
Ring Theory (part 1): The Integers (by Evan Dummit, 2018, v. 1.01)
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1 The Integers

The most fundamental example of a ring is the set of integers. Our goal in this chapter is to de�ne the integers
axiomatically and to develop some basic properties of primes, divisibility, and modular arithmetic: these will serve
as a prototype for much of our analysis of general rings in subsequent chapters.

1.1 The Integers, Axiomatically

• We are all quite familiar with the integers Z, consisting of the natural numbers N (1, 2, 3, 4, . . . ), along with
their negatives (−1, −2, −3, −4, . . . ) and zero (0).

◦ But it is not quite so simple to prove things about the integers without a solid set of properties to work
from!

1.1.1 Axioms for the Integers

• In order to put everything on rigorous ground, we de�ne the integers to be a set Z along with two (closed)
binary1 operations + and ·, obeying the following properties:

[A1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any integers a, b, c.

[A2] The operation + is commutative: a+ b = b+ a for any integers a, b.

[A3] There is an additive identity 0 satisfying a+ 0 = a for all integers a.

[A4] Every integer a has an additive inverse −a satisfying a+ (−a) = 0.

[M1] The operation · is associative: a · (b · c) = (a · b) · c for any integers a, b, c.

1The de�nition of a binary operation means that for any two integers a and b, the symbols a+ b and a · b are always de�ned and are

integers. Some authors list these properties explicitly as part of their list of axioms.
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[M2] The operation · is commutative: a · b = b · a for any integers a, b.

[M3] The operation · distributes over +: a · (b+ c) = a · b+ a · c for any integers a, b, c.

[M4] There is a multiplicative identity 1 6= 0 satisfying 1 · a = a for all integers a.

Furthermore, there is a subset of Z, called N, such that

[N1] For every a ∈ Z, precisely one of the following holds: a ∈ N, a = 0, or (−a) ∈ N.
[N2] N is closed under + and ·.
[N3] Every nonempty subset S of N contains a smallest element: that is, an element x ∈ S such that if y ∈ S,

then either y = x or y − x ∈ N.

• Notation: We often omit the dot symbol for multiplication and write ab in place of a · b.

• De�nition: The axiom (N3) is called the well-ordering principle. It is the axiom that di�erentiates the integers
from other number systems such as the rational numbers or the real numbers (both of which obey all of the
other axioms).

1.1.2 Basic Arithmetic in Z

• We would like to use standard notation for integer arithmetic whenever possible. Our immediate goal, there-
fore, is to establish a number of simple properties of integer arithmetic.

• De�nition: We can de�ne the binary operation of subtraction by setting a− b = a+ (−b).

• De�nition: Using the de�nition of N, we can de�ne a relation �<� by saying a < b if and only if b − a ∈ N.
(We de�ne b > a to be the same thing.)

◦ The axioms [N1] and [N2] ensure that this symbol behaves in the way we would expect an inequality
symbol to behave: for any a and b, exactly one of a < b, a = b, or b < a holds, a < b and b < c imply
a < c, and a < b with 0 < c implies ac < bc.

◦ We can also de�ne the �non-strict� inequality symbol: if a < b or a = b, we say that a ≤ b.

• Using the axioms for Z, we can establish a multitude of properties of basic arithmetic. Doing this is not
especially di�cult: it typically requires applying a few of the axioms in creative ways, often in tandem with
some case analysis.

• Proposition (Basic Arithmetic): In the integers Z, the following are true:

1. The additive identity 0 is unique, as is the multiplicative identity 1.

◦ Proof: Suppose that 0a and 0b were both additive identities. Then by [A2] and the hypotheses,
0a = 0a + 0b = 0b + 0a = 0b. An analogous argument with [M2] shows that the multiplicative
identity is unique.

2. Addition has a cancellation law: if a+ b = a+ c, then b = c.

◦ Proof: By [A1]-[A4], b = 0 + b = [(−a) + a] + b = (−a) + [a+ b] = (−a) + [a+ c] = [(−a) + a] + c =
0 + c = c.

3. Additive inverses are unique.

◦ Proof: Suppose that b and c were both additive inverses of a. Then a+ b = 0 = a+ c, so by property
(2), b = c.

4. For any integer a, 0 · a = 0.

◦ Proof: By [A3], [M3] and [M4], we have a+ 0 = a = 1 · a = (1 + 0) · a = 1 · a+ 0 · a = a+ 0 · a. Then
by property (2), we conclude 0 · a = 0.

5. For any integer a, −(−a) = a.

◦ Proof: By de�nition, −(−a) has the property that (−a) + [−(−a)] = 0. But by [A2] applied to [A4],
we also know (−a) + a = 0, so by property (3), we conclude −(−a) = a.
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6. For any integer a, (−1) · a = −a.
◦ Proof: By [A4], [M3], and the previous property, we have 0 = 0 ·a = [1 + (−1)] ·a = 1 ·a+ (−1) ·a =
a+ (−1) · a. Therefore, (−1) · a is an additive inverse of a, so by property (3), we see (−1) · a = −a.

7. For any integers a and b, −(a+ b) = (−a) + (−b).
◦ Proof: By property (6) and [M3], −(a+ b) = (−1) · (a+ b) = (−1) · a+ (−1) · b = (−a) + (−b).

8. For any integers a and b, (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.
◦ Proof: Observe that a · b+ (−a) · b = [a+ (−a)] · b = 0 · b = 0 by [A4], [M3], and property (4). Thus,

(−a)·b is an additive inverse of a·b, so by property (3), it is equal to −(a·b). A similar argument shows
that a·(−b) = −(a·b). For the last statement, observe that (−a)·(−b) = −[a·(−b)] = −(−[a·b]) = a·b
by the �rst two statements and property (5).

