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5 Topics in Hypothesis Testing

In this chapter, we study two important sampling distributions, the t distribution and the χ2 distribution, and use
them to extend the basic development of hypothesis testing from the previous chapter to make inferences about
normally-distributed variables whose mean and standard deviation are unknown. Broadly speaking, our goal is to
describe methods for making inferences about sampling data that is approximately normally distributed using only
information derived from the sampling data itself.

We �rst discuss the t distributions: we motivate why they are necessary by explaining the additional di�culties
that arise when the standard deviation must be estimated from the sample, and give methods for constructing
con�dence intervals for the mean when the standard deviation is unknown. We then describe how to perform t
tests of various �avors.

We then discuss the χ2 distributions, and motivate how they arise when making inferences about the unknown
variance of a normally-distributed random variable. We describe how to construct con�dence intervals, and perform
hypothesis tests, about the variance and standard deviation of a normally distributed variable. Finally, we discuss
the χ2 tests for goodness of �t and for independence, which allow us to assess the quality of statistical models and
to assess the independence of random variables, respectively.

5.1 The t Distribution and t Tests

• Our goal in this section is to discuss the t distribution and t tests, which allow us to expand our hypothesis
tests (and related discussion of con�dence intervals) to approximately normally distributed quantities whose
standard deviation is unknown.
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5.1.1 The t Distributions

• In our discussion of hypothesis testing in the previous chapter, we relied on z tests, which require an approx-
imately normally distributed test statistic whose standard deviation is known.

◦ However, in most situations, it is unlikely that we would actually know the population standard deviation.

◦ Instead, we must estimate the population standard deviation from the sample standard deviation.

◦ As we have already discussed, for values x1, . . . , xn drawn from a normal distribution with unknown mean

µ and unknown standard deviation σ, the maximum likelihood estimate σ̂ =

√
1

n
[(x1 − x)2 + · · ·+ (xn − x)2]

for the standard deviation is biased. (Note that x = 1
n (x1 + · · ·+ xn) is the sample mean.)

◦ Thus, instead of the estimator σ̂, we use the sample standard deviation S =

√
1

n− 1
[(x1 − x)2 + · · ·+ (xn − x)2],

whose square S2 is an unbiased estimator of the population variance σ2.

• It may seem reasonable to say that if we use the estimated standard deviation S in place of the unknown
population σ, then we should be able to use a z test with the resulting approximation, much as we did with
the normal approximation to the binomial distribution.

◦ However, this turns out not to be the case! We can make clearer why not by converting the discussion to

a distribution with a single unknown parameter by working with the normalized ratio
x− µ
S/
√
n
, which has

mean 0 and standard deviation 1 and is analogous to the z-score
x− µ
σ/
√
n
, whose distribution (under the

assumptions of the null hypothesis) is the standard normal distribution of mean 0 and standard deviation
1.

◦ If we take
x− µ
S/
√
n
as our test statistic, then (as we will show) this test statistic is not normally distributed!

◦ The distribution is similar in shape to the normal distribution, but it is in fact di�erent, and is called
the t distribution.

• We can illustrate visually the lack of normality of the normalized test statistic
x− µ
S/
√
n
by simulating a sampling

procedure.

◦ Explicitly, suppose that X is normally distributed with mean µ = 0 and standard deviation σ = 1, and
we want to test the hypothesis that the mean actually is equal to 0 using the normalized test statistic
x− µ
S/
√
n
with n = 3.

◦ To understand the behavior of
x− µ
S/
√
n
, we sample the standard normal distribution to obtain 3 data

points x1, x2, x3 and then compute
x− µ
S/
√
n
using the sample mean x and estimated standard deviation S.

◦ The histogram below shows the results of performing this sampling 10000 times, along with the actual
graph of the probability density function of the predicted normal distribution:

2



◦ Note how the actual histogram di�ers from the normal distribution: speci�cally, there are values occurring
in the tails of the distribution far more often than they do for the normal distribution, while the values
near the center occur slightly less often than predicted.

◦ In contrast, the same simulation using the test statistic
x− µ
σ/
√
n

matches the normal distribution very

closely, as can be seen in the second histogram above.

◦ The di�erence between the distribution of
x− µ
S/
√
n

and the standard normal distribution is more pro-

nounced when n is small. For larger n, the distribution looks much more approximately normal (this is
related to the central limit theorem and the fact that the approximation of σ by S is unbiased in the
limit as n→∞):

◦ What these plots indicate is that the actual distribution of the test statistic
x− µ
S/
√
n

will depend on n,

and that for larger n, it will be approximately normal.

