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4 Arithmetic and Unique Factorization in Integral Domains

Our goal in this chapter is describe various properties of integral domains related to division algorithms, common
divisors, and unique factorization (thereby generalizing many of the properties of Z). We begin by studying
Euclidean domains, which are rings that possess a general �division algorithm�, and in particular prove that every
ideal in a Euclidean domain is principal.

We then enlarge our focus to study general principal ideal domains, in which every ideal is principal, and prove
that the elements in principal ideal domains have a unique factorization property. We then broaden our focus again
to study the general class of unique factorization domains, and discuss some applications of unique factorization in
the classes of rings we have discussed.

Finally, we focus our attention on the quadratic integer rings OD and study the properties of ideals in these rings.
Although many of these rings do not have unique factorization of elements, we will prove that these rings do possess
unique factorization of ideals (in the sense that every nonzero ideal is a unique product of prime ideals).

4.1 Euclidean Domains and Principal Ideal Domains

• In this section we will discuss �Euclidean domains�, which are integral domains having a division algorithm,
and then study the element and ideal structure of these rings. In particular, we will show that every ideal in
such a ring is principal.

• Then we will shift our attention to the �principal ideal domains�, in which every ideal is principal, and prove
that they possess a unique factorization property.
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4.1.1 Arithmetic in Integral Domains

• We brie�y review some properties of ring arithmetic in integral domains.

• De�nition: Suppose that R is an integral domain and a, b, d ∈ R.

1. We say that d divides a, written d|a, if there exists some r ∈ R such that a = rd.

2. We say d is a common divisor of a and b if d|a and d|b.
3. We say that a common divisor d ∈ R is a greatest common divisor of a and b if d 6= 0 and for any other

common divisor d′, it is true that d′|d.
4. If 1 is a greatest common divisor of a and b, then we say a and b are relatively prime.

5. If a = ub for some unit u, then we say a and b are associates.

◦ Observe that every ring element divides each of its associates, and that �being associate� is an equivalence
relation.

◦ Two elements in an integral domain may not possess a greatest common divisor. If a and b do have a
greatest common divisor d, then the collection of greatest common divisors of a and b is precisely the set
of associates of d.

• Here is an explicit example of elements in an integral domain that do not possess a greatest common divisor:

• Example: Show that 2 + 2
√
−5 and 6 do not possess a greatest common divisor in Z[

√
−5].

◦ First, observe that 2 and 1 +
√
−5 are both common divisors of 2 + 2

√
−5 and 6.

◦ Now suppose that 2 + 2
√
−5 and 6 had a gcd d: then d would divide 2(1 +

√
−5) and 6, and also be

divisible by 2 and 1 +
√
−5.

◦ By taking norms, we see that N(d) divides both N(2 + 2
√
−5) = 24 and N(6) = 36, hence divides 12.

◦ Also, N(d) would also necessarily be a multiple of N(2) = 4 and N(1 +
√
−5) = 6, hence be a multiple

of 12.

◦ The only possibility is N(d) = 12, but there are no elements of norm 12 in Z[
√
−5], since there are no

integer solutions to a2 + 5b2 = 12. This is a contradiction, so 2 + 2
√
−5 and 6 do not possess a greatest

common divisor in Z[
√
−5].

• Proposition (Properties of Divisibility): Let R be an integral domain. Then for any elements a, b, d ∈ R, the
following are true:

1. The element d divides a if and only if the principal ideal (a) is contained in the principal ideal (d).

◦ Proof: Note (a) ⊆ (d) if and only if a ∈ (d) if and only if a = dk for some k ∈ R.
2. The elements a and b are associate if and only if a|b and b|a, if and only if (a) = (b).

◦ Proof: Note (a) = (b) if and only if (a) ⊆ (b) and (b) ⊆ (a), which is equivalent to a|b and b|a by the
above. Furthermore, a = ub for some unit u clearly implies a|b and b|a, and conversely if a|b and
b|a, then a = br

3. If a and b have a gcd d, then then the collection of greatest common divisors of a and b is precisely the
set of associates of d.

◦ Proof: If d is a gcd of a and b and u is any unit, then (ud)|a and (ud)|b, and also if d′|d then d′|(ud)
so ud is also a gcd. Furthermore, if d and e are both gcds of a and b, then d|e and e|d so that d and
e are associates.

4. The element d is a gcd of a and b if and only if (d) is the smallest principal ideal containing (a, b). In
particular, if (a, b) is a principal ideal, then any generator is a gcd of a and b.

◦ Proof: By (1) above, d is a common divisor of a and b if and only if (d) contains both (a) and (b),
which is equivalent to saying (a, b) ⊆ (d).

◦ Then by (1) again, if d is a gcd of a and b and d′ is any other common divisor, we must have
(d) ⊆ (d′): thus, d is a gcd of a and b if and only if (d) is the smallest principal ideal containing
(a, b).
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◦ Finally, if (a, b) = (d) is itself principal, then clearly (d) is the smallest principal ideal containing
(a, b).

◦ Remark: The fact that (a, b) = (d) if d is a gcd of a and b is the reason that the greatest common
divisor is often denoted by the symbol (a, b).

• De�nition: Let R be an integral domain. A nonzero element r ∈ R is irreducible if it is not a unit and, for
any �factorization� p = bc with b, c ∈ R, one of b and c must be a unit. A ring element that is not irreducible
and not a unit is called reducible: it can be written as r = ab where neither a nor b is a unit.

◦ Example: The irreducible elements of Z are precisely the prime numbers (and their negatives).

◦ Example: The irreducible elements of F [x] are the irreducible polynomials of positive degree.

◦ Example: The element 5 is reducible in Z[i], since we can write 5 = (2 + i)(2− i) and neither 2 + i nor
2− i is a unit in Z[i]. However, the element 2 + i is irreducible: if 2 + i = bc for some z, w ∈ Z[i], then
taking norms yields 5 = N(2 + i) = N(b)N(c), and since 5 is a prime number, one of N(b) and N(c)
would necessarily be ±1, and then b or c would be a unit. Likewise, 2− i is also irreducible.

◦ Example: The element 2 is irreducible in Z[
√
−5]: if 2 = bc then taking norms yields 4 = N(2) =

N(b)N(c), and since there are no elements of norm 2 in Z[
√
−5], one of N(b) and N(c) would necessarily

be ±1, and then b or c would be a unit.

• De�nition: Let R be an integral domain. A nonzero element p ∈ R is prime if p is nonzero and not a unit,
and for any a, b ∈ R, if p|ab then p|a or p|b. Equivalently, p is prime if p is nonzero and the ideal (p) is a
prime ideal.

◦ Example: The prime elements of Z are precisely the prime numbers (and their negatives).

◦ Example: The prime elements of F [x] are the irreducible polynomials of positive degree.

◦ Example: The element 2 + i is prime in Z[i]: by the calculation above, if ab ∈ (2 + i) then 2 + i = bc for
some z, w ∈ Z[i], then taking norms yields 5 = N(2+ i) = N(b)N(c), and since 5 is a prime number, one
of N(b) and N(c) would necessarily be ±1, and then b or c would be a unit.

◦ Non-Example: The element 2 is not prime in Z[
√
−5]: note that 6 = (1+

√
−5)(1−

√
−5) is divisible by

2, but neither 1 +
√
−5 nor 1−

√
−5 is divisible by 2.

• As suggested by the examples above, prime elements are always irreducible, but irreducible elements are not
necessarily prime (we will later discuss under what conditions irreducible elements will be prime):

• Proposition (Primes are Irreducible): In an integral domain, prime elements are always irreducible.

◦ Proof: Suppose p ∈ R is a prime element. If p = bc then since p|bc, we conclude that p|b or p|c; without
loss of generality suppose b = pr.

◦ Then p = prc, so since p 6= 0 we may cancel to conclude rc = 1, so that c is a unit. Thus, p is irreducible.

4.1.2 Euclidean Domains

• Our �rst goal is to discuss what it means for an integral domain to possess a �division algorithm�:

• De�nition: If R is an integral domain, any function N : R → {0, 1, 2, . . . } such that N(0) = 0 is called a
norm on R.

◦ Observe that this is a rather weak property, and that any given domain may possess many di�erent
norms.

• De�nition: A Euclidean domain (or domain with a division algorithm) is an integral domain R that possesses
a norm N with the property that, for every a and b in R with b 6= 0, there exist some q and r in R such that
a = qb+ r and either r = 0 or N(r) < N(b).

◦ The purpose of the norm function is to allow us to compare the size of the remainder to the size of the
original element. Note that the quotient and remainder are not required to be unique!
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◦ Example: Any �eld is a Euclidean domain, because any norm will satisfy the de�ning condition. This
follows because for every a and b with b 6= 0, we can write a = qb+ 0 with q = a · b−1.
◦ Example: The integers Z are a Euclidean domain with N(n) = |n|.
◦ Example: If F is a �eld, then the polynomial ring F [x] is a Euclidean domain with norm given by
N(p) = deg(p) for p 6= 0.

• Before we give additional examples, we will remark that the reason Euclidean domains have that name is that
we can perform the Euclidean algorithm in such a ring, in precisely the same manner as in Z and F [x]:

• De�nition: If R is a Euclidean domain, then for any a, b ∈ R with b 6= 0, the Euclidean algorithm in R consists
of repeatedly applying the division algorithm to a and b as follows, until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + rk+1

rk = qk+1rk+1.

◦ By the construction of the division algorithm, we know that N(r1) > N(r2) > · · · , and since N(ri) is a
nonnegative integer for each i, this sequence must eventually terminate with the last remainder equalling
zero (else we would have an in�nite decreasing sequence of nonnegative integers).

• The Gaussian integers provide another important example of a Euclidean domain:

• Proposition (Z[i] is Euclidean): The Gaussian integers Z[i] are a Euclidean domain, under the normN(a+bi) =
a2 + b2.

◦ Explicitly, given a+ bi and c+ di in Z[i], we will describe how to produce q, r ∈ Z[i] such that a+ bi =

q(c+ di) + r, and N(r) ≤ 1

2
N(c+ di). This is even stronger than is needed (once we note that the only

element of norm 0 is 0).

◦ Proof: We need to describe the algorithm for producing q and r when dividing an element a+ bi by an
element c+ di.

◦ If c+di 6= 0, then we can write
a+ bi

c+ di
= x+ iy where x = (ac+ bd)/(c2+d2) and y = (bc−ad)/(c2+d2)

are real numbers.

◦ Now we de�ne q = s + ti where s is the integer closest to x and t is the integer closest to y, and set
r = (a+ bi)− q(c+ di). Clearly, (a+ bi) = q(c+ di) + r.

◦ All we need to do now is showN(r) ≤ 1

2
N(c+di): �rst observe that

r

c+ di
=
a+ bi

c+ di
−q = (x−s)+(y−t)i.

Then because |x− s| ≤ 1

2
and |y − t| ≤ 1

2
by construction, the triangle inequality implies

∣∣∣∣ r

c+ di

∣∣∣∣ ≤ √22 .

Squaring both sides and rearranging yields N(r) ≤ 1

2
N(c+ di), as desired.

◦ Remark: For the rings Z[
√
D] in general, the function N(a + b

√
D) =

∣∣a2 −Db2∣∣ is a norm, but it
does not in general give a division algorithm. The proof given above can, however, be adapted to show
that the quadratic integer ring OQ(

√
D) is a Euclidean domain for certain small values of D such as

D = −11,−7,−3,−2, 2, 3, 5.

• As in Z and F [x], we may also use the Euclidean algorithm to compute gcds:

• Theorem (Bézout): If R is a Euclidean domain and a and b are arbitrary elements with b 6= 0, then the last
nonzero remainder d arising from the Euclidean Algorithm applied to a and b is a greatest common divisor of a
and b. (In particular, any two elements in a Euclidean domain always possess at least one gcd.) Furthermore,
there exist elements x, y ∈ R such that d = ax+ by.
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◦ The ideas in the proof are the same as for the proofs over Z and F [x].

◦ Proof: By an easy induction (starting with rk = qk+1rk+1), d = rk+1 divides ri for each 1 ≤ i ≤ k. Thus
we see d|a and d|b, so the last nonzero remainder is a common divisor.