9. The multiplicative identity 1 ∈ N.
◦ Proof: By [N1], either 1 ∈ N (in which case we are done), 1 = 0 (impossible by [M4]), or −1 ∈ N. If
−1 ∈ N, then since N is closed under multiplication by [N2], and since (−1) · (−1) = 1 by property
(8), we would again conclude that 1 ∈ N. Thus, 1 ∈ N.

10. If ab = 0, then a = 0 or b = 0. If ab > 0 then either a > 0 and b > 0, or a < 0 and b < 0.

◦ Proof: Analyze each of the nine possible cases for whether a or b is positive, negative, or zero, using
property (8) and [N1] to determine whether ab < 0, ab = 0, or ab > 0 in each case.

11. If a < b and b < c then a < c.

◦ Proof: Since a > b we know b − a is in N, and since b < c we know c − b is in N. Then their sum
(c− b) + (b− a) = c− a is also in N by [N2].

12. If b < c then a+ b < a+ c, and also if a > 0 then ab < ac.

◦ Proof: Note that b < c is the same as saying (c − b) ∈ N, and since (a + c) − (a + b) = c − b by
[A1]-[A4] and property (7), we conclude a+ b < a+ c. Also, if a > 0 then a · (c− b) = a · c− a · b is
also in N by [N2], so ab < ac.

• By judicious application of the arithmetic properties above, we can justify most basic algebraic statements
and notation.

◦ From this point onward, we will revert to using standard algebraic notation and properties without
justifying each individual step, since it is incredibly tedious to write proofs relying solely on axiomatic
calculations like the ones given above.

• A rather obvious yet bizarrely important property of the integers is the following result, whose proof we
include separately:

• Proposition: There are no integers between 0 and 1.

◦ Proof: Let S be the collection of all integers between 0 and 1. If S is empty, we are done, so now assume
S is nonempty.

◦ By the well-ordering principle, S has a minimal element r.

◦ Now observe that since 0 < r < 1, it is true that 0 < r2 < r < 1. But this is a contradiction, because r2

is then a positive integer less than r, but r was assumed to be minimal.

• Using this property we can establish a few more results, such as the following:

• Proposition: If ab = 1, then a = b = 1 or a = b = −1.

◦ Proof: From the basic arithmetic properties, we know that if a = b = 1 or a = b = −1 then ab = 1.

◦ Also, since ab > 0 we must have a > 0 and b > 0 or a < 0 and b < 0.

◦ If a > 0 and b > 0, then a ≥ 1 and b ≥ 1, since there are no integers between 0 and 1.

◦ Then if a > 1 we would have ab > b ≥ 1, so ab > 1. Likewise, if b > 1 then ab > a ≥ 1, so again ab > 1.

◦ In a similar way, if a < 0 and b < 0 then a ≤ −1 and b ≤ −1, and if a < −1 or b < −1 then ab > 1.
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1.1.3 Induction

• As an application of our treatment of the integers, we can establish the validity of �proof by induction�.

• The principle of mathematical induction is as follows: suppose we have a sequence of statements P (1), P (2),
P (3), and so forth. If P (1) is true, and P (n) implies P (n + 1) for every n ≥ 1, then P (k) is true for every
positive integer k.

◦ A useful analogy for understanding this inductive principle is of climbing a ladder: if we can get on the
�rst rung of the ladder, and we can always climb from one rung to the next, then we can eventually
climb to any rung of the ladder (no matter how high).

◦ We often refer to the step of showing that P (1) is true as the base case, and the step of showing that
P (n) implies P (n+ 1) for every n ≥ 1 as the inductive step.

• Proposition (�Proof by Induction�): If S is a set of positive integers such that 1 ∈ S, and n ∈ S implies
(n+ 1) ∈ S, then S = N.

◦ Proof: Let T be the set of elements of N not in S. If T is empty, we are done, so assume T is nonempty.

◦ By the well-ordering principle, T has a minimal element r.

◦ Since r is positive, there are three possibilities: 0 < r < 1, r = 1, or 1 < r.

◦ Since there are no positive integers between 0 and 1, and 1 ∈ S, the only remaining possibility is that
1 < r. But then 0 < r − 1, so r − 1 is a positive integer. Since r − 1 < r and r is minimal, we see that
r − 1 ∈ S. But the hypotheses on S then imply r ∈ S, which is a contradiction since we assumed r ∈ T .
◦ Hence T must be empty, so S = N.

• If we let S be the set of positive integers n such that a statement P (n) holds, then by the result above, if
1 ∈ S and n ∈ S implies (n+ 1) ∈ S, then S = N: in other words, if P (1) is true and P (n) implies P (n+ 1)
for every n ≥ 1, then P (k) is true for every positive integer k.

• Example: Prove that 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for every positive integer n.

◦ We prove this by induction on n.

◦ For the base case n = 1, we must show that 1 = 1 which is clearly true.

◦ For the inductive step, we are given that 1 + 3 + 5 + · · ·+ (2n− 1) = n2 and must show that 1 + 3 + 5 +
· · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2.

◦ By the inductive hypothesis, we can write

1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = [1 + 3 + 5 + · · ·+ (2n− 1)] + (2n+ 1)

= n2 + 2n+ 1 = (n+ 1)2

and therefore we see 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2, as required.

◦ By induction, 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for every positive integer n.

• There are various modi�cations to this �basic� form of induction. The procedure for any induction problem is
essentially the same, however: we establish a base case, and prove an inductive step. As long as we establish
the appropriate base case and inductive step, the inductive principle will still work.

• Example: Show that 2n > n2 for all integers n ≥ 5.

◦ We prove this by induction on n.

◦ We start with the base case n = 5: here, we must show that 25 > 52, or 32 > 25, which is true.

