where A is an $s \times s$ skew-symmetric sign matrix, S is an $(n - s) \times (n - s)$ symmetric sign matrix, and B is an $s \times (n - s)$ matrix of entries ± 1.
Characterizations of Quadratic, Cubic, and Quartic Residue Matrices

Characterization of Quadratic Residue Matrices

Theorem 2 (D. Dummit, E.D., Kisilevsky)

If M is an $n \times n$ sign matrix, the following are equivalent:

1. There exists an integer $1 \leq s \leq n$ such that M can be conjugated by a permutation matrix into the form

 $\begin{pmatrix} A & B \\ B^t & S \end{pmatrix}$

 where A is an $s \times s$ skew-symmetric sign matrix, S is an $(n - s) \times (n - s)$ symmetric sign matrix, and B is an $s \times (n - s)$ matrix of entries ± 1.

2. The matrix M is a quadratic residue matrix associated to some set of distinct odd primes.

3. There exists an integer s with $1 \leq s \leq n$ such that the diagonal entries of M^2 consist of s occurrences of $n + 1 - 2s$ and $n - s$ occurrences of $n - 1$.
Characterizations of Quadratic, Cubic, and Quartic Residue Matrices

Identifying Quadratic Residue Matrices

Using criterion (c) of Theorem 2, we can easily check whether a given matrix is a QR matrix:

Example

For

\[
M = \begin{pmatrix}
0 & -1 & -1 \\
-1 & 0 & -1 \\
1 & 1 & 0
\end{pmatrix},
\]

the diagonal entries of \(M^2\) are 0, 0, \(-2\), so this matrix is not a quadratic residue matrix as it fails condition (3).

What about counting? Results do not seem to give an immediate counting method.
Counting Quadratic Residue Matrices

Here are some numbers:

<table>
<thead>
<tr>
<th>n</th>
<th>QR classes</th>
<th>QR matrices</th>
<th>Sign matrices ($= 2^{n(n-1)}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>768</td>
<td>4096</td>
</tr>
<tr>
<td>5</td>
<td>314</td>
<td>27648</td>
<td>1048576</td>
</tr>
<tr>
<td>6</td>
<td>3360</td>
<td>1900544</td>
<td>1073741824</td>
</tr>
<tr>
<td>7</td>
<td>59744</td>
<td>253755392</td>
<td>4398046511104</td>
</tr>
</tbody>
</table>

Theorem 3 (E.D.)

There are precisely $\left(2^n - n\right)^2 n(n-1)/2$ quadratic residue matrices among the $n \times n$ sign matrices.
Counting Quadratic Residue Matrices

Here are some numbers:

<table>
<thead>
<tr>
<th>n</th>
<th>QR classes</th>
<th>QR matrices</th>
<th>Sign matrices ($= 2^{n(n-1)}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>768</td>
<td>4096</td>
</tr>
<tr>
<td>5</td>
<td>314</td>
<td>27648</td>
<td>1048576</td>
</tr>
<tr>
<td>6</td>
<td>3360</td>
<td>1900544</td>
<td>1073741824</td>
</tr>
<tr>
<td>7</td>
<td>59744</td>
<td>253755392</td>
<td>4398046511104</td>
</tr>
</tbody>
</table>

Theorem 3 (E.D.)

There are precisely $(2^n - n)2^{n(n-1)/2}$ quadratic residue matrices among the $n \times n$ sign matrices.
Natural generalization: use mth power residue symbols over a ground field containing the mth roots of unity.

Definition

A cyclotomic sign matrix of mth roots of unity is a matrix with entries of 0 on the diagonal and mth roots of unity off the diagonal.

We will consider the cases $m = 3$ and $m = 4$, of cubic and quartic sign matrices over \mathbb{Q}. For $m > 4$, things appear to become more difficult (primarily, though not exclusively, because the ideals in $\mathbb{Z}(\zeta_m)$ are no longer always principal).
Cubic Residue Matrices

Definition

The cubic residue matrix associated to the distinct prime ideals p_1, \ldots, p_n not dividing 3 of $\mathbb{Q}(\sqrt{-3})$ is the $n \times n$ matrix $M_{i,j}$ whose (i,j)-entry is the cubic residue symbol $\left(\frac{\pi_i}{\pi_j} \right)_3$, where π_k is the unique 3-primary generator for p_k for $1 \leq k \leq n$. cubic residue matrix
Cubic Residue Matrices

Definition

The cubic residue matrix associated to the distinct prime ideals \(p_1, \ldots, p_n \) not dividing 3 of \(\mathbb{Q}(\sqrt{-3}) \) is the \(n \times n \) matrix \(M_{i,j} \) whose \((i,j)\)-entry is the cubic residue symbol \(\left(\frac{\pi_i}{\pi_j} \right)_3 \), where \(\pi_k \) is the unique 3-primary generator for \(p_k \) for \(1 \leq k \leq n \).