• It is not a trivial matter to �nd the probability density function for the t distribution modeling the test

statistic
x− µ
S/
√
n
.

◦ The constants involved in the pdf involve a special function known as the gamma function, which gen-
eralizes the de�nition of the factorial function:

• De�nition: If z is a positive real number1, the gamma function Γ(z) is de�ned to be the value of the improper
integral Γ(z) =

´∞
0
xz−1e−x dx.

◦ The gamma function arises naturally in complex analysis, number theory, and combinatorics, in addition
to our use here in statistics.

1In fact, this de�nition also makes perfectly good sense if z is a complex number whose real part is positive (which is why we used
the letter z here).
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◦ By integrating by parts, one may see that Γ(z+1) = zΓ(z) for all z. Combined with the easy observation
that Γ(1) = 1, we can see that Γ(n) = (n− 1)! for all positive integers n.

◦ The values of the gamma function at half-integers can also be computed explicitly: to compute Γ(1/2)

we may substitute u =
√
x to see Γ(1/2) = 2

´∞
0
e−u

2

du =
√
π as we calculated before when analyzing

the normal distribution.

◦ Then, by using the identity Γ(z + 1) = zΓ(z), we can calculate Γ(n+ 1
2 ) = (n− 1

2 )(n− 3
2 ) · · · · · 12

√
π =

(2n)!

22nn!

√
π.

• De�nition: The t distribution with k degrees of freedom is the continuous random variable Tk whose proba-

bility density function pTk
(x) =

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2 for all real numbers x.

◦ As we will outline in a moment, the t distribution with n− 1 degrees of freedom is the proper model for

the test statistic
x− µ
S/
√
n
.

◦ This distribution was �rst derived in 1876 by Helmert and Lüroth, and then appeared in several other
papers.

◦ It is often referred to as Student's t distribution, because an analysis was published under the pseudonym
�Student� by William Gosset, who because of his work at Guinness did not publish the results under his
own name2.

◦ Example: The t distribution with 1 degree of freedom has probability density function pT1(x) =
1

π(1 + x2)
,

which is the Cauchy distribution.

◦ Example: The t distribution with 2 degrees of freedom has probability density function pT2
(x) =

1

(2 + x2)3/2
.

◦ Example: The t distribution with 3 degrees of freedom has probability density function pT3
(x) =

6
√

3

π(3 + x2)2
.

• We collect a few basic properties of the t distribution:

◦ The probability density function of the t distribution is symmetric about 0, since pTk
(−x) = pTk

(x).

◦ Per the symmetry about 0, we would typically expect that the expected value of the distribution would
be 0. This is true when k ≥ 2, but in fact the expected value is unde�ned when k = 1 (as we noted
previously, the expected value integral for the Cauchy distribution is a non-convergent improper integral).

◦ It is more di�cult to compute the variance, but by manipulating the integrals appropriately, one can
eventually show that the variance is unde�ned for k = 1 (since the expected value is not de�ned), ∞ for

k = 2, and
k

k − 2
for k > 2.

◦ As k → ∞, the probability density function pTk
(x) approaches the standard normal distribution: us-

ing the fact that lim
k→∞

(1 + y/k)k = ey, we can see that lim
k→∞

(1 + x2/k)−(k+1)/2 = e−x
2/2, and thus3

lim
k→∞

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2 = lim
k→∞

Γ(k+1
2 )

√
kπΓ(k2 )

· lim
k→∞

(1 + x2/k)−(k+1)/2 =
1√
2π
e−x

2/2.

2The standard version of the story holds that Guinness wanted all its sta� to publish using pseudonyms to protect its brewing
methods and related data, since a paper had been previously published by one of its statisticians that inadvertently revealed some of
its trade secrets.

3We can compute the limit limk→∞
Γ( k+1

2
)

√
kπΓ( k

2
)
of the constant either using Stirling's approximation k! ≈ kke−k

√
2πk, which also

extends to the gamma function, or simply by observing that it must be the constant that makes the resulting function a probability
density function.
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• Theorem (t Distribution): Suppose n ≥ 2 and that X1, X2, . . . , Xn are independent, identically normally

distributed random variables with mean µ and standard deviation σ. If X =
1

n
(X1 + · · · + Xn) denotes

the sample mean and S =

√
1

n− 1

[
(X1 −X)2 + (X2 −X)2 + · · ·+ (Xn −X)2

]
denotes the sample standard

deviation, then the distribution of the normalized test statistic
X − µ
S/
√
n

is the t distribution Tn−1 with n − 1

degrees of freedom.