◦ For the inductive step, we are given that 2n > n2 and n ≥ 5, and must show that 2n+1 > (n+ 1)2.

◦ By the inductive hypothesis, we can write 2n+1 = 2 · 2n > 2n2.

◦ Furthermore, since n ≥ 5, we have 2n2 = n2 + n2 ≥ n2 + 5n ≥ n2 + 2n+ 1 = (n+ 1)2.

◦ Putting the inequalities together, we see that 2n+1 > 2n2 ≥ (n+ 1)2, so 2n+1 > (n+ 1)2 as required.
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◦ Therefore, by induction, 2n > n2 for all integers n ≥ 5.

• Another �avor of induction is called �complete induction� or �strong induction�: rather than assuming the
immediately previous case, we assume all of the previous cases: the inductive step is now that P (1), P (2),
..., P (n) collectively imply P (n+ 1).

◦ Strong induction makes it easier to construct induction arguments when more than one previous case is
needed for proving the inductive step, or when the needed case is not the immediately previous one.

◦ This form of induction also follows from our proposition above: simply take S to be the set of positive
integers n such that all the statements P (1), P (2), ..., P (n) are true.

◦ In fact, (regular) induction and strong induction are equivalent to one another: any proof using one can
be rephrased using the other. Thus, it is always possible to start an induction argument with the strong
induction hypothesis, even if it is not fully needed during the proof.

• Example: Show that every positive integer n can be written in the form n = 2kb where k ≥ 0 and b is odd.

◦ We prove this by strong induction on n.

◦ For the base case n = 1, we can take k = 0 and b = 1.

◦ For the inductive step, now suppose that n ≥ 2 and that every positive integer less than n has the
required property.

◦ If n is odd, then we can take k = 0 and b = n.

◦ If n is even, then since n/2 is a positive integer less than n, we can write n/2 = 2kb for some k ≥ 0 and
odd b.

◦ Then n = 2k+1b can also be written in the desired form, as required.

1.2 Divisibility and the Euclidean Algorithm

• We have constructed three of the operations of standard arithmetic (namely +, −, and ·): now we now turn
our attention to division.

◦ However, unlike the �rst three operations, it is not always possible to divide one integer by another and
obtain an integer as a quotient.

◦ We will therefore start by discussing divisibility.

1.2.1 Divisibility

• De�nition: If a 6= 0, we say that a divides b (equivalently, b is divisible by a), written a|b, if there is an integer
k with b = ka.

◦ Examples: 2|4, (−7)|7, and 6|0.

• There are a number of basic properties of divisibility that follow immediately from the de�nition and properties
of arithmetic:

◦ If a|b, then a|bc for any c.
◦ If a|b and b|c, then a|c.
◦ If a|b and a|c, then a|(xb+ yc) for any x and y.

◦ If a|b and b|a, then a = b or a = −b.
◦ If a|b, and a, b > 0, then a ≤ b.
◦ For any m 6= 0, a|b is equivalent to (ma)|(mb).

• If 0 < b < a and b does not divide a, we can still attempt to divide a by b to obtain a quotient and remainder:
this is a less-explicit version of the long-division algorithm familiar from elementary school. Formally:
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• Theorem (Division Algorithm): If a and b are positive integers, then there exist unique integers q and r such
that a = qb+ r with 0 ≤ r < b. Furthermore, r = 0 if and only if b|a.

◦ Proof: The last statement follows immediately from the �rst part.

◦ To show existence, let T be the intersection of the set S = {a+ kb, k ∈ Z} with the positive integers.
Observe that since a ∈ S, T is nonempty.

◦ Let r be the minimal element of T : then 0 ≤ r, and since r − b is not in T by minimality, we also have
r < b, so 0 ≤ r < b.

◦ Furthermore, since r is in the set S, we must have r = a− qb for some integer q.

◦ For uniqueness, suppose qb+ r = a = q′b+ r′ with 0 ≤ r, r′ < b.

◦ Then −b < r−r′ < b, but we can write r−r′ = b(q′−q), so dividing through by b yields −1 < q′−q < 1.

◦ But since q′ − q is an integer and there are no integers between 0 and 1 (or −1 and 0), it must be the
case that q′ = q and r′ = r.

◦ Example: If a = 25 and b = 4, then the set S = {−7,−3, 1, 5, . . . , 21, 25, 29, 33, . . . }, and T =

{1, 5, 9, . . . }. The minimal element of T is r = 1, and then we obtain q =
a− r
b

= 6. And indeed,

we have 25 = 6 · 4 + 1.

◦ In practice, of course, we would not actually construct the sets S and T to determine q and r: we would
just numerically compute 25/4 and round down to the nearest integer to �nd q.

• De�nition: If d|a and d|b, then d is a common divisor of a and b. If a and b are not both zero, then there are
only a �nite number of common divisors: the largest one is called the greatest common divisor, or gcd, and
denoted by gcd(a, b).

◦ Warning: Many authors use the notation (a, b) to denote the gcd of a and b: this stems from the notation
used for ideals in ring theory. The author of these notes generally dislikes using this notation and will
write gcd explicitly, since otherwise it is easy to confuse the gcd with an ordered pair (a, b).

◦ Example: The positive divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. The positive divisors of 42 are 1, 2, 3,
6, 7, 14, 21, 42. The common (positive) divisors are 1, 2, 3, and 6, and the gcd is therefore 6.

• Theorem (GCD and Linear Combinations): If d = gcd(a, b), then there exist integers x and y with d = ax+by:
in fact, the gcd is the smallest positive number of the form ax+ by.

◦ This theorem says that the greatest common divisor of two integers is an integral linear combination of
those integers.