Cubic reciprocity is symmetric, so the analogue of our theorem ends up being much simpler in this case:

Theorem 4 (D. Dummit, E.D., Kisilevsky)

A cubic sign matrix is a cubic residue matrix if and only if it is symmetric.
Quartic Residue Matrices

The quartic residue matrices have a similar construction to the cubic residue matrices:

Definition

The quartic residue matrix associated to the distinct prime ideals \(p_1, \ldots, p_n \) not dividing 2 of \(\mathbb{Q}(i) \) is the \(n \times n \) matrix \(M_{i,j} \) whose \((i,j)\)-entry is the quartic residue symbol \(\left(\frac{\pi_i}{\pi_j} \right)_4 \), where \(\pi_k \) is the unique 2-primary generator for \(p_k \) for \(1 \leq k \leq n \).

Quartic reciprocity has a similar flavor to quadratic reciprocity, and the analogue of our theorem has a similar statement.
Theorem 5 (D. Dummit, E.D., Kisilevsky)

If \(M \) is an \(n \times n \) quartic sign matrix, the following are equivalent:

1. There exists an integer \(1 \leq s \leq n \) such that \(M \) can be conjugated by a permutation matrix into the form
 \[
 \begin{pmatrix}
 A & B \\
 B^t & S
 \end{pmatrix}
 \]
 where \(A \) is an \(s \times s \) skew-symmetric quartic sign matrix, \(S \) is an \((n-s) \times (n-s) \) symmetric quartic sign matrix, and \(B \) is an \(s \times (n-s) \) matrix of entries \(\pm 1, \pm i \).

2. The matrix \(M \) is a quartic residue matrix.

3. If \(M = (m_{j,k}) \), then \(m_{j,k} = \pm m_{k,j} \) for all \(j, k \) with \(1 \leq j, k \leq n \), and there exists an integer \(s \) with \(1 \leq s \leq n \) such that the diagonal entries of \(\overline{M}M \) consist of \(s \) occurrences of \(n+1-2s \) and \(n-s \) occurrences of \(n-1 \).
The Function-Field Case

The dth power residue symbol also makes sense over function fields, and we can pose similar questions in that setting. Briefly: let q be a prime power and d be a positive integer with d dividing $q - 1$, let \mathbb{F}_q denote the finite field with q elements, and let $\left(\frac{a}{P} \right)_d$ be the dth-power residue symbol over $\mathbb{F}_q[t]$.

Definition

The *dth-power residue matrix* associated to the monic irreducible polynomials P_1, P_2, ..., P_n in $\mathbb{F}_q[t]$ is the $n \times n$ matrix whose (i, j)-entry is the dth power residue symbol $\left(\frac{P_i}{P_j} \right)_d$.

Each dth-power residue matrix is a “cyclotomic sign matrix of dth roots of unity”: an $n \times n$ matrix whose diagonal entries are all 0 and whose off-diagonal entries are all complex dth roots of unity.
We can give a characterization of which \(n \times n \) cyclotomic sign matrices are \(d \)th-power residue matrices:

Theorem 6 (E.D.)

If \((q - 1)/d\) is even, then \(M\) is a \(d\)th-power residue matrix if and only if \(M\) is symmetric.

Theorem 7 (E.D.)

*If \((q - 1)/d\) is odd, then \(M\) is a \(d\)th-power residue matrix if and only if \(M\) can be conjugated by a permutation matrix into the form \[
\begin{pmatrix}
A & B \\
B^t & S
\end{pmatrix}
\]
where \(A\) is an \(s \times s\) skew-symmetric cyclotomic sign matrix, \(S\) is an \((n - s) \times (n - s)\) symmetric cyclotomic sign matrix, and \(B\) is an \(s \times (n - s)\) matrix of \(d\)th roots of unity.*
Further Avenues

Here are a few things that remain unresolved:

- What happens if we allow non-primary generators of ideals? (This would expand the class of possible matrices when \(m > 2 \): for example we can get non-symmetric matrices in the \(m = 3 \) case.)

- Can the results in the number-field case be extended in a pleasant way for \(m > 4 \), or over larger ground fields?

- What if we try using composites of other types of minimally tamely ramified extensions? Are there equally simple objects (like the residue matrices) attached to these extensions that capture number-theoretic information?

- Are there any combinatorial applications of the quadratic residue matrices?
Thank you for attending my talk!