◦ Suppose d′ is some other common divisor of a and b. By another easy induction (starting with d′|(a −
q1b) = r1), it is easy to see that d′ divides ri for each 1 ≤ i ≤ k + 1, and therefore d′|d. Hence d is a
greatest common divisor.

◦ For the existence of x and y with d = ax+ by, we simply observe (by yet another easy induction starting
with r1 = a− q1b) that each remainder can be written in the form ri = xia+ yib for some xi, yi ∈ R.

• Example: Find a greatest common divisor of 50 − 50i and 43 − i in Z[i], and write it in the form d =
(50− 50i)x+ (43− i)y for some x, y ∈ Z[i].

◦ We use the Euclidean algorithm. Dividing 43− i into 50−50i yields
50− 50i

43− i
=

44

37
− 42

37
i, so rounding to

the nearest Gaussian integer yields the quotient q = 1−i. The remainder is then 50−50i−(1−i)(43−i) =
(8− 6i).

◦ Next, dividing 8 − 6i into 43 − i yields 43− i
8− 6i

=
7

2
+

5

2
i, so rounding to the nearest Gaussian integer

(there are four possibilities so we just choose one) yields the quotient q = 3+ 2i. The remainder is then
43− i− (3 + 2i)(8− 6i) = (7 + i).

◦ Finally, dividing 7 + i into 8− 6i yields
8− 6i

7 + i
= 1− i, so the quotient is 1− i and the remainder is 0.

◦ The last nonzero remainder is 7 + i so it is a gcd. To express the gcd as a linear combination, we solve
for the remainders:

8− 6i = 1 · (50− 50i)− (1− i) · (43− i)
7 + i = (43− i)− (3 + 2i)(8− 6i)

= (43− i)− (3 + 2i) · (50− 50i) + (3 + 2i)(1− i) · (43− i)
= (−3− 2i) · (50− 50i) + (6− i) · (43− i)

and so we have 7 + i = (−3− 2i) · (50− 50i) + (6− i) · (43− i) .

• The ideals of Euclidean domains are particularly simple:

• Theorem (Ideals of Euclidean Domains): Every ideal of a Euclidean domain is principal.

◦ Proof: Clearly the zero ideal is principal, so suppose I is a nonzero ideal of the Euclidean domain R
and let d be a nonzero element of I of smallest possible norm. (Such an element must exist by the
well-ordering axiom.)

◦ Since d ∈ I we have (d) ⊆ I. If a ∈ I is any other element, by the division algorithm we can write
a = qd+ r for some r where either r = 0 or N(r) < N(d).

◦ However, since r = a − qd ∈ I since both a and qd are in I, and N(d) is minimal, we must have r = 0.
Therefore, a = qd and thus a ∈ (d), so I ⊆ (d). Hence I = (d) is principal, as claimed.

• Corollary: Every ideal of Z, F [x], and Z[i] is principal, for any �eld F .

◦ Proof: Each of these rings is a Euclidean domain.

• By the result above, we can deduce that any ring containing a non-principal ideal is not Euclidean (with
respect to any norm):

◦ Example: The ring Z[x] is not a Euclidean domain, since the ideal (2, x) is not principal.

◦ Example: The ring Z[
√
−5] is not a Euclidean domain, since the ideal (2, 1 +

√
−5) is not principal.
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4.1.3 Principal Ideal Domains

• We have seen that every ideal in a Euclidean domain is principal. We now expand our attention to the more
general class of rings in which every ideal is principal.

• De�nition: A principal ideal domain (PID) is an integral domain in which every ideal is principal.

◦ Example: As we have shown, every Euclidean domain is a principal ideal domain, so Z, Z[i], and F [x]
are principal ideal domains.

◦ Non-Example: The ring Z[x] is not a principal ideal domain, since the ideal (2, x) is not principal.

◦ Non-Example: The ring Z[
√
−5] is not a principal ideal domain, since the ideal (2, 1 +

√
−5) is not

principal.

◦ There exist principal ideal domains that are not Euclidean domains (although this is not so easy to
prove). One example is the quadratic integer ring OQ(

√
−19) = Z[(1 +

√
−19)/2].

• Like in Euclidean domains, we can show that any two elements have a greatest common divisor.

◦ The substantial advantage of a Euclidean domain over a general PID is that we have an algorithm for
computing greatest common divisors in Euclidean domains, rather than merely knowing that they exist.

• Proposition (Divisibility in PIDs): If R is a principal ideal domain and a, b ∈ R are nonzero, then any generator
d of the principal ideal (a, b) is a greatest common divisor of a and b. (In particular, any two elements in a
principal ideal domain always possess at least one gcd.) Furthermore, there exist elements x, y ∈ R such that
d = ax+ by.

◦ Proof: We showed already that if (a, b) is principal, then any generator is a gcd of a and b. Furthermore,
if (a, b) = (d) then d ∈ (a, b) implies that d = ax+ by for some x, y ∈ R.

• Our ultimate goal is to show that these rings (like the prototypical examples Z and F [x]) have the property
that every nonzero element can be written as a �nite product of irreducible elements, up to associates and
reordering.

◦ To show this, we will use essentially the same argument as in Z and F [x]: �rst we will prove that every
element can be factored into a product of irreducibles, and then we will prove that the factorization is
unique.

◦ For the existence, if r is a reducible element then we can write r = r1r2 where neither r1 nor r2 is a unit.
If both r1 and r2 are irreducible, we are done: otherwise, we can continue factoring (say) r1 = r1,1r1,2
with neither term a unit. If r1,1 and r1,2 are both irreducible, we are done: otherwise, we factor again.

◦ We need to ensure that this process will always terminate: if not, we would obtain an in�nite ascending
chain of ideals (r) ⊂ (r1) ⊂ (r1,1) ⊂ · · · , so �rst we will prove that this cannot occur.

◦ Then to establish uniqueness, we use the same argument as in Z and F [x]: this requires showing that if
p is irreducible, then p|ab implies p|a or p|b: in other words, that p is prime.

• First we establish the necessary result about ascending chains of ideals:

• Theorem (Ascending Chains in PIDs): If R is a principal ideal domain and the ideals I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆
In ⊆ · · · form an ascending chain, then there exists some positive integer N after which the chain is stationary:
In = IN for all n ≥ N .

◦ Remark: A ring satisfying this �ascending chain condition� is called Noetherian.

◦ Proof: Let J be the union of the ideals in the chain. We have shown already (in the course of proving
that a ring with 1 always possesses maximal ideals) that the union of an ascending chain of ideals is also
an ideal, so J is an ideal.

◦ Since R is a PID, we see J = (a) for some a ∈ R. But since J is a union, this means a ∈ IN for some
N . But then for each n ≥ N we see (a) = IN ⊆ In ⊆ J = (a): we must have equality everywhere, so
In = IN for all n ≥ N .
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• Next, we show that irreducible elements are prime:

• Proposition (Irreducibles are Prime in a PID): Every irreducible element in a principal ideal domain is prime.

◦ Proof: Suppose that p is an irreducible element of R: to show that p is prime, we may equivalently show
that the ideal (p) is a prime ideal.

◦ So suppose (a) is an ideal containing (p): then p ∈ (a) so p = ra for some r ∈ R. But since p is
irreducible, we either have p|r or p|a, which is to say, either r ∈ (p) or a ∈ (p).

◦ If a ∈ (p) then (a) ⊆ (p) and so (a) = (p). Otherwise, if r ∈ (p) then r = sp for some s ∈ R, and then
p = ra implies p = spa, so since p 6= 0 we see sa = 1 and therefore a is a unit, and so (a) = R.

◦ Thus, (a) is either (p) or R, meaning that (p) is a maximal hence prime ideal.

• In the proposition above, notice that we actually established that the prime element p generated a maximal
ideal. This argument in fact shows that nonzero prime ideals are maximal in PIDs:

• Proposition (Prime Implies Maximal in a PID): Every nonzero prime ideal in a principal ideal domain is
maximal.

◦ Proof: Suppose that I = (p) is a nonzero prime ideal of R, and suppose that (a) is an ideal containing I.

◦ Since p ∈ (a), we see that p = ra for some r ∈ R. But then ra ∈ (p), so since (p) is a prime ideal we
either have r ∈ (p) or a ∈ (p).

◦ By the same argument as in the proposition above, we conclude that (a) is either (p) or R, meaning that
(p) is a maximal ideal.

• Now we can establish that principal ideal domains have unique factorization:

• Theorem (Unique Factorization in PIDs): If R is a principal ideal domain, then every nonzero nonunit r ∈ R
can be written as a �nite product of irreducible elements. Furthermore, this factorization is unique up to
associates: if r = p1p2 · · · pd = q1q2 · · · qk for irreducibles pi and qj , then d = k and there is some reordering
of the factors such that pi is associate to qi for each 1 ≤ i ≤ k.

◦ Proof: Suppose r ∈ R is not zero and not a unit.

◦ If r is irreducible, we already have the required factorization. Otherwise, r = r1r2 for some nonunits
r1 and r2. If both r1 and r2 are irreducible, we are done: otherwise, we can continue factoring (say)
r1 = r1,1r1,2 with neither term a unit. If r1,1 and r1,2 are both irreducible, we are done: otherwise, we
factor again.

◦ We claim that this process must terminate eventually: otherwise (as follows by the axiom of choice), we
would have an in�nite chain of elements x1, x2, x3, ... , such that x1|r, x2|x1, x3|x2, and so forth, where
no two elements are associates, yielding an in�nite chain of ideals (r) ⊂ (x1) ⊂ (x2) ⊂ · · · with each
ideal properly contained in the next. But this is impossible, since every ascending chain of ideals in R
must become stationary.

◦ Thus, the factoring process must terminate, and so r can be written as a product of irreducibles.

◦ We establish uniqueness by induction on the number of irreducible factors of r = p1p2 · · · pn.
◦ If n = 1, then r is irreducible. If r had some other nontrivial factorization r = qc with q irreducible, then
q would divide r hence be associate to r (since irreducibles are prime). But this would mean that c is a
unit, which is impossible.

◦ Now suppose n ≥ 2 and that r = p1p2 · · · pd = q1q2 · · · qk has two factorizations into irreducibles.

◦ Since p1|(q1 · · · qk) and p1 is irreducible hence prime, repeatedly applying the fact that p irreducible and
p|ab implies p|a or p|b shows that p1 must divide qi for some i.

◦ By rearranging we may assume q1 = p1u for some u: then since q1 is irreducible (and p1 is not a unit),
u must be a unit, so p1 and q1 are associates.

◦ Cancelling then yields the equation p2 · · · pd = (uq2) · · · qk, which is a product of fewer irreducibles. By
the induction hypothesis, such a factorization is unique up to associates. This immediately yields the
desired uniqueness result for r as well.
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4.2 Unique Factorization Domains

• We have shown that principal ideal domains possess unique factorization. However, there are rings that
possess unique factorization that are not principal ideal domains: for example, in our study of polynomial
rings, we have seen that polynomials in Z[x] can also be factored into products of irreducibles, even though
Z[x] is not a PID.

• This suggests it is worth studying the larger class of integral domains that possess unique factorization.

4.2.1 Arithmetic in Unique Factorization Domains

• De�nition: An integral domain R is a unique factorization domain (UFD) if every nonzero nonunit r ∈ R can
be written as a �nite product r = p1p2 · · · pd of irreducible elements, and this factorization is unique up to
associates: if r = p1p2 · · · pd = q1q2 · · · qk for irreducibles pi and qj , then d = k and there is some reordering
of the factors such that pi is associate to qi for each 1 ≤ i ≤ k.

◦ Example: As we proved in the previous section, every principal ideal domain is a unique factorization
domain: thus Z, F [x], and Z[i] are unique factorization domains.

◦ Example: As we essentially proved already (and will formally prove later) the polynomial ring Z[x] is a
unique factorization domain, even though it is not a principal ideal domain.

◦ There are two ways an integral domain can fail to be a unique factorization domain: one way is for some
element to have two inequivalent factorizations, and the other way is for some element not to have any
factorization.