◦ We will only outline the full proof, since most of the actual calculations are lengthy and unenlightening.

◦ Proof (outline): First, we show that the sample mean X and the sample standard deviation S are
independent. This is relatively intuitive, but the proof requires the observation that orthogonal changes
of variable preserve independence.

◦ Next, we compute the probability density functions for the numerator X−µ (which is normal with mean
0 and standard deviation σ/

√
n) and the denominator.

◦ For the latter, we compute the probability density of
n− 1

σ2
S2 =

1

σ2

[
(X1 −X)2 + (X2 −X)2 + · · ·+ (Xn −X)2

]
=

(X1−µ
σ )2 + (X2−µ

σ )2 + · · · + (Xn−µ
σ )2: this last expression can be shown to be equal to the sum of the

squares of n − 1 independent standard normal distributions, which is known as a χ2 distribution (and
which we will discuss in more detail later).

◦ The pdf of the denominator
1

S/
√
n
can then be computed using the pdf above, using standard techniques

for computing the pdf of a function of a random variable.

◦ Then, because since X − µ and S/
√
n were shown to be independent, the joint pdf for X − µ and S/

√
n

is simply the product of their individual pdfs.

◦ Then, at last, we can the probability density function for
X − µ
S/
√
n

= (X −µ) · 1

S/
√
n
can be calculated by

evaluating an appropriate integral of the joint pdf of X − µ and S/
√
n.

• We can illustrate this result using the sampled data from earlier.

◦ Here are the same histograms with n = 3 and n = 5 as before, comparing the t distribution model to the
normal distribution model:
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◦ It is quite obvious from the plots that the t distribution is a far superior model for these data samples.

5.1.2 Con�dence Intervals Using t Statistics

• Before we discuss how to use the t distribution for hypothesis testing, we will mention how to use t statistics
for �nding con�dence intervals.

◦ The idea is quite simple: if we want to �nd a con�dence interval for the unknown mean of a normal
distribution whose standard deviation is also unknown, we can estimate the mean using the t distribution.

◦ Speci�cally, since the normalized statistic
x− µ
S/
√
n
is modeled by the t-distribution Tn with n− 1 degrees

of freedom, we can compute a 100(1−α)% con�dence interval using a t-statistic in place of the z-statistic
that we used for normally distributed random variables whose standard deviation was known:

◦ Like with the normal distribution, we usually want to select the narrowest possible con�dence interval,
which will also be the one that is symmetric about our sample mean.

◦ If we compute the constant tα/2,n such that P (−tα/2,n < Tn−1 < tα/2,n) = 1 − α, then this yields the

100(1− α)% con�dence interval µ̂± tα/2,n · S√
n

= (µ̂− tα/2,n S√
n
, µ̂+ tα/2,n

S√
n

).

◦ Using the symmetry of the t distribution, P (−tα/2,n < Tn−1 < tα/2,n) = 1−α is equivalent to P (Tn−1 <
−tα/2,n) = α/2, or also to P (tα/2,n < Tn−1) = 1− (α/2), which allows us to compute the value of tα/2,n
by evaluating the inverse cumulative distribution function for Tn−1.

◦ We can summarize this discussion as follows:

• Proposition (t Con�dence Intervals): A 100(1−α)% con�dence interval for the unknown mean µ of a normal

distribution with unknown standard deviation is given by µ̂ ± tα/2,n
S√
n

= (µ̂ − tα/2,n
S√
n
, µ̂ + tα/2,n

S√
n

)

where n sample points x1, . . . , xn are taken from the distribution, µ̂ = 1
n (x1 + · · ·+ xn) is the sample mean,

S =
√

1
n−1 [(x1 − µ̂)2 + · · ·+ (xn − µ̂)2] is the sample standard deviation, and tα/2,n is the constant satisfying

P (−tα/2,n < Tn−1 < tα/2,n) = 1− α.
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◦ Some speci�c values of tα/2,n for various common values of n and α are given in the table below (note
that the last row for n =∞ represents the entry for the normal distribution):

Entries give tα/2,n−1 such that P (−tα/2,n < Tn−1 < tα/2,n) = 1− α
n \ 1− α 50% 80% 90% 95% 98% 99% 99.5% 99.9%