◦ Proof: Without loss of generality assume a 6= 0, and let S = {as+ bt : s, t ∈ Z} ∩ N.
◦ Clearly S is nonempty since one of a and −a is in S, so now let l = ax+ by be the minimal element of S.

◦ We claim that l|b.
∗ Apply the division algorithm to write b = ql + r for some 0 ≤ r < l.

∗ Observe that r = b− ql = b− q(ax+ by) = a(−qx) + b(1− qy) is a linear combination of a and b. It
is not negative, but it also cannot be positive because otherwise it would necessarily be less than l,
and l is minimal.

∗ Hence r = 0, so l|b.
◦ By a symmetric argument, l|a, and so l is a common divisor of a and b. Therefore, l ≤ d.
◦ But now since d|a and d|b we can wrote a = dka and b = dkb for some integers ka and kb, and then
l = ax+ by = dkax+ dkby = d(kax+ kby).

◦ Therefore d|l, so in particular d ≤ l since both are positive. Since l ≤ d as well, we conclude l = d.

• Corollary: If l|a and l|b, then l divides gcd(a, b).

◦ Proof: Since l|a and l|b, l divides any linear combination of a and b: in particular, it divides the gcd.

• As an example: we saw above that the gcd of 30 and 42 is 6, and indeed we can see that 3 · 30 − 2 · 42 = 6.
The other common divisors are 1, 2, and 3, and indeed they all divide 6.
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• As another example: because 6 · 24 − 11 · 13 = 1, we see that 24 and 13 have greatest common divisor 1,
since their gcd must divide any linear combination. Having a gcd of 1 occurs often enough that we give this
situation a name:

• De�nition: If gcd(a, b) = 1, we say a and b are relatively prime.

• Using these results we can quickly prove a number of useful facts about greatest common divisors:

◦ If m > 0, then m · gcd(a, b) = gcd(ma,mb): we can write

gcd(ma,mb) = min
x,y∈Z

[{max+mby} ∩ N] = m · min
x,y∈Z

[{ax+ by} ∩ N] = m · gcd(a, b).

◦ If d > 0 divides both a and b, then gcd(a/d, b/d) = gcd(a, b)/d: simply apply the above result to a/d
and b/d with m = d, and rearrange.

◦ If a and b are both relatively prime to m, then so is ab: there exist x1, y1, x2, y2 with ax1 +my1 = 1 and
bx2 + my2 = 1. Multiplying yields ab(x1x2) + m(y1bx2 + y2ax1 + my1y2) = 1, meaning that ab and m
are relatively prime.

◦ For any integer x, gcd(a, b) = gcd(a, b+ ax): the set of linear combinations of a and b is the same as the
set of integral linear combinations of a and b+ ax.

◦ If c|ab and b, c are relatively prime, then c|a: by the �rst property listed, gcd(ab, ac) = a · gcd(b, c) = a.
Since c|ab and c|ac, we conclude c|a.

1.2.2 The Euclidean Algorithm

• One question raised by the previous theorems is: how can we actually compute the gcd, except by actually
writing down lists of common divisors? And how can we compute the gcd as a linear combination of the
original integers? Both questions have a nice answer:

• Theorem (Euclidean Algorithm): Given integers 0 < b < a, repeatedly apply the division algorithm as follows,
until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + rk+1

rk = qk+1rk+1.

Then gcd(a, b) is equal to the last nonzero remainder, rk+1. Furthermore, by successively solving for the
remainders and plugging in the previous equations, rk+1 can be explicitly written as a linear combination of
a and b.

◦ Proof: First observe that the algorithm will eventually terminate, because b > r1 > r2 > · · · ≥ 0, and
the well-ordering principle dictates that there cannot exist an in�nite decreasing sequence of nonnegative
integers.

◦ We now claim that gcd(a, b) = gcd(b, r1): this follows because gcd(b, r1) = gcd(b, a − q1b) = gcd(b, a)
from the gcd properties we proved earlier.

◦ Now we can repeatedly apply this fact to see that gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rk, rk+1) =
rk+1 since rk+1 divides rk.

◦ The correctness of the algorithm for computing the gcd as a linear combination follows by an easy
induction.

• Example: Find the gcd of 30 and 42 using the Euclidean algorithm, and write the gcd explicitly as a linear
combination of 30 and 42.
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◦ First, we use the Euclidean algorithm:

42 = 1 · 30 + 12

30 = 2 · 12 + 6

12 = 2 · 6

and since 6 is the last nonzero remainder, it is the gcd.

◦ For the linear combination, we solve for the remainders:

12 = 42− 1 · 30

6 = 30− 2 · 12 = 30− 2 · (42− 1 · 30) = 3 · 30− 2 · 42

so we obtain 6 = 3 · 30− 2 · 42 .

• In the example above, we could simply have written down all the divisors of each number, and computed the
gcd by comparing those lists. However, if the numbers are large, this procedure becomes very ine�cient in
comparison to the Euclidean algorithm.

• Example: Find the gcd of 1598 and 4879 using the Euclidean algorithm, and write the gcd explicitly as a
linear combination of 1598 and 4879.

◦ First, we use the Euclidean algorithm:

4879− 3 · 1598 = 85

1598− 18 · 85 = 68

85− 1 · 68 = 17

68− 4 · 17 = 0

and so the gcd is 17 .

◦ For the linear combination, we solve for the remainders:

85 = = 1 · 4879− 3 · 1598
68 = 1598− 18 · 85 = −18 · 4879 + 55 · 1598
17 = 85− 1 · 68 = 19 · 4879− 58 · 1598

so we obtain 17 = 19 · 4879− 58 · 1598 .

• De�nition: If a|l and b|l, l is a common multiple of a and b. Among all (nonnegative) common multiples of a
and b, the smallest such l is called the least common multiple of a and b.