◦ Non-Example: The ring Z[
√
−5] is not a unique factorization domain because we can write 6 = (1 +√

−5)(1−
√
−5) = 2 ·3. Note that each of 1±

√
−5, 2, and 3 is irreducible in Z[

√
−5] since their norms are

6, 4, and 9 respectively and there are no elements in Z[
√
−5] of norm 2 or 3, and none of these elements

are associate to one another. Thus, 6 has two inequivalent factorizations into irreducibles in Z[
√
−5].

◦ Non-Example: The ring Z[2i] is not a unique factorization domain because we can write 4 = 2 · 2 =
(2i)·(2i). Note that both 2 and 2i are irreducible since their norms are both 4 and there are no elements in
Z[2i] of norm 2, and 2 and 2i are not associate since i 6∈ Z[2i]. Thus, 4 has two inequivalent factorizations
into irreducibles in Z[2i].
◦ Non-Example: The ring Z+xQ[x] of polynomials with rational coe�cients and integral constant term is
not a unique factorization domain because not every element has a factorization. Explicitly, the element

x is not irreducible since x = 2 · 1
2
x and neither 2 nor

1

2
x is a unit, but x cannot be written as a �nite

product of irreducible elements: any such factorization would necessarily consist of a product of constants
times a rational multiple of x, but no rational multiple of x is irreducible in Z+ xQ[x].

• Like in principal ideal domains, irreducible elements are the same as prime elements in unique factorization
domains (and thus, we may interchangeably refer to �prime factorizations� or �irreducible factorizations� in a
UFD):

• Proposition (Irreducibles are Prime in a UFD): Every irreducible element in a unique factorization domain is
prime.

◦ Proof: Suppose that p is an irreducible element of R and that p|ab for some elements a, b ∈ R: we must
show that p|a or p|b.
◦ Since R is a unique factorization domain, we may write a = q1q2 · · · qd and b = r1r2 · · · rk for some irre-
ducibles qi and rj : then q1q2 · · · qdr1r2 · · · rk = ab = p. But since the factorization of ab into irreducibles
is unique, we see that p must be associate to one of the irreducibles qi or rj .

◦ Suppose without loss of generality that p = q1u: then q1q2 · · · qdr1r2 · · · rk = q1u so upon cancelling q1
we see that q2 · · · qdr1r2 · · · rk = u is a unit, so each term is a unit. Since each of the qi and rj is assumed
to be irreducible (hence not a unit) we must have a = q1, and so p divides a = pu−1, as required.

• Like in Z, we can also describe greatest common divisors in terms of prime factorizations:
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• Proposition (Divisibility in UFDs): If a and b are nonzero elements in a unique factorization domain R,
then there exist units u and v and prime elements p1, p2, . . . , pk no two of which are associate so that a =
upa11 p

a2
2 · · · p

ak
k and b = vpb11 p

b2
2 · · · p

bk
k for some nonnegative integers ai and bi. Furthermore, a divides b if and

only if ai ≤ bi for all 1 ≤ i ≤ k, and the element d = p
min(a1,b1)
1 · · · pmin(ak,bk)

k is a greatest common divisor of
a and b.

◦ Proof: Since R is a UFD, we can write a as a product of irreducibles. As follows from a trivial induction,
we can then �collapse� these factorizations by grouping together associates and factoring out the resulting
units to obtain a factorization of the form a = upa11 p

a2
2 · · · p

ad
d .

◦ We can repeat the process with b, and then add any further irreducibles that appear in its factorization
to the end of the list, to obtain the desired factorizations a = upa11 p

a2
2 · · · p

ak
k and b = vpb11 p

b2
2 · · · p

bk
k for

nonnegative integers ai and bi.

◦ For the statement about divisibility, if a|b then we have b = ar for some r ∈ R, so that vpb11 p
b2
2 · · · p

bk
k =

upa11 p
a2
2 · · · p

ak
k r. But since pi divides the right-hand side at least ai times, we see that pi must also divide

the left-hand side at least ai times: furthermore, since each of the terms excluding pi is not associate to
pi, by a trivial induction we conclude that bi must be at least as large as ai, for each i.

◦ For the statement about the gcd, it is easy to see by the above that d divides both a and b. If d′ is any other
common divisor, then since d′ divides a we see that any irreducible occurring in the prime factorization
of d′ must be associate to those appearing in the prime factorization of a, hence (by collapsing the
factorization as above) we can write d′ = wpd11 p

d2
2 · · · p

dk
k for some nonnegative integers di and some unit

w.

◦ Then since d′ is a common divisor of both a and b we see that di ≤ ai and di ≤ bi, whence di ≤ min(ai, bi)
for each i: then d′ divides d, so d is a greatest common divisor as claimed.

• We also recover one of the other fundamental properties of relatively prime elements and gcds:

• Corollary (Relatively Prime Elements and GCDs): In any unique factorization domain, d is a gcd of a and b
if and only if a/d and b/d are relatively prime. Furthermore, if a and b are relatively prime and a|bc, then a|c.

◦ Proof: Apply the previous proposition to write a = upa11 p
a2
2 · · · p

ak
k and b = vpb11 p

b2
2 · · · p

bk
k for some

nonnegative integers ai and bi, irreducibles pi, and units u and v.

◦ Then d = p
min(a1,b1)
1 · · · pmin(ak,bk)

k is a gcd of a and b, and it is easy to see that the exponent of pi in a/d
or b/d is zero for each i: thus, the only common divisors of a/d and b/d are units, so a/d and b/d are
relatively prime.

◦ Inversely, if d′ = wpd11 p
d2
2 · · · p

dk
k is any other common divisor of a and b, and di < min(ai, bi) for some i,

then pi is a common divisor of a/d′ and b/d′ and thus the latter are not relatively prime.

◦ For the second statement, consider the irreducible factors of bc: since a and b have no irreducible factors
in common, every irreducible factor of c must divide a.

4.2.2 Unique Factorization in Polynomial Rings

• We would now like to give some additional examples of unique factorization domains beyond the examples of
principal ideal domains we have already discussed.

◦ As we remarked earlier (though without proof), Z[x] is a unique factorization domain. Ultimately, this
follows from our analysis of factorization inQ[x], which is a Euclidean domain hence a unique factorization
domain: as we have already seen, we can transfer any statement in Z[x] into one in Q[x], and more or
less vice versa (up to dealing with denominators).

◦ More generally, if R is any integral domain, we can try to exploit the factorization properties of poly-
nomials over its �eld of fractions F . It is natural to ask: for what integral domains R will R[x] be a
UFD?

◦ Of course, if R itself is not a UFD, then R[x] certainly will not be either, since the factorization of
constant polynomials in R[x] reduces immediately to the question of factoring in R.
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◦ By proving a general version of Gauss's lemma, however, we will show that if R is a UFD, then so is
R[x].

• De�nition: If R is a unique factorization domain, we say a polynomial in R[x] is primitive if the greatest
common divisor of its coe�cients is equal to 1.

• Proposition (Gauss's Lemma): Let R be a unique factorization domain with �eld of fractions F , and p(x) ∈
R[x]. If p(x) is reducible in F [x], then p(x) = f(x)g(x) for some f(x), g(x) ∈ R[x] of positive degree (so in
particular, p(x) is reducible in R[x]).

◦ Proof: First, we observe that, in F [x], any nonzero polynomial a(x) is associate to a primitive polynomial
in R[x].

◦ To see this, let d be the product of the denominators of a(x): then d · a(x) is a polynomial in R[x]. Now
let e be the greatest common divisor of the coe�cients of d · a(x): then (by the corollary above) we

see that
d

e
· a(x) is a primitive polynomial in R[x]; since

d

e
is a unit in F , this primitive polynomial is

associate to a(x).

◦ Next, we claim that the product of two primitive polynomials is also primitive.

◦ To see this, suppose that a(x)b(x) is not primitive for some a(x), b(x) ∈ R[x], with a(x) = a0 + a1x +
· · · + anx

n and b(x) = b0 + · · · + bmx
m: then since a(x)b(x) is not primitive, all of its coe�cients are

divisible by some prime element s.

◦ If there is at least one coe�cient of each of a(x) and b(x) not divisible by s, suppose that ai and bj are the
lowest-degree such coe�cients. Then the degree-(i+j) term of a(x)b(x) is a0bi+j+ · · ·+ai−1bj+1+aibj+
ai+1bj−1+ · · ·+ai+jb0, but by hypothesis each term except aibj is divisible by s. This is a contradiction,
since this coe�cient of a(x)b(x) would then not be divisible by s.

◦ Now, returning to the original problem, suppose that p(x) is reducible in F [x] as p(x) = f0(x)g0(x) with
f0 and g0 both of positive degree.

◦ By our �rst observation, both f0 and g0 are associate to a primitive polynomial in R[x]: say, f , and g
respectively.

◦ Then (by clearing denominators and cancelling common factors in R) we see that d · p(x) = e · f(x) · g(x)
for some relatively prime elements d, e ∈ R.

◦ Since d and e are relatively prime, d must divide all coe�cients of f(x)g(x), by the corollary above. But
f(x)g(x) is primitive by our second observation, so d must be a unit.

◦ Then p(x) = [ed−1 · f(x)] · g(x) is a nontrivial factorization of p(x) over R[x], as required.

• As suggested by the proof above, the only di�erence between irreducibility in F [x] and in R[x] is the presence
of constant factors from R. More explicitly:

• Corollary: If R is a unique factorization domain with fraction �eld F , and p(x) ∈ R[x] is primitive, then p(x)
is irreducible in R[x] if and only if p(x) is irreducible in F [x].

◦ Proof: By Gauss's lemma, if p(x) is reducible in F [x] then it is reducible in R[x].

◦ Conversely, if p(x) = a(x)b(x) is reducible in R[x], then both a(x) and b(x) must be primitive, so neither
can be a constant polynomial (as otherwise it would be a unit in R[x]). Then p(x) = a(x)b(x) is a
nontrivial factorization in F [x].

• We can now �nish the proof of our claimed result:

• Theorem (Polynomial Rings and UFDs): If R is an integral domain, then R[x] is a unique factorization domain
if and only if R is a unique factorization domain.

◦ Proof: If R[x] is a unique factorization domain, then every constant polynomial must factor uniquely
into a product of irreducibles, each of which must also be a constant polynomial. But the irreducible
constant polynomials of R[x] are precisely the irreducible elements of R, so R must be a UFD.

◦ Now suppose that R is a unique factorization domain, and let F be its �eld of fractions.
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◦ Let p(x) be a nonzero nonunit in R[x], and let d be the greatest common divisor of its coe�cients. Then
p(x) = d · q(x) where q(x) is a primitive polynomial.

◦ Since F [x] is a unique factorization domain, we may factor q(x) into a product of irreducibles in F [x].
By Gauss's lemma, this yields a factorization of q(x) = r1(x)r2(x) · · · rn(x), where each polynomial
ri(x) ∈ R[x] is irreducible in F [x].
◦ However, since q(x) is primitive, each of the polynomials ri(x) must also be primitive, so by the corollary
above, each polynomial ri(x) is irreducible in R[x].

◦ Finally, by factoring d into irreducibles inR, we obtain a factorization p(x) = [d1d2 · · · dm]·[r1(x)r2(x) · · · rn(x)]
into irreducible elements in R[x].

◦ It remains to show that this factorization is unique, so suppose that p(x) has two factorizations into
irreducibles and again write p(x) = d · q(x) where q(x) is a primitive polynomial. Since the greatest
common divisor d is unique up to associates, and d has a unique factorization into irreducibles by
hypothesis, it is enough to show that the factorization of q(x) is unique.

◦ So suppose q(x) = r1(x)r2(x) · · · rn(x) = s1(x)s2(x) · · · sm(x) where the ri and si are irreducible. Again
as noted above, each of these polynomials must be primitive, so by the previous corollary they are all
irreducible in F [x].

◦ But since F [x] is a unique factorization domain, we must have m = n and then (by rearranging) that
ri(x) is associate to si(x) in F [x] for each 1 ≤ i ≤ n.

◦ Therefore, ri(x) =
d

e
si(x) for some relatively prime elements d and e in R, so clearing denominators yields

eri(x) = dsi(x): but since ri(x) and si(x) are primitive, we conclude that d and e must be associate in
R. If d = eu then we see ri(x) = dsi(x), and so ri is associate to si in R[x] for each 1 ≤ i ≤ n.
◦ Thus, we conclude that the factorization in R[x] is unique, so R[x] is a unique factorization domain.