2 (1 df) 1 3.0777 6.3138 12.706 31.820 63.657 127.32 636.62
3 (2 df) 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 14.089 31.599
4 (3 df) 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409 7.4533 12.924
5 (4 df) 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 5.5976 8.6103
10 (9 df) 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 3.6897 4.7809
15 (14 df) 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 3.3257 4.1405
20 (19 df) 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 3.1737 3.8834
50 (49 df) 0.6795 1.2991 1.6766 2.0096 2.4049 2.6800 2.9397 3.5004
100 (99 df) 0.6770 1.2902 1.6604 1.9842 2.3646 2.6264 2.8713 3.3915
∞ 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905

• Example: The exam scores in a statistics class are expected to be normally distributed. 15 students' scores
are sampled, and the average score is 78.2 points with a sample standard deviation of 9.1 points. Find 90%,
95%, and 99.5% con�dence intervals for the true average score on the exam.

◦ We have µ̂ = 78.2 and S = 9.1, so the desired con�dence interval is given by µ̂ ± tα/2,n(S/
√
n), where

n = 15 here.

◦ From the proposition and the table of values below it, we obtain the 90% con�dence interval µ̂± 1.7613 ·
S/
√
n = (74.06, 82.34) , the 95% con�dence interval µ̂± 2.1448 · S/

√
n = (73.16, 83.24) , and the 99%

con�dence interval µ̂± 3.3257 · S/
√
n = (70.39, 86.01) .

• Example: A normal distribution with unknown mean and standard deviation is sampled �ve times, yielding
the values 1.21, 4.60, 4.99, −2.21, and 3.21. Find 80%, 90%, 95%, and 99.9% con�dence intervals for the
true mean of the distribution. Compare the results to the corresponding con�dence intervals for a normal
distribution whose standard deviation is the same as this sample estimate.

◦ First, we compute the sample mean µ̂ = 1
5 (1.21+4.60+4.99−2.21+3.21) = 2.36 and the sample standard

deviation S =
√

1
4 [(1.21− 2.36)2 + (4.60− 2.36)2 + (4.99− 2.36)2 + (−2.21− 2.36)2 + (3.21− 2.36)2 =

2.9523.

◦ The desired con�dence interval is given by µ̂± tα/2,n(S/
√
n), where n = 5 here.

◦ From the proposition and the table of values below it, we obtain the 80% con�dence interval µ̂± 1.5332 ·
S/
√
n = (0.3357, 4.3843) , the 90% con�dence interval µ̂ ± 2.1318 · S/

√
n = (−0.4546, 5.1746) , the

95% con�dence interval µ̂ ± 2.7764 · S/
√
n = (−1.3057, 6.0257) , and the 99.9% con�dence interval

µ̂± 8.6103 · S/
√
n = (−9.0083, 13.7283) .

◦ The con�dence interval estimates for a normal distribution are given by using the z-statistic (from the
row with n =∞) in place of the t-statistic.

◦ We obtain the 80% con�dence interval µ̂±1.2816 ·σ/
√
n = (0.6679, 4.0521) , the 90% con�dence interval

µ̂±1.6449·σ/
√
n = (0.1882, 4.5118) , the 95% con�dence interval µ̂±1.9600·σ/

√
n = (−0.2278, 4.9478) ,

and the 99.9% con�dence interval µ̂± 3.2905 · σ/
√
n = (−1.9845, 6.7045) .

◦ Note how much narrower the normal con�dence intervals are than the correct t con�dence intervals,
especially for the larger con�dence percentages.

◦ For example, if we erroneously quoted the 80% normal con�dence interval, by using the cdf for the t
distribution we can see that it is actually only a 64% con�dence interval for the t statistic: quite a bit
lower!

◦ Similarly, if we erroneously quoted the 99.9% normal con�dence interval, it would actually only be a 97%
con�dence interval for the t statistic.
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• Example: To estimate the reaction yield, a new chemical synthesis is run three times, giving yields of 41.3%,
52.6%, and 56.1%. Find 50%, 80%, 90%, and 95% con�dence intervals for the true reaction yield, under the
assumption that the reaction yield is approximately normally distributed.

◦ Since the reaction yield is approximately normally distributed, but we do not know the standard devia-
tion, it is appropriate to use the t distribution here.

◦ First, we compute the sample average µ̂ = 1
3 (41.3% + 52.6% + 56.1%) = 50%, and the sample standard

deviation S =

√
1

2
[(41.3%− 50%)2 + (52.6%− 50%)2 + (56.1%− 50%)2] = 7.7350%.

◦ Then the desired con�dence interval is given by µ̂± tα/2,n(S/
√
n), where here n = 3.