◦ Example: The least common multiple of 30 and 42 is 210.

◦ The least common multiple is often mentioned in elementary school in the context of adding fractions
(for �nding the �least common denominator�).

• The least common multiple has fewer nice properties than the gcd. It does obey the relation m · lcm(a, b) =
lcm(ma,mb):

◦ Since ma divides lcm(ma,mb), we can write lcm(ma,mb) = mk for some integer k. Then ma|mk and
mb|mk, so a and b both divide k, whence k ≥ l, where l = lcm(ma,mb).

◦ On the other hand, certainly ma and mb divide ml, so ml ≥ mk. We must therefore have l = k.

• Proposition: If a, b > 0, the gcd and lcm satisfy gcd(a, b) · lcm(a, b) = ab.

◦ Thus, if we want to calculate the lcm of two arbitrary integers, we can just compute the gcd using the
Euclidean Algorithm, and then apply the result of this proposition to get the lcm.

◦ Proof: First suppose a and b are relatively prime, and let l be a common multiple. Since a|l we can write
l = ak for some integer k: then since b|ak and gcd(a, b) = 1, we conclude by properties of divisibility
that b|k, meaning that k ≥ b and thus l ≥ ab. But clearly ab is a common multiple of a and b, so it is
the least common multiple.

◦ In the general case, let d = gcd(a, b). Then gcd(a/d, b/d) = 1, so by the above we see that lcm(a/d, b/d) =
ab/d2. Then gcd(a, b) · lcm(a, b) = d · d lcm(a/d, b/d) = ab, as desired.
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1.3 Primes and Unique Factorization

• De�nition: If p > 1 is an integer, we say it is prime if there is no d with 1 < d < p such that d|p: in other
words, if p has no positive divisors other than 1 and itself. If n > 1 is not prime, meaning that there is some
d|n with 1 < d < n, we say n is composite. (The integer 1 is neither prime nor composite.)

◦ The �rst few primes are 2, 3, 5, 7, 11, 13, 17, 19, and so forth.

• Here is a basic fact about prime numbers that in more advanced contexts is often used as the actual de�nition
of a prime number:

• Proposition: The integer p > 1 is prime if and only if p|ab implies that p|a or p|b.

◦ Proof: First suppose p is prime and that p|ab. If p|a we are done, so assume that p - a. Consider
gcd(a, p): it divides p, hence is either 1 or p, but it is not p because p does not divide a.

◦ Therefore, gcd(a, p) = 1, so a and p are relatively prime. Then since p|ab and a, p are relatively prime,
we see that p|b, as required.
◦ Conversely, suppose that p > 1 and p|ab implies p|a or p|b. If there were a d with 1 < d < p such that
d|p, then by hypothesis p = dk for some 1 < k < p. Then p|dk, but p cannot divide d or k, since d and
k are both less than p. This is a contradiction, so there cannot exist such a d, and so p is prime.

• The prime numbers are often called the �building blocks under multiplication�, because every positive integer
can be written as the product of prime numbers:

• Proposition (Prime Factorization): Every positive integer n > 1 can be written as a product of primes (where
a �product� is allowed to have only one term).

◦ A representation of n as a product of primes is called a prime factorization of n. (For example, a prime
factorization of 6 is 6 = 2 · 3.)
◦ Proof: We use strong induction on n. The result clearly holds if n = 2, since 2 is prime.

◦ Now suppose n > 2. If n is prime, we are done, so assume that n is not prime: then n is composite.

◦ By de�nition, there exists a d with 1 < d < n such that d|n: then n/d is an integer satisfying 1 < n/d < n.

◦ By the strong induction hypothesis, both d and n/d can be written as a product of primes; multiplying
these two products then yields n as a product of primes.

• We can in fact strengthen the previous result:

• Theorem (Fundamental Theorem of Arithmetic): Every integer n > 1 can be factored into a product of
primes, and this factorization is unique up to reordering of the factors.

◦ Proof: Suppose n is minimal and has two di�erent factorizations: n = p1p2 · · · pk = q1q2 · · · ql. If any
of the primes pi and qi were equal, we could cancel the corresponding terms and obtain a smaller n, so
p1 6= qj for any j with 1 ≤ j ≤ l.
◦ But since p1 is prime and divides q1q2 · · · ql, by repeated application of the previous proposition we see
that p1 must divide one of q1, q2, . . . , ql: say, qi. But the only divisors of qi are 1 and qi, and p1 cannot
be either of them. This is a contradiction, and we are done.

• To save space, we group equal primes together when actually writing out the canonical prime factorization:
thus, 12 = 22 · 3, 720 = 22 · 32 · 5, and so forth.

◦ More generally, we can write the prime factorization in the generic form n =
∏j

i=1 p
ni
i , where the pi are

some (�nite) set of primes and the ni are their corresponding exponents.

• Proposition (Divisibility and Factorizations): If a =
∏j

i=1 p
ai
i and b =

∏j
i=1 p

bi
i , then a|b if and only if ai ≤ bi

for each i. In particular, gcd(a, b) =
∏j

i=1 p
min(ai,bi)
i , and lcm(a, b) =

∏j
i=1 p

max(ai,bi)
i .

◦ Proof: We observe that if b = ak and k =
∏j

i=1 p
ki
i , then ai+ki = bi. Since all exponents are nonnegative,

saying that such an integer k exists is equivalent to saying that ai ≤ bi for all i.
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◦ The statements about the gcd and lcm then follow immediately, since (for example) the exponent of pi
in the gcd is the largest integer that is ≤ ai and ≤ bi , which is a more convoluted way of saying the
minimum of ai and bi.