• Corollary: The ring Z[x] is a unique factorization domain, as is the polynomial ring in two variables F [x, y] =
(F [x])[y] for any �eld F . In particular, there exist unique factorization domains that are not principal ideal
domains.

◦ Indeed, by a trivial induction, the polynomial ring F [x1, x2, . . . , xn] in n variables over the �eld F is
also a unique factorization domain, since F [x1, x2, . . . , xn] is the polynomial ring in the variable xn with
coe�cients in F [x1, x2, . . . , xn−1].

4.3 Applications of Unique Factorization

• In this section we collect a few applications of unique factorization in various rings. To treat many of the
results we require some preliminary facts about the multiplicative structure of units in rings with 1. We then
discuss methods for constructing �nite �elds and characterize the irreducible elements in the Gaussian integer
ring Z[i] along with some applications to representing integers as sums of two squares.

4.3.1 Orders of Units and Primitive Roots

• We would like to study the behavior of powers of units in a ring with 1.

◦ As we have already observed, if u is a unit then so is uk is also a unit for any integer k, since its inverse
is (u−1)k.

◦ In particular, if there are only �nitely many units in R (in particular, if R itself is �nite), then the values
of the powers of u must eventually repeat.

◦ But if ua = ub with a < b, multiplying both sides by u−a shows that ub−a = 1, meaning that some power
of u is equal to 1. We give this situation a name:

• De�nition: If u is a unit in the ring R, the smallest k > 0 such that uk = 1 (if such a k exists) is called the
order of u.
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◦ Remark (for those who like group theory): Our use of the word �order� here agrees with the use of the
word �order� in group theory, since the set of units in any ring with 1 forms a group under multiplication.

◦ Example: The powers of 2 in Z/11Z are as follows:

21 22 23 24 25 26 27 28 29 210 211 212 · · ·
2 4 8 5 10 9 7 3 6 1 2 4 · · ·

Thus, 2 has order 10 in Z/11Z.
◦ Example: The powers of 5 in Z/13Z are as follows:

51 52 53 54 55 56 57 58 · · ·
5 12 8 1 5 12 8 1 · · ·

Thus, 5 has order 4 in Z/13Z.
◦ Example: The powers of 5 in F5[x]/(x

2 + 1) are as follows:

x x2 x3 x4 · · ·
x 4 4x 1 · · ·

Thus, x has order 4 in F5[x]/(x
2 + 1).

• We collect a few useful results about orders.

• Proposition (Properties of Orders): Suppose R is a ring with 1 and u is a unit in R.

1. If un = 1 for some n > 0, then u has �nite order and the order of u divides n.

◦ Proof: Clearly, if un = 1 for some n > 0, then uk = 1 for some minimal positive integer k by the
well-ordering axiom.

◦ Now let k be the order of u and apply the division algorithm to write n = qk + r with 0 ≤ r < k:
then we have ur = un(uk)−q = 1 · 1−q = 1.

◦ If r were not zero, then we would have ur = 1 with 0 < r < k, which contradicts the de�nition of
order. Thus r = 0, meaning that k divides n.

2. If u has order k, then un has order k/ gcd(n, k). In particular, if n and k are relatively prime, then un

also has order k.

◦ Proof: Let d = gcd(n, k): then (un)k/d = (uk)n/d = 1n/d = 1, so the order of un cannot be larger
than k/d.

◦ Furthermore, if 1 = (un)a = una, the result above implies that k divides na, so that k/d divides
(n/d)a.

◦ But since k/d and n/d are relatively prime, this implies k/d divides a, and so a ≥ k/d.
◦ Thus, the order of un is equal to k/d as claimed. The second statement is simply the case d = 1.

3. If un = 1 and un/p 6= 1 for any prime divisor p of n, then u has order n.

◦ Proof: Suppose u has order k: then by the above, k must divide n. If k < n, then there must be some
prime p in the prime factorization of n that appears to a strictly lower power in the factorization of
k: then k divides n/p.

◦ But then un/p would be an integral power of uk = 1, so that un/p = 1, which is a contradiction.
Thus, r = n.

4. If R is commutative, u has order k, and w has order l, where k and l are relatively prime, then uw has
order kl.

◦ Proof: First observe that (uw)kl = (uk)l(wl)k = 1, uw has some �nite order d ≤ kl.
◦ Since (uw)d = 1, raising to the kth power yields 1 = (uw)dk = wdk, so l divides dk.

◦ Then since l and k are relatively prime, this implies l divides d. By a symmetric argument, k divides
d. Since l and k are relatively prime, we see kl divides d, and so the only possibility is d = kl.

• In the case of a commutative ring with �nitely many units, we can say more about the possible order of a
unit:
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• Theorem (Euler): If R is a commutative ring with 1 with a �nite number n of units, then the order of any
unit in R divides n. In particular, if u is relatively prime to m, then uϕ(m) ≡ 1 (mod m), where ϕ(m) denotes
Euler's ϕ-function.

◦ Remark: This result actually holds even when R is a noncommutative ring, but the proof is more di�cult
(it follows from Lagrange's theorem in group theory). Since we will not need the general version, we will
give the proof in the commutative case only.

◦ Proof: Suppose u is a unit in R, and let the set of all units in R be w1, w2, . . . , wn.

◦ Consider the elements uw1, uw2, . . . , uwn: there n elements in this list, they are all units, and they are
all distinct since uw1 = uw2 implies w1 = w2. Thus, they must simply be the elements w1, w2, . . . , wn
again (possibly in a di�erent order).

◦ Thus, multiplying all the elements together yields (uw1)(uw2) · · · (uwn) = w1w2 · · ·wn, whence un(w1w2 · · ·wn) =
w1w2 · · ·wn. Then cancelling the unit factor w1w2 · · ·wn yields un = 1, and so the order of u divides n.

◦ The second statement follows by taking R = Z/mZ, since ϕ(m) is the number of units in Z/mZ.

• As a corollary, we obtain a related result that (in the special case of Z/pZ) is known as Fermat's little theorem:

• Corollary (Fermat): If F is a �nite �eld, then a|F | = a for any a ∈ F . In particular, ap ≡ a (mod p) for every
prime p.

◦ Proof: If a = 0 then clearly a|F | = a. If a 6= 0 then since F is a �eld we see that a is a unit: then by
Euler's theorem we have a|F |−1 = 1 so that a|F | = a.

◦ The second statement follows by taking F = Z/pZ.

• By Euler's theorem, the order of any unit in R divides the number of units in R. The case when equality
occurs is su�ciently useful that we give it a name:

• De�nition: If R is a commutative ring with 1 with n units, and the unit u has order n, then we say that u is
a primitive root in R.

◦ Example: In R = Z/5Z, the powers of 2 are 2, 4, 3, 1, so 2 is a primitive root in Z/5Z since it has order
4.

◦ Example: In R = F3[x]/(x
2 +1), the powers of x+1 are x+1, 2x, 2x+1, 2, 2x+2, x, x+2, 1, so x+1

is a primitive root in R since it has order 8 (there are 8 units in R because R is a �eld).

◦ Example: In R = Z/9Z, the powers of 2 are 2, 4, 8, 7, 5, and 1, so 2 is a primitive root in Z/9Z since it
has order 6 (and there are 6 units in Z/9Z).
◦ We remark that primitive roots may not necessarily exist.

◦ Non-Example: There is no primitive root in Z/15Z: the units are 1 (order 1), 2 (order 4), 4 (order 2), 7
(order 4), 8 (order 4), 11 (order 2), and 14 (order 2), and none of these is a primitive root.

◦ Remark (for those who like group theory): R has a primitive root u if and only if the group of units R×

is a cyclic group generated by u.

• In the two examples above where R was a �nite �eld, R possessed a primitive root. This is true in general:

• Theorem (Primitive Roots in Finite Fields): If F is a �nite �eld, then F has a primitive root.

◦ Our proof is nonconstructive: we will establish the existence of a primitive root without explicitly �nding
one.

◦ Proof: First we will show that if M is the maximal order among all units in F , then the order of every
unit divides M . Then we will show that M = |F | − 1, which will establish the existence of a primitive
root in F .

◦ For the �rst claim, suppose u has order M , and let w be any other unit of order k. If k does not divide
M , then there is some prime q which occurs to a higher power qf in the factorization of k than the
corresponding power qe dividing M .
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◦ Observe that the element uq
f

has order M/qf , and the element wk/q
e

has order qe. Since these two
orders are relatively prime and F is commutative, by our results about orders we see that the element

uq
f · wk/qe has order M · qf−e. This is a contradiction because this element's order is larger than M .

Thus, k divides m as claimed.

◦ For the second claim, since M is the maximal order of among all units of F , then by Euler's theorem we
know that M ≤ |F | − 1.

◦ Furthermore, by the above, we know that all units in F then have order dividing M , so the polynomial
p(x) = xM−1 has |F |−1 roots in F [x]. But since F [x] is a unique factorization domain, this is impossible
unless M ≥ |F | − 1, since a polynomial of degree M can only have at most M roots in F [x].

◦ Hence we conclude M = |F | − 1, meaning that some element has order |F | − 1: this element is then a
primitive root.

4.3.2 Finite Fields and Irreducible Polynomials in Fp[x]

• We have already seen that we can construct �nite �elds as quotient rings of the form Fp[x]/(q) where q is an
irreducible polynomial in Fp[x].

◦ In particular, if we can establish the existence of an irreducible polynomial in Fp[x] of degree n, we obtain
a construction for a �nite �eld with pn elements.

◦ If q is irreducible of degree n, then by Fermat's theorem in F = Fp[x]/(q), we see that every element
a ∈ F has the property that ap

n

= a. In particular, for a = x, we see that xp
n

= x, meaning that
xpn − x = 0: but this is simply another way of saying that xp

n − x is divisible by q(x).

◦ We therefore see that irreducible polynomials in Fp[x] of degree n will appear in the factorization of
the polynomial xp

n − x in Fp[x]: this suggests that we may be able to study irreducible polynomials by
examining the factorization of xp

n − x.
◦ Example: For n = 2 and p = 2, we �nd the irreducible factorization x4 − x = x(x+ 1)(x2 + x+ 1).

◦ Example: For n = 3 and p = 2, we �nd the irreducible factorization x8− x = x(x+1)(x3 + x2 +1)(x3 +
x+ 1).

◦ Example: For n = 4 and p = 2, we �nd the irreducible factorization x16 − x = x(x+1)(x2 + x+1)(x4 +
x3 + 1)(x4 + x+ 1)(x4 + x3 + x2 + x+ 1).

◦ Example: For n = 2 and p = 3, we �nd the irreducible factorization x9−x = x(x+1)(x+2)(x2+2)(x2+
x+ 2)(x2 + 2x+ 2).

◦ Example: For n = 2 and p = 5, the irreducible factorization of x25 − x is the product of the terms x,
x+ 1, x+ 2, x+ 3, x+ 4, x2 + 2, x2 + 3, x2 + x+ 1, x2 + x+ 2, x2 + 2x+ 3, x2 + 2x+ 4, x2 + 3x+ 3,
x2 + 3x+ 4, x2 + 4x+ 1, and x2 + 4x+ 2.

◦ We notice (especially in the p = 5 example) that the irreducible factors all appear to be of small degree,
and that there are no repeated factors. More speci�cally, the factorization seems to consist of the product
of all monic irreducible polynomials of degree dividing n.

• Theorem (Factorization of xp
n − x in Fp[x]): For any prime p and any positive integer n, the polynomial

xp
n − x factors in Fp[x] as the product of all monic irreducible polynomials over Fp of degree dividing n.

◦ Proof: Let q(x) = xp
n − x and R = Fp[x]. We prove the result in the following way: �rst, we show that

q(x) has no repeated factors. Second, we show that every irreducible polynomial of degree dividing n
divides q(x). Finally, we show that no other irreducible polynomial can divide q(x).

◦ For the �rst part, suppose that p(x)2 divides q(x), so that q(x) = p(x)2r(x). Then by di�erentiating, we
have q′(x) = p(x)[2p′(x)r(x) + p(x)r′(x)], so p(x) also divides q′(x).