◦ From the proposition and the table of values below it, we obtain the 50% con�dence interval µ̂± 0.8165 ·
S/
√
n = (46.35%, 53.65%) , the 80% con�dence interval µ̂ ± 1.8856 · S/

√
n = (41.58%, 58.42%) , the

90% con�dence interval µ̂ ± 2.9200 · S/
√
n = (36.96%, 63.04%) , and the 95% con�dence interval µ̂ ±

4.3027 · S/
√
n = (30.79%, 69.21%) .

5.1.3 One-Sample t Tests

• In a similar way to how we adapted the procedure for constructing con�dence intervals with the normal
distribution to construct con�dence intervals using t statistics, we can also adapt our procedures for z tests
to do hypothesis testing with the t distribution: we call these t tests.

• We �rst describe one-sample t tests, in which we want to perform a hypothesis test on the unknown mean of a
normal distribution with unknown standard deviation, based on an independent sampling of the distribution
yielding n values x1, x2, . . . , xn.

◦ The key di�erence here is that the standard deviation of the normal distribution is unknown, rather than
given to us as is always the case with z tests.

◦ As usual with hypothesis tests, we �rst select appropriate null and alternative hypotheses and a signi�-
cance level α.

◦ Our null hypothesis will be of the form H0: µ = c for some constant c that is our hypothesized value for
the mean of the normal distribution.

◦ We take the test statistic t =
x− µ
S/
√
n
, where x is the sample mean and S is the sample standard deviation.

◦ From our results about the t distribution, the distribution of the test statistic will be the t distribution
Tn−1 with n− 1 degrees of freedom.

◦ We can then calculate the p-value based on the alternative hypothesis.

◦ If the hypotheses are H0 : µ = c and Ha : µ > c, then the p-value is P (Tn−1 ≥ t).
◦ If the hypotheses are H0 : µ = c and Ha : µ < c, then the p-value is P (Tn−1 ≤ t).

◦ If the hypotheses areH0 : µ = c andHa : µ 6= c, then the p-value is P (|Tn−1| ≥ |t|) =

{
2P (Tn−1 ≥ t) if t ≥ µ
2P (Tn−1 ≤ t) if t < µ

.

◦ We then compare the p-value to the signi�cance level and then either reject or fail to reject the null
hypothesis, as usual.

• Example: Suppose four values 9, 18, 7, 10 are sampled from a normal distribution with unknown mean and
standard deviation. Test at the 20%, 11%, 2%, and 0.6% signi�cance levels that the mean is (i) greater than
10, (ii) greater than 0, (iii) less than 25, (iv) less than 5, (v) equal to 10, and (vi) equal to 16.

◦ First, we compute the sample mean µ̂ = 1
4 (9 + 18 + 7 + 10) = 11 and sample standard deviation

S =

√
1

3
[(9− 11)2 + (18− 11)2 + (7− 11)2 + (10− 11)2] = 4.8305.

◦ For (i), our hypotheses are H0 : µ = 10, Ha : µ > 10; we want this one-sided alternative hypothesis since
the actual sample mean is greater than 10.
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◦ The value of our test statistic is t =
11− 10

4.8305/
√

4
= 0.4140, giving p-value P (Tn−1 ≥ 0.4140) = 0.3533.

◦ Since this is greater than all four signi�cance levels, we fail to reject the null hypothesis in all cases.

◦ For (ii), our hypotheses are H0 : µ = 0, Ha : µ > 0; we want this one-sided alternative hypothesis since
the actual sample mean is greater than 0.

◦ The value of our test statistic is t =
11− 0

4.8305/
√

4
= 4.5544, giving p-value P (Tn−1 ≥ 4.5544) = 0.00992.

◦ Since this is less than the �rst three signi�cance levels, we reject the null hypothesis in those cases.
However, it is greater than 0.6%, so we fail to reject the null hypothesis at that signi�cance level.

◦ For (iii), our hypotheses are H0 : µ = 25, Ha : µ < 25; we want this one-sided alternative hypothesis
since the actual sample mean is less than 25.

◦ The value of our test statistic is t =
11− 25

4.8305/
√

4
= −5.7966, giving p-value P (Tn−1 ≤ −5.7966) = 0.00511.

◦ Since this is less than all four signi�cance levels, we reject the null hypothesis in all cases.

◦ For (iv), our hypotheses are H0 : µ = 5, Ha : µ > 5; we want this one-sided alternative hypothesis since
the actual sample mean is greater than 5.