• One question we might have is: how many primes are there? The most basic answer to this question is that
there are in�nitely many primes:

• Theorem (Euclid): There are in�nitely many prime numbers.

◦ Proof: Suppose there are only �nitely many prime numbers p1, p2, . . . , pk, and consider n = p1p2 · · · pk+
1.

◦ Since n is bigger than each pi, n cannot be prime (since it would necessarily have to be on the list).

◦ Therefore n is composite. Consider the prime factorization of n: necessarily at least one prime on the
list must appear in it: say pi.

◦ Since pi also divides p1p2 · · · pk, we see that pi therefore divides n − p1p2 · · · pk = 1. But this is a
contradiction. Hence there are in�nitely many primes.

• It is much harder to give more precise answers to the question of �how many primes are there?�. One result
in this direction, whose proof is quite di�cult, is as follows:

• Theorem (Prime Number Theorem): Let π(n) be the number of primes in the interval [1, n]. Then lim
n→∞

π(n)

n/ log(n)
= 1,

where log denotes the natural logarithm.

◦ This theorem says that the number of primes in the interval [1, n] is approximately n/ log(n) for su�-
ciently large n.

• There are many unsolved problems about prime numbers that have been studied in the branch of mathematics
known as number theory.

1.4 Modular Congruences and Z/mZ

• The ideas underlying modular arithmetic are familiar to anyone who can tell time. For example, 3 hours after
11 o'clock, it is 2 o'clock, even though 3 + 11 is 14, not 2. Simply put, we identify times that are 12 hours
apart as the same time of day.

• Modular arithmetic is a generalization of this �clock arithmetic�.

1.4.1 Modular Congruences

• De�nition: If m is a positive integer and m divides b − a, we say that a and b are congruent modulo m (or
equivalent modulo m), and write �a ≡ b (modulo m)�.

◦ Notation: As shorthand we usually write �a ≡ b (mod m)�, or even just �a ≡ b� when the modulus m is
clear from the context.

◦ The statement a ≡ b (mod m) can be thought of as saying �a and b are equal, up to a multiple of m�.

◦ Observe that if m|(b − a), then (−m)|(b − a) as well, so we do not lose anything by assuming that the
modulus m is positive.

◦ Example: 3 ≡ 9 (mod 6), since 6 divides 9− 3 = 6.

◦ Example: −2 ≡ 28 (mod 5), since 5 divides 28− (−2) = 30.

◦ Example: 0 ≡ −666 (mod 3), since 3 divides −666− 0 = −666.

◦ If m does not divide b− a, we say a and b are not congruent mod m, and write a 6≡ b (mod m).

◦ Example: 2 6≡ 7 (mod 3), because 3 does not divide 7− 2 = 5.

• Modular congruences share a number of properties with equalities:
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• Proposition (Modular Congruences): For any positive integer m and any integers a, b, c, d, the following are
true:

1. a ≡ a (mod m).

◦ Proof: By de�nition of divisibility, m always divides a− a = 0.

2. a ≡ b (mod m) if and only if b ≡ a (mod m).

◦ Proof: By properties of divisibility, m|(b− a) is equivalent to m|(a− b).
3. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

◦ Proof: If m|(b− a) and m|(c− b), then m also divides (c− b) + (b− a) = c− a, so that a ≡ c (mod
m).

4. If a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).

◦ Proof: If m|(b− a) and m|(d− c), then m also divides (b− a) + (d− c) = (b+ d)− (a+ c), so that
a+ c ≡ b+ d (mod m).

5. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

◦ Proof: If m|(b− a) and m|(d− c), then m also divides d(b− a) + a(d− c) = bd− ac, so that ac ≡ bd
(mod m).

6. If a ≡ b (mod m), then ac ≡ bc (mod mc) for any c > 0.

◦ Proof: If m|(b− a), then by properties of divisibility, (mc)|(bc− ac), and so ac ≡ bc (mod mc).

7. If a ≡ b (mod m) then ak ≡ bk (mod m) for any positive integer k.

◦ Proof: Induction on k: the base case k = 1 is trivial. For the inductive step, if ak−1 ≡ bk−1 (mod
m), then by property (5) we see that ak ≡ bk (mod m).

8. If d|m, then a ≡ b (mod m) implies a ≡ b (mod d).

◦ Proof: If d|m and m|(b− a), then d|(b− a), and so a ≡ b (mod d).

• The �rst three properties above demonstrate that modular equivalence is an equivalence relation.

◦ Remark: A binary relation ∼ de�ned on a nonempty set S is called an equivalence relation if it obeys
the following three axioms:

[E1] For any a ∈ S, a ∼ a.
[E2] For any a, b ∈ S, a ∼ b implies b ∼ a.
[E3] For any a, b, c ∈ S, a ∼ b and b ∼ c implies a ∼ c.
◦ Example: Equality of elements in any set (e.g., equality of real numbers) is an equivalence relation.

1.4.2 Residue Classes and Z/mZ

• We would now like to study �arithmetic modulo m�. To do this, we need to de�ne the underlying objects of
study:

• De�nition: If a is an integer, the residue class of a modulo m, denoted a, is the collection of all integers
congruent to a modulo m. Observe that a = {a+ km, k ∈ Z}.

• Example: The residue class of 2 modulo 4 is the set {. . . ,−6,−2, 2, 6, 10, 14, . . . }, while the residue class of 2
modulo 5 is the set {. . . ,−8,−3, 2, 7, 12, 17, . . . }.

• Here are a few fundamental properties of residue classes:

• Proposition (Properties of Residue Classes): Suppose m is a positive integer. Then

1. If a and b are integers with respective residue classes a, b modulo m, then a ≡ b (mod m) if and only if
a = b.
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◦ Proof: If a = b, then by de�nition b is contained in the residue class a, meaning that b = a+ km for
some k. Thus, m divides b− a, so a ≡ b (mod m).