◦ But q′(x) = pnxp
n−1 − 1 = −1, so p(x) must be a constant polynomial. Thus, q(x) cannot have any

repeated irreducible factors.

◦ Before starting the rest of the proof, we �rst show that the gcd of pn − 1 and pd − 1 is pgcd(n,d) − 1 for
any positive integer d.

∗ To see this, write n = qd+ r, and let a = pr(p(q−1)d + p(q−2)d + · · ·+ pd + 1).
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∗ Some arithmetic will show that pn − 1 = (pd − 1)a+ (pr − 1).

∗ Then gcd(pn−1, pd−1) = gcd(pd−1, pr−1). But this means we can perform the Euclidean algorithm
on the exponents without changing the gcd.

∗ The end result is pgcd(n,d) − 1, so this is the desired gcd.

◦ For the second part, suppose that s(x) ∈ Fp[x] is an irreducible polynomial of degree d, where n = ad.
If s(x) = x then the result is obvious, so assume s(x) 6= x.

◦ We know that Fp[x]/(s) is a �nite �eld having pd elements, so by Euler's Theorem we see that xp
d−1 ≡ 1

(mod s).

◦ But, by the lemma, pd− 1 divides pn− 1, so raising to the appropriate power modulo s shows xp
n−1 ≡ 1

(mod s). We conclude that s divides xp
n − x, as desired.

◦ For the �nal part, suppose s(x) ∈ Fp[x] is an irreducible polynomial that divides xp
n − x and has degree

d not dividing n. Since s(x) 6= x, we can assume s divides xp
n−1 − 1.

◦ As above, Fp[x]/(s) is a �nite �eld having pd elements, so by Euler's Theorem in F , we see that ap
d−1 ≡ 1

(mod s) for every nonzero a ∈ F .
◦ Since ap

n−1 ≡ 1 (mod s) holds for every nonzero a ∈ Fp[x]/(s) by the above assumptions, we conclude

that ap
gcd(d,n)−1 ≡ 1 (mod s).

◦ But this is impossible, because q(t) = tp
gcd(d,n)−1 − 1 is then a polynomial of degree pgcd(d,n) − 1 which

has pd − 1 roots over the �eld Fp. This completes the �nal part of the proof, so we are done.

• Corollary: For any prime p and any positive integer n, there exists a �nite �eld having pn elements.

◦ It can be shown that a �nite �eld must have prime-power order, so this result completely characterizes
the number of elements that a �nite �eld can have.

◦ Proof: By taking degrees, we see that the sum of the degrees of all monic irreducibles of degree dividing
d is pd, so in particular the sum of the degrees of all monic irreducibles of degree exactly d is at most pd.

◦ Thus, the sum of the degrees of all monic irreducibles of degree ≤ n− 1 is at most 1 + p+ · · ·+ pn−1.

◦ Since pn − (1 + p+ · · ·+ pn−1) > pn − (p− 1)(1 + p+ · · ·+ pn−1) = 1, we conclude that there is at least
1 monic irreducible polynomial of degree n.

• We can re�ne the argument above to give an exact count:

◦ Let fp(n) be the number of monic irreducible polynomials of exact degree n in Fp[x].

◦ The theorem says that pn =
∑
d|n

dfp(d), since both sides count the total degree of the product of all

irreducible polynomials of degree dividing n. Using this recursion, we can compute the �rst few values:

n 1 2 3 4 5 6 7 8

fp(n) p
1

2
(p2 − p) 1

3
(p3 − p) 1

4
(p4 − p2) 1

5
(p5 − p) 1

6
(p6 − p3 − p2 + p)

1

7
(p7 − p) 1

8
(p8 − p4)

◦ For example, we see that there are (37 − 3)/7 = 312 monic irreducible polynomials of degree 7 over F3.

• In fact, we can use the recursion to write down a general formula (essentially):

• De�nition: The Möbius function is de�ned as µ(n) =

{
0 if n is divisible by the square of any prime

(−1)k if n is the product of k distinct primes
.

In particular, µ(1) = 1.

• Proposition (Möbius Inversion): If f(n) is any sequence satisfying a recursive relation of the form g(n) =∑
d|n

f(d), for some function g(n), then f(n) =
∑
d|n

µ(d)g(n/d).

◦ Proof: First, consider the sum
∑
d|n

µ(d): we claim it is equal to 1 if n = 1 and 0 if n 6= 0.
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◦ To see this, if n = pa11 · · · p
ak
k , the only terms that will contribute to the sum

∑
d|n

µ(d) are those values of

d = pb11 · · · p
bk
k where each bi is 0 or 1. If k > 0, then half of these 2k terms will have µ(d) = 1 and the

other half will have µ(d) = −1, so the sum is zero. Otherwise, k = 0 means that n = 1, in which case
the sum is clearly 1.

◦ Now we prove the desired result by (strong) induction. It clearly holds for n = 1, so now suppose the
result holds for all k < n.

◦ By hypothesis and induction,
∑
d|n

µ(d)g(n/d) =
∑
d|n

µ(d)
∑

d′|(n/d)

f(d′) =
∑
dd′|n

µ(d)f(d′) =
∑
d′|n

f(d′)
∑

d|(n/d′)

µ(d),

but this last sum is simply f(n), because
∑

d|(n/d′)

µ(d) is zero unless n/d′ is equal to 1.

• By applying Möbius inversion to our particular function fp(n), we immediately obtain the following:

• Corollary: The number of monic irreducible polynomials of degree n in Fp[x] is fp(n) =
1

n

∑
d|n

pn/dµ(d).

◦ From this corollary, we see that fp(n) =
1

n
pn+O(pn/2), where the �big-O� notation means that the error

is of size bounded above by a constant times pn/2 as n→∞.

◦ This has the following interesting reinterpretation: let X = pn be the number of polynomials in Fp[x] of
degree less than n.

◦ Now we ask: of these X polynomials, how many of them are prime (i.e., irreducible)?

◦ This is simply fp(n) =
1

n
pn +O(pn/2) =

X

logp(X)
+O(

√
X).

◦ In other words: the number of �primes less than X� is equal to
X

logp(X)
, up to a bounded error term.

◦ Notice how very similar this statement is to the statement of the prime number theorem for the integers
Z! (This is not a coincidence.)

4.3.3 Factorization in Z[i]

• We would like to analyze prime factorization in the ring R = Z[i].

◦ Since Z[i] is a Euclidean domain, we know that prime elements are the same as irreducible elements, but
we will generally use the term �irreducible� element when referring to Z[i], so as not to cause too much
confusion when also we refer to prime numbers in Z.
◦ We will reserve the letter p for a prime integer (in Z) and we will use π to denote an irreducible element
in Z[i]. (The use of the letter π is traditional, and should not cause confusion with the real number π.)

◦ Recall that in Z[i], we have the norm map N(a+bi) = a2+b2 = |a+ bi|2, taking values in the nonnegative
integers, that this map satis�es N(zw) = N(z)N(w), and z is a unit in Z[i] if and only if N(z) = 1 (which
is to say, z ∈ {1,−1, i,−i}).
◦ We also observe that if N(z) = p is a prime number, then z is irreducible, since any factorization would
necessarily contain a term of norm 1 hence be a unit. Thus, for example, we see immediately that the
elements 1 + i and 2 + i are irreducible in Z[i] since N(1 + i) = 2 and N(2 + i) = 5.

◦ However, there are irreducible elements whose norms are not prime. For example, if 3 = zw for some
nonunits z and w, then the only possibility would be N(z) = N(w) = 3, but there are no Gaussian
integers of norm 3 since there are no integer solutions to 3 = a2 + b2.

◦ We can in fact extend this line of reasoning: π ∈ Z[i] is irreducible, then certainly π divides N(π). But
since π is a prime element of Z[i], we see that π must divide one of the (integer) prime factors of the
integer N(π). Thus, to characterize the irreducible elements of Z[i], we need to study how primes p ∈ Z
factor in Z[i].
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• Proposition (Sums of Squares and Primes in Z[i]): If p is a prime integer, then p is irreducible in Z[i] if and
only if p is not the sum of two squares (of integers). In particular, 2 is reducible in Z[i], while any prime
congruent to 3 modulo 4 is irreducible in Z[i].

◦ Proof: Suppose that p = (a+ bi)(c+ di) for some nonunits a+ bi and c+ di, where p is a prime in Z.
◦ Taking norms yields p2 = N(p) = (a2 + b2)(c2 + d2), and now since a+ bi and c+ di are not units, both
a2 + b2 and c2 + d2 must be larger than 1.

◦ The only possibility is a2 + b2 = c2 + d2 = p, so we see that p = a2 + b2 for some integers a and b.

◦ Conversely, if p = a2 + b2 for some integers a and b, we have the factorization p = (a+ bi)(a− bi).
◦ For the last statement, clearly 2 = 12 + 12. Furthermore, any square is 0 or 1 modulo 4, so the sum of
two squares cannot be 3 modulo 4.

• We are now left to analyze primes congruent to 1 modulo 4.

◦ By testing a few small cases like 5 = (2− i)(2 + i) and 13 = (3 + 2i)(3− 2i), it would appear that such
primes always factor into a product of two complex-conjugate irreducible factors in Z[i]. This turns out
to be the case.

• Proposition (Factorization of 1 mod 4 Primes): If p ≡ 1 (mod 4), then p is a reducible element in the ring
Z[i], and its factorization into irreducibles is p = (a+ bi)(a− bi) for some a and b with a2 + b2 = p.

◦ Proof: First we will show that there exists some integer n such that p divides n2 + 1, and then we use
the result to show that p is reducible in Z[i].
◦ For the �rst part, let p = 4k+1 and let u be a primitive root modulo p (which we have shown necessarily
exists).

◦ Then u4k ≡ 1 mod p, so u2k ≡ −1 (mod p), since its square is 1 but it cannot equal 1 (as otherwise u
would have order ≤ 2k and thus not be a primitive root).

◦ Then uk = n is an element whose square is −1 modulo p, so p divides the integer n2 + 1.

◦ For the second part, we see that p divides n2 + 1 = (n+ i)(n− i) in Z[i].
◦ Then, since p is a real number, if p divides one of n± i then taking complex conjugates would show that
p also divides the other. But this is not possible, since then p would divide (n+ i)− (n− i) = 2i, which
it clearly does not.

◦ Therefore, hence, p is not a prime element in Z[i], so it must be reducible. Then by the previous
proposition, there exist integers a and b with p = a2 + b2.

◦ Then N(a+bi) = N(a−bi) = p so these two elements are both irreducible, meaning that the factorization
of p in Z[i] is p = (a+ bi)(a− bi) as claimed.

• This completes our characterization of the irreducible elements in Z[i]. Explicitly:

• Theorem (Irreducibles in Z[i]): Up to associates, the irreducible elements in Z[i] are as follows:

1. The element 1 + i (of norm 2).

2. The primes p ∈ Z congruent to 3 modulo 4 (of norm p2).

3. The distinct irreducible factors a+ bi and a− bi (each of norm p) of p = a2+ b2 where p ∈ Z is congruent
to 1 modulo 4.

◦ Proof: The above propositions show that each of these are irreducible elements; we need only show there
are no others. So suppose π = a+ bi is an irreducible element in Z[i].
◦ Then N(π) = p1p2 · · · pk for some (integer) primes pi ∈ Z; since π is a prime element we conclude that it
must divide one of the pi. But we have characterized how pi factors into irreducibles in Z[i], so it must
be associate to one of the elements on our list above.

• Using this characterization of irreducible elements, we can describe a method for factoring an arbitrary
Gaussian integer into irreducibles. (This is the �prime factorization� in Z[i].)
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◦ First, �nd the prime factorization of N(a+ bi) = a2 + b2 over the integers Z, and write down a list of all
(rational) primes p ∈ Z dividing N(a+ bi).

◦ Second, for each p on the list, �nd the factorization of p over the Gaussian integers Z[i].
◦ Finally, use trial division to determine which of these irreducible elements divide a + bi in Z[i], and to
which powers. (The factorization of N(a+ bi) can be used to determine the expected number of powers.)

• Example: Find the factorization of 4 + 22i into irreducibles in Z[i].