◦ The value of our test statistic is t =
11− 5

4.8305/
√

4
= 2.4842, giving p-value P (Tn−1 ≥ 2.4842) = 0.0445.

◦ Since this is less than 20% and 11%, we reject the null hypothesis in those cases. However, it is greater
than 2% and 0.6%, so we fail to reject the null hypothesis at those signi�cance levels.

◦ For (v), our hypotheses are H0 : µ = 10, Ha : µ 6= 10; we want this two-sided alternative hypothesis
since we are only testing whether the mean equals 10 or not.

◦ The value of our test statistic is t =
11− 10

4.8305/
√

4
= 0.4140, giving p-value P (|Tn−1| ≥ 0.4140) =

2P (Tn−1 ≥ 0.4140) = 0.7067.

◦ Since this is (much!) greater than all of the listed signi�cance levels, we fail to reject the null hypothesis
in each case.

◦ For (vi), our hypotheses are H0 : µ = 16, Ha : µ 6= 16; we want this two-sided alternative hypothesis
since we are only testing whether the mean equals 16 or not.

◦ The value of our test statistic is t =
11− 16

4.8305/
√

4
= −2.0702, giving p-value P (|Tn−1| ≥ | − 2.0702|) =

2P (Tn−1 ≥ 2.0702) = 0.1302.

◦ Since this is less than 20%, we reject the null hypothesis in that case. However, it is greater than 11%,
2% and 0.6%, so we fail to reject the null hypothesis at those signi�cance levels.

• Example: To estimate the reaction yield, a new chemical synthesis is run three times, giving yields of 41.3%,
52.6%, and 56.1%. It is expected that the yield should be approximately normally distributed. Test at the
20%, 8%, and 1% signi�cance levels the hypotheses that (i) the average yield is above 45%, (ii) the average
yield is below 57%, (iii) the average yield is above 64%.

◦ First, we compute the sample average µ̂ = 1
3 (41.3% + 52.6% + 56.1%) = 50%, and the sample standard

deviation S =

√
1

2
[(41.3%− 50%)2 + (52.6%− 50%)2 + (56.1%− 50%)2] = 7.7350%.

◦ For (i), our hypotheses are H0 : µ = 45%, Ha : µ > 45%; we want this one-sided alternative hypothesis
since the actual sample mean is greater than 45%.

◦ The value of our test statistic is t =
50%− 45%

7.7350%/
√

3
= 1.1196, giving p-value P (Tn−1 ≥ 1.1196) = 0.1896.

◦ Since this is less than the �rst signi�cance level 20%, we reject the null hypothesis in that case. However,
it is greater than 8% and 1%, so we fail to reject the null hypothesis at those signi�cance levels.

◦ For (ii), our hypotheses are H0 : µ = 57%, Ha : µ < 57%; we want this one-sided alternative hypothesis
since the actual sample mean is less than 57%.
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◦ The value of our test statistic is t =
50%− 57%

7.7350%/
√

3
= −1.5675, giving p-value P (Tn−1 ≤ −1.5675) =

0.1288.

◦ Since this is less than the �rst signi�cance level 20%, we reject the null hypothesis in that case. However,
it is greater than 8% and 1%, so we fail to reject the null hypothesis at those signi�cance levels.

◦ For (iii), our hypotheses are H0 : µ = 64%, Ha : µ < 64%; we want this one-sided alternative hypothesis
since the actual sample mean is less than 60%.

◦ The value of our test statistic is t =
50%− 64%

7.7350%/
√

3
= −3.1349, giving p-value P (Tn−1 ≤ −3.1349) =

0.0442.

◦ Since this is less than the �rst two signi�cance levels 20% and 8%, we reject the null hypothesis in those
cases. However, it is greater than 1%, so we fail to reject the null hypothesis at that signi�cance level.

• Just as with z tests, we can also interpret one-sample t tests using con�dence intervals. The idea is exactly the
same as before, except the underlying distribution is now a t distribution rather than a normal distribution.

◦ Since we work with the normalized test statistic, we have to compare to the corresponding normalized
con�dence interval, which is (−tα/2,n, tα/2,n).