◦ Conversely, suppose a ≡ b (mod m). If c is any element of the residue class a, then by de�nition
c ≡ a (mod m), and therefore c ≡ b (mod m).

◦ Therefore, c is an element of the residue class b, but since c was arbitrary, this means that a is
contained in b.

◦ By the same argument with a and b interchanged, we see that b is also contained in a, and thus
a = b.

2. Two residue classes modulo m are either disjoint or identical.

◦ Proof: Suppose that a and b are two residue classes modulo m. If they are disjoint, we are done, so
suppose there is some c contained in both.

◦ Then c ≡ a (mod m) and c ≡ b (mod m), so a ≡ b (mod b). Then by property (1), we conclude
a = b.

3. There are exactly m distinct residue classes modulo m, given by 0, 1, . . . , m− 1.

◦ Proof: By the division algorithm, for any integer a there exists a unique r with 0 ≤ r < m such that
a = qm+ r with q ∈ Z.
◦ Then a ≡ r (mod m), and so every integer is congruent modulo m to precisely one of the m integers
0, 1, ... , m− 1.

◦ Equivalently, every integer is contained in exactly one of the residue classes 0, 1, . . . , m− 1.

◦ By property (2), we conclude that there are exactly m distinct residue classes modulo m: 0, 1, . . . ,
m− 1.

• De�nition: The collection of residue classes modulo m is denoted Z/mZ (read as �Z modulo mZ�).

◦ Notation: Many other authors denote this collection of residue classes modulo m as Zm. We will avoid
this notation and exclusively use Z/mZ (or its shorthand Z/m), since Zm is used elsewhere in algebra
and number theory for a di�erent object.

◦ By our properties above, Z/mZ contains exactly m elements 0, 1, . . . , m− 1.

• We can now write down �addition and multiplication� modulo m using the residue classes of Z/mZ.

◦ The fact that a ≡ b (mod m) and c ≡ d (mod m) imply a+ c ≡ b+ d (mod m) and ac ≡ bd (mod m) tell
us that if we want to compute a+ c modulo m, then no matter which element b in the residue class of a
and which element d in the residue class of c we take, the sum b+ d will lie in the same residue class as
a+ c, and the product bd will lie in the same residue class as ac.

◦ Thus, everything makes perfectly good sense if we label the residue classes with the integers 0 through
m− 1 and simply do the arithmetic with those residue classes.

• De�nition: The addition operation in Z/mZ is de�ned as a + b = a+ b, and the multiplication operation is
de�ned as a · b = ab.

◦ Here are the addition and multiplication tables for Z/5Z:
+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

◦ Note that, for example, the statement 2 + 4 = 1 is now perfectly acceptable (and correctly stated with
the equals sign): it says that if we take any element in the residue class 2 (modulo 5) and add it to any
element in the residue class 4 (modulo 5), the result will always lie in the residue class 1 (modulo 5).
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◦ Here are the addition and multiplication tables for Z/4Z:
+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

• Arithmetic modulo m is commonly described by ignoring residue classes entirely and only working with the
integers 0 through m− 1, with the result of every computation �reduced modulo m� to obtain a result lying
in this range.

◦ Thus, for example, to compute 3 + 10 modulo 12, we would add to get 13 and then �reduce�, yielding 1
modulo 12. Similarly, to �nd 3 · 10 modulo 12, we compute 3 · 10 = 30 and then reduce to obtain a result
of 6 modulo 12.

◦ However, this is a rather cumbersome and inelegant description. This de�nition is often used in pro-
gramming languages, where �a mod m�, frequently denoted �a%m�, is de�ned to be a function returning
the corresponding remainder in the interval [0,m− 1].

◦ Observe that with this de�nition, it is not true that (a + b)%m = (a%m) + (b%m), nor is is true that
ab%m = (a%m) · (b%m), since the sum and product may each exceed m. Instead, to obtain an actually
true statement, one would have to write something like ab%m = [(a%m) · (b%m)]%m.

◦ In order to avoid such horrible kinds of statements, the best viewpoint really is to think of the statement
a ≡ b (mod m) as a congruence that is a �weakened� kind of equality, rather than always reducing each
of the terms to its residue in the set {0, 1, . . . ,m− 1}.
◦ The other reason we adopt the use of residue classes is that they extend quite well to more general
settings where we may not have such an obvious set of �representatives�.

• The arithmetic in Z/mZ shares many properties with the arithmetic in Z (which should not be surprising,
since Z/mZ was constructed using Z):

• Proposition (Basic Arithmetic in Z/mZ): For any positive integer m the following properties of residue classes
in Z/mZ hold:

1. The operation + is associative: a+ (b+ c) = (a+ b) + c for any a, b, and c.

2. The operation + is commutative: a+ b = b+ a for any a and b.

3. The residue class 0 is an additive identity: a+ 0 = a for any a.

4. Every residue class a has an additive inverse −a satisfying a+ (−a) = 0.

5. The operation · is associative: a · (b · c) = (a · b) · c for any a, b, and c.
6. The operation · is commutative: a · b = b · a for any a and b.

7. The operation · distributes over +: a · (b+ c) = a · b+ a · c for any a, b, and c.
8. The residue class 1 is a multiplicative identity: 1 · a = a for any a.

◦ Proof: For (1), by de�nition we have a + (b + c) = a + b+ c = a+ (b+ c) and also (a + b) + c =
a+ b+ c = (a+ b) + c.

◦ But by the associative property [A1] in Z, we know that a+ (b+ c) = (a+ b) + c, so the associated
residue classes are also equal.

◦ The other properties follow in a similar way from the corresponding properties of the integers.