◦ We compute N(4 + 22i) = 42 + 222 = 22 · 53. The primes dividing N(4 + 22i) are 2 and 5.

◦ Over Z[i], we �nd the factorizations 2 = −i(1 + i)2 and 5 = (2 + i)(2− i).
◦ Now we just do trial division to �nd the correct powers of each of these elements dividing 4 + 22i.

◦ Since N(4 + 22i) = 22 · 53, we should get two copies of (1 + i) and three elements from {2 + i, 2− i}.

◦ Doing the trial division yields the factorization 4 + 22i = −i · (1 + i)2 · (2 + i)3 . (Note that in order to

have powers of the same irreducible element, we left the unit −i in front of the factorization.)

• The primes appearing in the example above were small enough to factor over Z[i] by inspection, but if p is large
then it is not so obvious how to factor p in Z[i]. We brie�y explain how to �nd this expression algorithmically.

◦ Per the proof given above, we �rst want to �nd n such that p divides n2 + 1, which is equivalent to
�nding a square root of −1 modulo p.

◦ One way to search for such values is to choose a (random) unit u modulo p: then since up−1 ≡ 1 (mod p),
we know that the square of u(p−1)/2 will be ≡ 1 (mod p). It can be proven that there is a 1/2 probability
that u(p−1)/2 will be congruent to −1 modulo p, and in this case the value u(p−1)/4 will be a square root
of −1 modulo p. By trying various choices for u, we can eventually �nd the desired1 n.

◦ Now suppose we have computed such an n: if we factor p = ππ in Z[i], then since π divides n2 + 1 =
(n+ i)(n− i) and π is a prime element, either π divides n+ i or π divides n− i. Equivalently, either π
divides n+ i or π divides n+ i.

◦ Furthermore, since p clearly does not divide n + i, we see that exactly one of π and π divides n + i.
Therefore, either π or π is a greatest common divisor of p and n+ i in Z[i].
◦ Thus, to compute the solution to p = a2 + b2, we can use the Euclidean algorithm in Z[i] to �nd a
greatest common divisor of p and n+ i in Z[i]: the result will be an element π = a+ bi with a2 + b2 = p.

• Example: Express the prime p = 3329 as the sum of two squares.

◦ Using modular exponentiation, we can verify that 3(p−1)/4 ≡ 1729 (mod p). Thus, our discussion above
tells us that 1729 is a square root of −1 modulo p, and indeed, 17292 + 1 = 898 · 3329.
◦ Now we compute the gcd of 1729 + i and 3329 in Z[i] using the Euclidean algorithm:

3329 = 2(1729 + i) + (−129− 2i)

1729 + i = −13(−129− 2i) + (52− 25i)

−129− 2i = (−2− i)(52− 25i)

◦ The last nonzero remainder is 52− 25i, and indeed we can see that 3329 = 522 + 252 .

• As a corollary to our characterization of the irreducible elements in Z[i], we can deduce the following theorem
of Fermat on when an integer is the sum of two squares:

• Theorem (Fermat): Let n be a positive integer, and write n = 2kpn1
1 · · · p

nk

k qm1
1 · · · qmd

d , where p1, · · · , pk are
distinct primes congruent to 1 modulo 4 and q1, · · · , qd are distinct primes congruent to 3 modulo 4. Then n
can be written as a sum of two squares in Z if and only if all the mi are even. Furthermore, in this case, the
number of ordered pairs of integers (A,B) such that n = A2 +B2 is equal to 4(n1 + 1)(n2 + 1) · · · (nk + 1).

1It may initially seem that computing u(p−1)/4 modulo p would take a long time, but this calculation can be done rapidly using
�successive squaring�. As an example, to compute 2517 modulo 4457, we would compute 21, 22, 24, 28, ... , 2512 (each term is the square
of the previous one, so these values are not hard to compute) and then evaluate 2517 = 2512 · 24 · 21 modulo 4457.
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◦ Proof: Observe that the question of whether n can be written as the sum of two squares n = A2 +B2 is
equivalent to the question of whether n is the norm of a Gaussian integer A+Bi.

◦ Write A + Bi = ρ1ρ2 · · · ρr as a product of irreducibles (unique up to units), and take norms to obtain
n = N(ρ1) ·N(ρ2) · · · · ·N(ρr).

◦ By the classi�cation above, if ρ is irreducible in Z[i], then N(ρ) is either 2, a prime congruent to 1
modulo 4, or the square of a prime congruent to 3 modulo 4. Hence there exists such a choice of ρi with
n =

∏
N(ρi) if and only if all the mi are even.

◦ Furthermore, since the factorization of A+Bi is unique, to �nd the number of possible pairs (A,B), we
need only count the number of ways to select terms for A + Bi and A − Bi from the factorization of n
over Z[i], which is n = (1 + i)2k(π1π1)

n1 · · · (πkπk)nkqm1
1 · · · qmd

d .

◦ Up to associates, we must choose A+Bi = (1+i)k(πa11 π1
b1) · · · (πakk πk

bk)q
m1/2
1 · · · qmd/2

d , where ai+bi = ni
for each 1 ≤ i ≤ k.
◦ Since there are ni+1 ways to choose the pair (ai, bi), and 4 ways to multiply A+Bi by a unit, the total
number of ways is 4(n1 + 1) · · · (nk + 1), as claimed.

• Example: Find all ways of writing n = 6649 as the sum of two squares.

◦ We factor 6649 = 61 · 109. This is the product of two primes each congruent to 1 modulo 4, so it can be
written as the sum of two squares in 16 di�erent ways.

◦ We compute 61 = 52 + 62 and 109 = 102 + 32 (either by the algorithm we gave above or by inspection),
so the sixteen ways can be found from the di�erent ways of choosing one of 5 ± 6i and multiplying it
with 10± 3i.

◦ Explicitly: (5 + 6i)(10 + 3i) = 32 + 75i, and (5 + 6i)(10− 3i) = 68 + 45i, so we obtain the sixteen ways
of writing 6649 as the sum of two squares as (±32)2 + (±75)2, (±68)2 + (±45)2, and the eight other
decompositions with the terms interchanged.

• As another application of our results, we can prove a classical characterization of the �Pythagorean triples�
(triples of integers that represent the side lengths of a right triangle).

◦ If a2+ b2 = c2 for integers a, b, c, note that if two of a, b, c are divisible by a prime p, then so is the third.
We can then �reduce� the triple (a, b, c) by dividing each term by p to obtain a new triple (a′, b′, c′) with
(a′)2 + (b′)2 = (c′)2.

◦ For this reason it is su�cient to characterize the �primitive� Pythagorean triples with gcd(a, b, c) = 1.
For such triples, since a and b cannot both be odd (since then a2 + b2 ≡ 2 (mod 4) cannot be a perfect
square) we see that exactly one of a, b is even.

• Theorem (Pythagorean Triples): Every triple of positive integers (a, b, c) with a2+b2 = c2 with gcd(a, b, c) = 1
and a even is of the form (a, b, c) = (2st, s2 − t2, s2 + t2), for some relatively prime integers s > t of opposite
parity, and (conversely) any such triple is Pythagorean and primitive.

◦ Proof: It is easy to see that (2st)2+(s2−t2)2 = (s2+t2)2 simply by multiplying out, and it is likewise not
di�cult to see that if s and t are relatively prime and have opposite parity, then gcd(s2− t2, s2 + t2) = 1
so this triple is primitive.

◦ To show that (a, b, c) must be of the desired form, suppose that a2 + b2 = c2, and factor the equation in
Z[i] as (a+ bi)(a− bi) = c2.

◦ We claim that a+ bi and a− bi are relatively prime in Z[i]: any gcd must divide 2x and 2y, hence divide
2. However, a+ bi is not divisible by the prime 1 + i, since a and b are of opposite parity.

◦ Hence, since a+ bi and a− bi are relatively prime and have product equal to a square, by the uniqueness
of prime factorization in Z[i], there exists some s + it ∈ Z[i] and some unit u ∈ {1, i,−1,−i} such that
a+ bi = u(s+ ti)2.

◦ Multiplying out yields a+ bi = u
[
(s2 − t2) + (2st)i

]
. Since a is even, b is odd, and both are positive, we

must have u = −i and s > t: then we see a = 2st, b = s2 − t2, and c = s2 + t2 as claimed.
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4.4 Factorization of Ideals In Quadratic Integer Rings2

• As we have seen, some of the quadratic integer rings (like Z[i]) are unique factorization domains, while others
(like Z[

√
−5]) are not.

◦ More speci�cally, by extending the argument used for Z[i], it can be shown that the quadratic integer

ring OD = OQ(
√
D) =

{
Z[
√
D] for D ≡ 2, 3 (mod 4)

Z[(1 +
√
D)/2] for D ≡ 1 (mod 4)

is Euclidean (with norm given by the

�eld norm) for a known list of negative D = −1,−2,−3,−7,−11 and for various positive D, including
D = 2, 3, 5, 6, 7, 11, . . . .

◦ We would like to know whether it is possible to recover some sort of �unique factorization� property in
the quadratic integer rings, even when they are not unique factorization domains.

• The question of when OD is a UFD was (and is) of substantial interest in applications to solving equations in
number theory, since we may use properties of integer rings (e.g., Z[i]) to characterize the solutions to such
equations, as we saw earlier in the case of the equation a2 + b2 = c2.

◦ For example, if p is an odd prime, we may study the Fermat equation xp + yp = zp in the ring Z[ζp] =
{a0 + a1ζp + · · ·+ ap−1ζ

p−1
p : ai ∈ Z} where ζp = e2πi/p = cos(2π/p) + i sin(2π/p) is a nonreal pth root

of unity (satisfying ζpp = 1).

◦ We may rearrange the equation as zp − yp = xp and then factor the left-hand side as the product
(z − y)(z − ζpy)(z − ζ2py) · · · (z − ζp−1p y) of linear terms inside Z[ζp].

◦ If Z[ζp] were a unique factorization domain, then since the terms on the left-hand side are essentially
relatively prime, each of them would have to be a pth power in Z[ζp], up to some small factors. But
this can be shown not to be possible unless y = 0, and so we would be able to conclude that Fermat's
equation xp + yp = zp has no nontrivial integer solutions.

◦ Unfortunately, the ring Z[ζp] is not always a unique factorization domain. But the study of Diophan-
tine equations in number theory, and associated questions about unique factorization, were (historically
speaking) the impetus for much of the development of modern algebra, including ring theory.

• We will restrict our attention to quadratic integer rings, since we can give concrete arguments in these cases.
For example, we can show that every element does possess at least one factorization (and thus, the failure to
be a UFD lies entirely with non-uniqueness):

• Proposition (Element Factorizations in OD): If R = OD is a quadratic integer ring, then every nonzero
nonunit in R has at least one factorization as a product of irreducible elements.

◦ Proof: We show the result by (strong) induction on the absolute value of the norm N(r). If N(r) = 0
then r = 0, while if N(r) = ±1 then r is a unit.

◦ For the base case we take |N(r)| = 2: then r is irreducible, since the absolute value of its norm is a
prime. (This follows by the same argument used in Z[i].)
◦ For the inductive step, suppose that |N(r)| = n for n ≥ 3. If r is irreducible we are done: otherwise we
have r = ab for some a, b with 1 < |N(a)| , |N(b)| < n.

◦ By the inductive hypothesis, both a and b have factorizations as a product of irreducibles, so r does too.

• It would appear that we are essentially at an impasse regarding factorization of elements. However, if we shift
our focus instead to ideals, it turns out that these rings do possess unique prime factorizations on the level of
ideals, rather than elements.

◦ In fact, this is where the name �ideal� originally arose: in Kummer's study of unique factorization, he
constructed �ideal numbers� (essentially as sets of linear combinations of elements of OD) and proved that
they did possess unique prime factorization. These �ideal numbers� were the prototype of the modern
de�nition of an ideal.

2The treatment of some of the material in this section is adapted from notes of Keith Conrad: http://www.math.uconn.edu/~kconrad/
blurbs/gradnumthy/quadraticgrad.pdf.
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◦ To illustrate using an example we have already discussed, the element 6 ∈ Z[
√
−5] has two di�erent

factorizations into irreducibles, as 2 · 3 = 6 = (1 +
√
−5) · (1−

√
−5).