◦ For a two-sided alternative hypothesis, if we give a 100(1− α)% con�dence interval around the mean of
a distribution under the conditions of the null hypothesis, then we will reject the null hypothesis with
signi�cance level α precisely when the sample statistic lies outside the normalized con�dence interval:

◦ We can do the same thing with a one-sided alternative hypothesis, but because of the lack of symmetry
in the rejection region, we instead need to use a 100(1−2α)% con�dence interval to get the correct area:

• Example: The online list prices for four randomly-chosen statistics textbooks are $193.95, $171.89, $221.80,
and $215.32. Assuming that the prices of statistics textbooks are approximately normally distributed, �nd
80%, 90%, 95%, 98%, 99%, and 99.5% con�dence intervals for the average list price of a statistics textbook
online. Then test at the 10% and 1% signi�cance levels the hypotheses that (i) the average price is $200, (ii)
the average price is $230, (iii) the average price is $275, (iv) the average price is above $170, (v) the average
price is above $270.
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◦ The sample mean is µ̂ = 1
4 ($193.95+$171.89+$221.80+$215.32) = $200.74 with sample standard devia-

tion S =

√
1

3
[($193.95− $200.74)2 + ($171.89− $200.74)2 + ($221.80− $200.74)2 + ($215.32− $200.74)2] =

$22.617.

◦ For the con�dence levels, we look up or calculate the appropriate t-statistics for the given con�dence
levels and n = 4 (3 degrees of freedom).

◦ The con�dence intervals are as follows:
α 80% 90% 95% 98% 99% 99.5%

Conf Int ($) (182.22, 219.26) (174.13, 227.35) (164.75, 236.73) (149.39, 252.09) (134.69, 266.79) (116.46, 285.02)

◦ For the hypothesis tests, we just need to identify whether or not the hypothesized average is in the
appropriate con�dence interval (depending on the alternative hypothesis).

◦ For (i), we take H0 : µ = 200, Ha : µ 6= 200. This is a two-sided con�dence interval, and so we want to
look at the 100(1− α)% con�dence intervals for α = 0.10 and α = 0.01. Since 200 lies in both the 90%
and 99% con�dence intervals, we fail to reject the null hypothesis in both cases.

◦ Explicitly, the value of the normalized test statistic is t =
$200.74− $200

$22.617/
√

3
= 0.0654, and so our p-value

is 2P (Tn−1 ≥ 0.0654) = 0.9519: well above the 10% signi�cance level.

◦ For (ii), we take H0 : µ = 230, Ha : µ 6= 230. As before, we want to look at the 90% and 99% con�dence
intervals.

◦ Since 230 lies outside the 90% con�dence interval, we reject the null hypothesis at the 10% signi�cance
level. But since 230 lies inside the 99% con�dence interval, we fail to reject the null hypothesis at the
1% signi�cance level.

◦ Explicitly, the value of the normalized test statistic is t =
$200.74− $230

$22.617/
√

3
= −2.5875, and so our p-value

is 2P (Tn−1 ≤ −2.5875) = 0.0813: below the 10% signi�cance level but above the 1% signi�cance level.

◦ For (iii), we take H0 : µ = 275, Ha : µ 6= 275. As before, we want to look at the 90% and 99% con�dence
intervals. Since 275 lies outside both the 90% and 99% con�dence intervals, we reject the null hypothesis
in both cases.

◦ Explicitly, the value of the normalized test statistic is t =
$200.74− $275

$22.617/
√

3
= −6.5669, and so our p-value

is 2P (Tn−1 ≤ −6.5669) = 0.00718: below the 1% signi�cance level.

◦ For (iv), we take H0 : µ = 170, Ha : µ > 170. Now we have a one-sided alternative hypothesis, so we
want to look at the 100(1−2α)% con�dence interval. Since 170 lies below the 80% con�dence interval, we
reject the null hypothesis at the 10% signi�cance level. However, 170 does lie inside the 98% con�dence
interval, so we fail to reject the null hypothesis at the 1% signi�cance level.

◦ Explicitly, the value of the normalized test statistic is t =
$200.74− $170

$22.617/
√

3
= 2.7184, and so our p-value

is P (Tn−1 ≥ 2.7184) = 0.02653: below the 10% signi�cance level but above the 1% signi�cance level.

◦ For (v), based on the statement we could try taking H0 : µ = 270, Ha : µ > 270. As above, we want to
look at the 100(1− 2α)% con�dence interval.

◦ Notice that 270 lies outside both the 80% and 98% con�dence intervals. However, the con�dence intervals
themselves are below 270, meaning that our deviation away from the hypothesized value falls into the
null hypothesis tail of the distribution, rather than the alternative hypothesis tail.

◦ Thus, we fail to reject the null hypothesis at either the 10% signi�cance level or the 1% signi�cance level.