1.4.3 Units and Zero Divisors in Z/mZ

• We will now abuse notation and ignore the distinction between the integer a and the residue class a modulo
m: we will now simply refer to �integers modulo m� and drop the residue class notation.
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◦ In this new notation, the multiplication table for Z/6Z is as follows:
· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

• As we saw above, the arithmetic in Z/mZ shares many properties with the arithmetic in Z. However, there
are some very important di�erences.

◦ For example, if a, b, c are integers with ab = ac and a 6= 0, then we can �cancel� a from both sides to
conclude that b = c.

◦ However, this does not always work in Z/mZ: for example, 2 · 1 = 2 · 4 modulo 6, but 1 6= 4 modulo 6.

◦ The issue here is that 2 and the modulus 6 are not relatively prime: 6 divides 2(4 − 1), but 6 does not
divide 4− 1.

• We can explain the issue using modular congruences:

• Proposition (Modular Cancellation): If m > 0 and d = gcd(a,m), then ax ≡ ay (mod m) is equivalent to
x ≡ y (mod m/d).

◦ Proof: First suppose ax ≡ ay (mod m). Then there exists an integer k with a(y − x) = km, so
a

d
(y − x) =

m

d
k. Since gcd(a/d,m/d) = gcd(a,m)/d = 1, we see that

m

d
divides y − x, meaning that

x ≡ y (mod m/d).

◦ For the other direction, suppose y − x =
m

d
k. Then a(y − x) =

a

d
mk, and since d|a, we see that m

divides a(y − x), meaning that ax ≡ ay (mod m).

• By setting d = 1 in this proposition, we obtain an extremely useful result:

• Corollary: If a and m are relatively prime, ax ≡ ay (mod m) implies x ≡ y (mod m).

◦ This corollary tells us when we are allowed to �cancel� a from both sides of a congruence modulo m.

◦ From the viewpoint of Z/mZ, this corollary tells us that if a is relatively prime to m, then the residue
class a in Z/mZ has a �multiplicative inverse�.

• De�nition: We say a is a unit modulo m if it has a multiplicative inverse: that is, if there is some b such that
ab ≡ 1 (mod m).

◦ The multiplicative inverse b is often written as a−1 (mod m), or even sometimes as 1/a (mod m).

◦ Example: From the multiplication table modulo 5, we see that 1, 2, 3, and 4 all have multiplicative
inverses, which are 1, 3, 2, and 4 respectively, but 0 does not. So 1, 2, 3, and 4 are the units modulo 5.

◦ Example: Modulo 6, it is straightforward to check that the only units are 1 and 5 (whose multiplicative
inverses are 1 and 5 respectively).

◦ Example: Modulo 14, the units are 1, 3 (inverse 5), 5 (inverse 3), 9 (inverse 11), 11 (inverse 9), and 13.

◦ Remark: Technically, the de�nition does not require that there be only one such b. However, there can
be only one such b: if ab1 ≡ 1 ≡ ab2 (mod m), then b1 ≡ b1ab2 ≡ b2 (mod m).

• From the corollary above, we know that the units modulo m are precisely the residue classes relatively prime
to m.

• We can use the Euclidean algorithm to compute the multiplicative inverse of a unit: simply apply the Euclidean
algorithm to generate x and y with xa+ ym = 1: then the inverse of a modulo m is x.

• Example: Show that 7 is a unit modulo 52, and then �nd its multiplicative inverse.
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◦ We apply the Euclidean algorithm:

52 = 7 · 7 + 3

7 = 2 · 3 + 1

so the gcd is indeed 1.

◦ Now we have 3 = 52− 7 · 7 and then 1 = 7− 2 · 3 = 7− 2 · (52− 7 · 7) = 15 · 7− 2 · 52.

◦ Then 15 · 7 ≡ 1 (mod 52), so 7−1 = 15 (mod 52) .

• Another important property of arithmetic in Z (as well as in the real or complex numbers) that we often take
for granted is that if x, y are such that xy = 0, then x = 0 or y = 0.

◦ This property no longer holds for congruences modulo m for arbitrary m: for example, modulo 6 we have
2̄ · 3̄ = 0̄, but 2 6= 0 and 3 6= 0. We give such situations a special name:

• De�nition: We say that a residue class a modulo m is a zero divisor if a 6= 0 and there exists a nonzero b such
that a · b = 0. (Note in particular that 0 is not a zero divisor!)

◦ Example: In Z/6Z, since 2 · 3 = 4 · 3 = 0, the residue classes represented by 2, 3, and 4 are zero divisors.

• Proposition: In Z/mZ, a unit can never be a zero divisor.

◦ Proof: If a were both a unit and a zero divisor, then there would exist b, x such that ab = 1 and ax = 0,
with x 6= 0.

◦ But then we would have x = (ab)x = b(ax) = 0, contradicting the assumption that x 6= 0.

• We can now describe the zero divisors modulo m: they are simply the nonzero residue classes that are not
units.

• Proposition: An integer a is a zero divisor modulo m if and only if 1 < gcd(a,m) < m.

◦ Proof: Let d = gcd(a,m). We break into cases depending on the value of d.

◦ If d = 1, then a is a unit, and therefore is not a zero divisor.

◦ If d = m, then m|a meaning that a = 0, and 0 is de�ned not to be a zero divisor.

◦ If 1 < d < m, then (m/d) ·a = m · (a/d) ≡ 0 (mod m), and m/d is nonzero. Therefore, a is a zero divisor.

• As a �nal observation, we remark that when the modulus is a prime p, there are no zero divisors modulo p and
every nonzero residue class is a unit. (We will return to study the structure of Z/pZ further in a subsequent
chapter.)

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2018. You may not reproduce or distribute this
material without my express permission.
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