◦ This yields the equivalent ideal factorization (6) = (2) · (3) = (1 +
√
−5) · (1−

√
−5).

◦ However, as ideals, we can factor further3: explicitly, one can verify that (2) = (2, 1 +
√
−5)2, that

(1±
√
−5) = (2, 1 +

√
−5) · (3, 1±

√
−5), and that (3) = (3, 1 +

√
−5) · (3, 1−

√
−5).

◦ For an example of one of these calculations: we have (2, 1 +
√
−5) · (3, 1 +

√
−5) = (6, 2 + 2

√
−5, 3 +

3
√
−5,−4+2

√
−5). We can reduce the generating set by observing that this ideal contains (3+3

√
−5)−

(2+2
√
−5) = 1+

√
−5, and that each of the four generators of the product ideal is a multiple of 1+

√
−5:

thus, in fact, (2, 1 +
√
−5) · (3, 1 +

√
−5) = (1 +

√
−5), as claimed. The other calculations are similar.

◦ On the level of ideals, therefore, we see that these two factorizations are really �the same�: both of them
reduce to the factorization (6) = (2, 1 +

√
−5)2 · (3, 1 +

√
−5) · (3, 1−

√
−5).

◦ Furthermore, each of the ideals (2, 1 +
√
−5), (3, 1 +

√
−5), and (3, 1−

√
−5) can be shown to be prime

(the quotient ring of Z[
√
−5] by each is isomorphic to Z/2Z, Z/3Z, and Z/3Z respectively).

◦ Thus, we have found a factorization of the ideal (6) as a product of prime ideals of Z[
√
−5].

• Our goal is to show that the behavior in the example above holds in general: namely, that we can write any
nonzero ideal in a quadratic integer ring as a product of prime ideals, and that this factorization is unique up
to rearrangement.

◦ After �rst establishing some important properties of prime ideals, our model will be similar to our proofs
that Z and F [x] have unique factorization: we will discuss some properties of divisibility, show that every
nonzero ideal can be written as a product of prime ideals, and then show that the factorization is unique.

◦ We will then give some applications of unique factorization into prime ideals, and in particular describe
how to compute the prime ideals of OD.

4.4.1 Ideals in OD

• To begin, we show that every ideal in OD is generated by at most 2 elements:

• Proposition (Ideal Generators in OD): If R = OD is a quadratic integer ring, then every ideal in R is of the

form (n, a+ b · 1 +
√
D

2
) for some a, b, n ∈ Z.

◦ Proof: Let I be an ideal of OD, and de�ne I0 = I ∩Z and I1 to be the set of r ∈ Z such that there exists

some s ∈ Z with s+ r · 1 +
√
D

2
∈ I.

◦ Observe that I0 and I1 are both ideals of Z since they clearly contain 0, are closed under subtraction,
and are closed under arbitrary Z-multiplication. So suppose I0 = (n) and I1 = (b): then n ∈ I, and by

de�nition of I1, there exists a ∈ Z such that a+ b · 1 +
√
D

2
∈ I.

◦ We claim that n and a+ b · 1 +
√
D

2
generate I, so suppose s+ r · 1 +

√
D

2
is an arbitrary element of I.

By de�nition of I1 we see that r ∈ I1, whence r = yb for some y ∈ Z.

◦ Then

[(
s+ r · 1 +

√
D

2

)
− y ·

(
a+ b · 1 +

√
D

2

)]
= s − ay is in I ∩ Z = I0, so this quantity is equal

to xn for some x ∈ Z.

◦ Thus, s+ r · 1 +
√
D

2
= xn+ y

(
a+ b · 1 +

√
D

2

)
, and so n and a+ b · 1 +

√
D

2
generate I as claimed.

3Recall that if I and J are ideals, then the product ideal IJ is de�ned to be the set of all �nite products of an element of I with
an element of J . In a commutative ring with 1, multiplication of ideals is commutative and associative, and if I = (a1, . . . , an) and
J = (b1, . . . , bm), then IJ = (a1b1, . . . , anbm). To see this, observe that the product ideal IJ certainly contains all of these pairwise
products, and conversely by distributing we see that any product of an element of I with an element of I lies in (a1b1, . . . , anbm), hence
so do sums of such products.
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• As a corollary, we can deduce that nonzero prime ideals of OD are maximal:

• Corollary (Quotients of OD): If R = OD is a quadratic integer ring and I is a nonzero ideal, then OD/I is
�nite. In particular, every nonzero prime ideal of OD is maximal.

◦ Proof: For the �rst statement, if I is a nonzero ideal in OD, then I ∩ Z is nonzero (since if r ∈ I is any

nonzero element, N(r) ∈ I is a nonzero integer) and so by the proposition above, I = (n, a+ b · 1 +
√
D

2
)

where n 6= 0 is a generator of I ∩ Z.
◦ There are �nitely many residue classes inOD/(n), since each residue class has (exactly) one representative

by an element of the form s+t· 1 +
√
D

2
for some integers 0 ≤ s, t ≤ n−1. Then by the third isomorphism

theorem, we know that OD/I ∼= [OD/(n)]/[I/(n)] is a quotient of a �nite ring, hence also �nite.

◦ For the second statement, if P is a nonzero prime ideal of OD, then OD/P is a �nite integral domain,
hence is a �eld.

• We also require a few additional properties about the �conjugation� map in OD:

• De�nition: If a+ b
√
D is an element of OD, its conjugate is a+ b

√
D = a− b

√
D. For any r ∈ OD, we have

N(r) = r · r, and we also de�ne the trace of r as tr(r) = r + r.

◦ It is not hard to see that both N(r) and tr(r) are elements of Z for any r ∈ OD.
◦ Conversely, the elements r ∈ Q(

√
D) with the property that N(r) and tr(r) are both in Z are precisely

the elements of OD.
◦ To see this, if r = a+ b

√
D ∈ Q(

√
D), then N(r) = a2 −Db2 and tr(r) = 2a. If both of these values are

integers, then 2a is an integer, and then 4N(r)− (2a)2 = −4Db2 is also an integer. Since D is squarefree,
this means 4b2 hence 2b is an integer as well.

◦ Finally, if D ≡ 2, 3 (mod 4) then N(r) will only be an integer when a and b are themselves integers,
while if D ≡ 1 (mod 4) then N(r) will be an integer when 2a and 2b are integers of the same parity. In
both cases, we see r ∈ OD as claimed.

• De�nition: If I is an ideal of OD, then its conjugate is the ideal I = {r : r ∈ I}.

◦ It is easy to see that if I = (r, s), then I = (r, s), so for example in Z[
√
−5] we have (3, 1 +

√
−5) =

(3, 1−
√
−5).

◦ Likewise, it is a straightforward calculation that for any ideals I and J , we have IJ = I · J and I = I.

• Our �rst key result is that the product of an ideal with its conjugate is always principal:

• Theorem (Ideals and Conjugates in OD): If I is any ideal of OD, then I · I is always principal.

◦ Proof: If I = 0 we are done. Otherwise, suppose that I = (r, s) for some nonzero r, s ∈ OD: then
I = (r, s) and I · I = (rr, rs, rs, ss).

◦ We claim in fact that I · I = (rr, rs+ rs, ss) = (N(r), tr(rs), N(s)).

◦ To see this, observe that N(r), tr(rs), and N(s) are each in Z, so let their greatest common divisor be
d. Then d = xN(r) + ytr(rs) + zN(s) for some x, y, z ∈ Z, and so (N(r), tr(rs), N(s)) = (d) in OD.
◦ In order to show that I · I = (rr, rs+ rs, ss), we must show that rs is in the ideal (rr, rs+ rs, ss) = (d).

◦ Observe that tr(rs/d) =
rs+ rs

d
=

tr(rs)

d
is an integer, as is N(rs/d) =

rs

d
· rs
d

=
N(r)

d
· N(s)

d
, since d

divides each of N(r), tr(rs), and N(s).

◦ Then, by our characterization of the elements in OD, we conclude that rs/d is in OD, so that rs ∈ (d).

◦ Therefore, I · I = (rr, rs+ rs, ss) = (N(r), tr(rs), N(s)) = (d) is principal, as claimed.

22



4.4.2 Divisibility and Unique Factorization of Ideals in OD

• Next, we discuss divisibility of ideals.

• De�nition: If I and J are ideals of OD, we say that I divides J , written I|J , if there is some ideal K such
that J = IK.

• Proposition (Properties of Ideal Divisibility): Suppose I and J are ideals of OD and r ∈ OD.

1. If I divides J , then I contains J .

◦ Proof: If J = IK then every element in J is a sum of multiples of elements in I, hence is in I.

2. We have I|J and J |I if and only if I = J .

◦ Proof: Since I = IR, I = J implies I|J and J |I. Conversely, if I|J and J |I, then I ⊆ J and J ⊆ I
so I = J .

3. The principal ideal (r) divides I if and only if (r) contains I.

◦ Proof: The forward direction follows from (1). For the reverse, if (r) contains I = (s, t) then r|s and
r|t, and then I = (r) · (s/r, t/r).

4. If (r)J = (r)K and r 6= 0, then J = K.

◦ Proof: If s ∈ J , then rs ∈ (r)J : then rs ∈ (r)K and so s ∈ K. Thus, J ⊆ K, and by the same
argument in reverse, K ⊆ J , so J = K.

5. If IJ = IK and I 6= 0, then J = K.

◦ Proof: If I 6= 0 then I · I = (r) is a nonzero principal ideal as we proved above. Then IJ = IK
implies (II)J = (II)K so that (r)J = (r)K, whence J = K by (4).

6. The ideal I divides J if and only if I contains J .

◦ Proof: The forward direction is given by (1), and it is easy to see that the result also holds if I is
zero (since every ideal divides the zero ideal, but the zero ideal only divides itself).

◦ If I and J are nonzero ideals and I contains J , then I · I = (r) contains J · I.
◦ Then by (3) we see that (r) = I · I divides J · I, so J · I = I · I ·K for some K. Then since I 6= 0
(whence I 6= 0), by (5) we may cancel to conclude that J = IK, meaning that I divides J .

• The upshot of the previous proposition is that dividing is the same as containment, on the level of ideals.

◦ From this description and the fact that nonzero prime ideals are maximal, we can immediately conclude
that the �irreducible� ideals (namely, ideals that have no nontrivial factorization, which is to say I = JK
implies J = OD or K = OD) are the same as the maximal ideals, which are in turn the same as the
nonzero prime ideals.

• It remains for us to establish that every nonzero ideal has a factorization into prime ideals, and that the
factorization is unique.

◦ To show that nonzero ideals have a factorization, we will mimic the proof we gave earlier for elements
by de�ning an �ideal norm�.

◦ For elements we use the norm N(r) = |r ·r|, so a natural guess for ideals would be to use I ·I: conveniently
enough, we have proven that this ideal is principal and generated by an integer.

• De�nition: If I is an ideal of OD, then the norm N(I) of I is the nonnegative integer generator of the principal
ideal I · I.

◦ Observe that the norm is multiplicative: (N(IJ)) = IJ · IJ = II · JJ = (N(I)N(J)).

◦ Also notice that the only ideal with norm 0 is the zero ideal, while the only ideal with norm 1 is OD
(since II = (1) implies that I contains a unit).

◦ Thus, in particular, if N(I) is a prime integer then I has no nontrivial factorization, and thus I is a
prime ideal.
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• We can now establish that every ideal has a factorization as a product of prime ideals:

• Proposition (Prime Factorization of Ideals in OD): Every nonzero ideal in OD can be written as the product
of prime ideals of OD.

◦ As usual, we take the convention that the empty product represents OD.
◦ Proof: We use (strong) induction on the norm of the ideal. Since I 6= 0 we have N(I) ≥ 1.

◦ For the base case N(I) = 1, we have I = OD so we may take the empty product of prime ideals.

◦ For the inductive step, suppose the result holds for every ideal of norm less than n and suppose N(I) = n.

◦ If I is a prime ideal we are done, so assume I is not prime (hence not maximal). Then I is properly
contained in some other proper ideal J , so by our results on divisibility we may write I = JK where J
and K are both proper.

◦ Then N(I) = N(J) ·N(K) and 1 < N(J), N(K) < n. By the inductive hypothesis, both J and K are
the product of some number of prime ideals, so I is as well.

• As our �nal step, we show that the factorization is unique. To do this we require the prime divisibility property
of prime ideals:

• Proposition (Divisibility and Prime Ideals in OD): If P is a prime ideal of OD and I and J are any ideals
with P |IJ , then P |I or P |J .

◦ Proof: By the equivalence of divisibility and containment in OD, we need to show that if P is a prime
ideal with P containing IJ , then P contains I or P contains J .

◦ Suppose that P contains neither I nor J : then there is some x ∈ I that is not in P and some y ∈ J that
is not in P . But then xy ∈ IJ is contained in P , contradicting the assumption that P was prime. Thus,
P contains I or P contains J , as required.

• Theorem (Uniqueness of Prime Ideal Factorization in OD): Every nonzero ideal in OD can be written as
the product of prime ideals of OD. Furthermore, this representation is unique up to rearrangement: if
I = P1P2 · · ·Pn = Q1Q2 · · ·Qk, then n = k and there is some rearrangement of the Qi so that Pi = Qi.

◦ Proof: We proved above that every nonzero ideal can be written as a product of prime ideals.

◦ For the uniqueness, we induct on the minimal number of terms n in the prime factorization.

◦ For the base case n = 0, we have I = OD: since every prime ideal is proper, we cannot write I as a
nonempty product of prime ideals.

◦ For the inductive step, suppose that every representation with fewer than n terms is unique, and suppose
I = P1P2 · · ·Pn = Q1Q2 · · ·Qk. Since P1 is prime and divides Q1Q2 · · ·Qk, we see that P1 must divide
one of the Qi; without loss of generality, rearrange so that P1 divides Q1.

◦ But since P1 and Q1 are both nonzero prime ideals, they are maximal. Since P1 divides Q1 we see that
P1 contains Q1, hence since Q1 is maximal and P1 6= OD, we must have P1 = Q1.

◦ Then by our ideal divisibility properties, we may cancel to obtain P2 · · ·Pn = Q2 · · ·Qk, which by the
inductive hypothesis has a unique factorization. Thus, the factorization of I is unique as claimed.

4.4.3 Applications of Unique Factorization in OD

• As a corollary of the unique factorization of ideals, we can give a characterization of when OD is a unique
factorization domain:

• Theorem (Unique Factorization in OD): The ring OD is a unique factorization domain if and only if it is a
principal ideal domain.

◦ Inversely, this says that every example of non-unique factorization of elements in OD ultimately arises
from the presence of nonprincipal ideals.

◦ Proof: Every PID is a UFD, so we need only prove the forward direction, so suppose OD is a unique
factorization domain.
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◦ First suppose that P is a prime ideal: then P divides the principal ideal (N(P )). By the unique factoriza-
tion of elements in OD, we can write N(P ) = π1π2 · · ·πn for some irreducible elements π1, . . . , πn ∈ OD.
◦ Therefore, P divides the ideal product (N(P )) = (π1) · · · (πn), and hence P divides one of the ideals (πi).

◦ But since irreducibles are prime in UFDs, the ideal (πi) is also prime, and so we must have P = (πi),
and so in particular P is principal.

◦ Then any nonzero ideal in OD is a product of prime (hence principal) ideals hence is also principal. Since
the zero ideal is also principal, every ideal in OD is principal, so it is a PID.

• We can also describe how prime ideals in OD arise in a more concrete way:

• Proposition (Prime Ideals in OD): If P is a nonzero prime ideal of OD, then P ∩ Z = pZ for a unique prime
p ∈ Z (we say P �lies above� the prime ideal pZ of Z). Furthermore, every prime ideal in OD lying above pZ
divides the ideal (p) in OD, and the norm of any prime ideal is either p or p2.

◦ Proof: Let ϕ : Z → OD be the inclusion homomorphism, and observe that ϕ−1(P ) = P ∩ Z is then an
ideal of Z, since the inverse image contains 0 and is closed under subtraction and arbitrary multiplication.

◦ Furthermore, if ab ∈ ϕ−1(P ) then ϕ(a)ϕ(b) = ϕ(ab) ∈ P , so since P is prime we see ϕ(a) ∈ P or
ϕ(b) ∈ P : thus, either a or b is in ϕ−1(P ). Furthermore, since ϕ maps 1Z to 1OD

, ϕ−1(P ) does not
contain 1, and since P contains the nonzero integer N(P ), we conclude that ϕ−1(P ) = P ∩Z is a nonzero
prime ideal of Z.
◦ Then P ∩ Z = pZ for a unique prime p ∈ Z. Thus, P contains p ∈ Z hence P contains (p), so by the
equivalence of divisibility and containment, we see that P divides (p).

◦ For the last statement, since P divides (p) we see that N(P ) divides N((p)) = N(p) = p2, so since
N(P ) > 1 we must have N(p) = p or N(p) = p2.

• The result above tells us that we can �nd all the prime ideals in OD by studying the factorization of the ideal
(p) in OD.

◦ Indeed, we have already seen how this works when OD = Z[i]: there is a unique prime ideal (1+ i) above
2, with (2) = (1 + i)2 decomposing as a product with repeated factors, if p ≡ 3 mod 4 then the ideal (p)
remains prime in Z[i], and if p ≡ 1 mod 4 then (p) = (π)(π) factors as the product of distinct ideals.

◦ We can recast this characterization as follows: if the polynomial x2 + 1 has a repeated root modulo p
(which only happens with p = 2) then the ideal (p) decomposes as a product with repeated factors, if
x2 + 1 remains irreducible modulo p (which is equivalent to saying that −1 is not a square modulo p,
which occurs when p ≡ 3 mod 4) then (p) remains prime in Z[i], and if x2+1 factors with distinct terms
modulo p (which is equivalent to saying that −1 is a square modulo p, which occurs when p ≡ 1 mod 4)
then (p) factors as the product of two distinct conjugate ideals.

◦ We can establish a similar characterization for the prime ideals of OD.

• Theorem (Factorization of (p) inOD): Let p be a prime and let q(x) =

{
x2 −D for D ≡ 2, 3 mod 4

x2 − x− (D − 1)/4 for D ≡ 1 mod 4
,

where ω =

{√
D for D ≡ 2, 3 mod 4

(1 +
√
D)/2 for D ≡ 1 mod 4

is a root of q(x). If the polynomial q(x) has a repeated root r

modulo p then the ideal (p) = (p, ω− r)2 is the square of a prime ideal of norm p in OD, if q(x) is irreducible
modulo p then the ideal (p) is prime in OD of norm p2, and if q(x) is reducible with distinct roots r, r′ modulo
p, then (p) = (p, ω − r) · (p, ω − r′) factors as the product of two distinct ideals in OD each of norm p.

◦ We note that q(x) has a root modulo p if and only if D is a square modulo p. Also, q(x) has a repeated
root when p|D (for any D) or when p = 2 and D ≡ 3 mod 4.

◦ Proof: First observe that OD ∼= Z[x]/(q(x)), so by the isomorphism theorems we see that OD/(p) ∼=
[Z[x]/(q(x))] /(p) ∼= Z[x]/(p, q(x)) ∼= [Z[x]/(p)] /(q(x)) ∼= Fp[x]/(q(x)). Thus, the ring structure of
OD/(p) is the same as the ring structure of Fp[x]/(q(x)).
◦ The ideal (p) is prime (equivalently, maximal) in OD precisely when the quotient ring is a �eld, and this
occurs exactly when q(x) is irreducible in Fp[x]. In this case, N((p)) = p2 so (p) is prime of norm p2.
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◦ If (p) is not prime, then since N((p)) = p2, we see that (p) must factor as the product of two prime
ideals I and I ′ each of norm p. Furthermore, since I · I = (N(I)) = (p), by uniqueness of the prime ideal
factorization we see that I ′ = I, so the ideals in the factorization are conjugates.

◦ If I 6= I then I + I = OD, so I and I are comaximal: then by the Chinese remainder theorem see that
OD/(p) ∼= OD/I ×OD/I is the direct product of two �elds, and has no nonzero nilpotent elements.

◦ On the other hand, if I = I, then OD/(p) = OD/I2 has a nonzero nilpotent element (namely, the class
of any element in I but not in I2).

◦ For the other side, if q(x) = (x − r)(x − r′) in Fp[x], then the quotient ring OD/(p) ∼= Fp[x]/(q(x)) ∼=
Fp[x]/(x − r) × Fp[x]/(x − r′) ∼= Fp × Fp is a direct product of two �elds by the Chinese remainder
theorem, and has no nonzero nilpotent elements.

◦ If q(x) = (x− r)2 in Fp[x], then OD/(p) ∼= Fp[x]/(x− r)2 does have a nonzero nilpotent element (namely
x− r).

◦ Thus, comparing the ring structures in the two cases immediately shows that the case where I = I
corresponds to the case where q(x) has a repeated root, and I 6= I corresponds to the case where q(x)
has distinct roots.

◦ For the remaining statements, if r is a root of q(x) in Fp, then (p, ω− r) divides (p) since it contains (p),
and since ω − r 6∈ (p) we see that (p, ω − r) is a proper divisor of (p).

◦ Furthermore, N((p, ω − r)) is the greatest common divisor of N(p) = p2, tr(p(ω − r)) = ptr(ω − r), and
N(ω− r) = q(r) ≡ 0 mod p. Since each of the terms is divisible by p, the gcd cannot be 1, and therefore
(p, ω−r) is a proper ideal. By the uniqueness of the prime ideal factorization, we conclude that (p, ω−r)
must be a prime ideal dividing (p).

◦ If (p) is the square of a prime ideal, we then see (p) = (p, ω − r)2, while if (p) is the product of distinct
ideals, we see that (p) is divisible by both (p, ω− r) and (p, ω− r′), and since these ideals are comaximal
we conclude (p) = (p, ω − r) · (p, ω − r′). This establishes everything, so we are done.

• Example: Find the prime ideal factorizations of (2), (3), (5), and (7) in O7 = Z[
√
7].

◦ For (2) we consider x2 − 7 modulo 2: since it has a repeated root 1, we see (2) = (2,
√
7− 1)2 in Z[

√
7].

◦ For (3) we consider x2 − 7 modulo 3: since its roots are 1 and 2, we get (3) = (3,
√
7− 1) · (3,

√
7− 2).

◦ For (5) we consider x2 − 7 modulo 5: since it has no roots, we see that (5) remains prime in Z[
√
7].

◦ For (7) we consider x2 − 7 modulo 7: since it has a repeated root 0, we see (7) = (7,
√
7)2 = (

√
7)2.

• As a �nal concluding remark, we will note that almost all of our analysis of the quadratic integer rings OD
can be extended to general �rings of integers� of algebraic number �elds, as pioneered by Kummer, Dedekind,
and Noether in their original development of the theory of rings and modules as applied to number theory.

◦ Explicitly, an algebraic number is a complex number that satis�es a polynomial with rational coe�cients
(such as i/2, 3

√
2, and the roots of x5−x− 1 = 0), while an algebraic integer is an algebraic number that

satis�es a monic polynomial with integer coe�cients (such as i and 3
√
2, but not i/2).

◦ An algebraic number �eld is a sub�eld of C that is �nite-dimensional over Q (examples include Q(
√
D)

and Q( 3
√
2)); all its elements are algebraic numbers.

◦ It can be shown that the set of algebraic integers in an algebraic number �eld K is a subring of K, which
is called the ring of integers of the number �eld. (For example, the ring of integers of Q(

√
D) is OD.)

◦ Essentially all of the results we have proven then carry over to general rings of integers: ideal divisibility
is equivalent to containment, nonzero prime ideals are maximal, nonzero ideals factor as a unique product
of prime ideals, and nonzero prime ideals are precisely the ideal factors of (p).

◦ In number-theoretic language, if a prime ideal (p) remains prime in a ring of integers, we say (p) is
inert. If (p) factors as a product of distinct prime ideals, we say (p) splits, while if (p) has repeated
prime factors, we say that p rami�es. The question of when primes split, remain inert, or ramify is a
fundamental object of study in algebraic number theory.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2018. You may not reproduce or distribute this
material without my express permission.
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