◦ Explicitly, the value of the normalized test statistic is t =
$200.74− $270

$22.617/
√

3
= −6.1247, and so our p-value

is P (Tn−1 ≥ −6.1247) = 0.9956.

◦ Here, we actually ought to have tested the alternative hypothesis Ha : µ < 270, since the sample mean
was less than 270. In this case, 270 would still lie outside both the 80% and 98% con�dence intervals, but
now 270 would land in the alternative hypothesis tail rather than the null hypothesis tail, so we would
reject the null hypothesis at both signi�cance levels.

◦ In that situation, the p-value is P (Tn−1 ≤ −6.1247) = 0.00438, which is indeed quite small.
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5.1.4 Two-Sample t Tests

• Now that we have treated the situation of one-sample t tests, we discuss the thornier issue of two-sample t
tests, in which we want to compare the unknown means of two normally-distributed populations with unknown
standard deviations.

• Let us �rst review the setup for a two-sample z test:

◦ Suppose the two populations are labeled A and B, with respective means µA and µB and population
standard deviations σA and σB . We sample population A a total of nA times, and population B a total
of nB times.

◦ Like with two-sample z tests, we would like to take our test statistic as the di�erence µA − µB in the
two population means.

◦ First suppose that we are testing whether µA = µB , which we can equivalently phrase as asking whether
µA − µB = 0.

◦ Then, per our assumptions, the sample mean µ̂A will be normally distributed with mean µA and standard
deviation σA/

√
nA, while µ̂B will be normally distributed with mean µB and standard deviation σB/

√
nB .

◦ The key piece of information here is that since µ̂A and µ̂B are independent and normally distributed,

their di�erence is also normally distributed with mean µA − µB and standard deviation

√
σ2
A

nA
+
σ2
B

nB
.

◦ Therefore, if we are testing the null hypothesis H0: µA − µB = c, then under the assumption of the null
hypothesis, our test statistic µ̂A − µ̂B will be normally distributed with mean c and standard deviation√
σ2
A

nA
+
σ2
B

nB
.

• Now we analyze the situation of a two-sample t test, in which we do not know the standard deviations σA
and σB .

◦ If we do not know σA and σB , then we must use the sample standard deviation estimates SA and SB to
estimate the standard deviation of the quantity µ̂A − µ̂B .
◦ However, just as we discussed before, using the sample standard deviation in place of the population

standard deviation changes the underlying distributions: although
µ̂A − µA
σA/
√
nA

has the standard normal

distribution,
µ̂A − µA
SA/
√
nA

has the distribution of the random variable TnA−1.

◦ If we solve for the distribution of µ̂A, we see it is no longer given by the normal random variable

µA +
σ
√
nA

N0,1 (normal with with mean µA and standard deviation σA/
√
nA), but rather a �rescaled� t

distribution µA +
SA√
nA

TnA−1.

◦ Likewise, the random variable µ̂B has a rescaled t distribution µB +
SB√
nB

TnB−1.

◦ Then the quantity µ̂A−µ̂B is modeled by the random variable

[
µA +

SA√
nA

TnA−1

]
−
[
µB +

SB√
nB

TnB−1

]
=

(µA − µB) +
SA√
nA

TnA−1 −
SB√
nB

TnB−1.

◦ Equivalently, µA−µB is modeled by the random variable (µ̂A− µ̂B) +
SA√
nA

TnA−1−
SB√
nB

TnB−1, where

we absorbed the minus sign into the two t-distributions (since they are symmetric about 0).

• The problem here is that we do not have a nice description of what the di�erence between two (scaled) t
distributions looks like.

◦ For normal distributions, we can use the very convenient fact that the sum or di�erence of normal random
variables is also normal; that is not the case for t distributions!
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◦ In principle, because we know the probability density functions of TnA−1 and TnB−1, and they are
independent, we could calculate the probability density function of the random variable listed above for
particular values of all of the parameters.

◦ But that does not solve our problem, because we need to write down a test statistic whose distribution
is independent of the test parameters (i.e., that does not depend on SA and SB , which is not the case in
the expression above).

◦ In general, solving this problem of �nding an appropriate statistic for testing the equality of two sample
means from normally distributed random samples is known as the Behrens-Fisher problem. (Various
generalizations are also often named with this moniker as well.)

• The �rst approximation is to construct a pooled standard deviation, much like our approach previously when
we did two-sample z tests for binomially distributed data. The approach comes from the following theorem:

• Theorem (tDistributionWith Pooled Variance): Suppose thatX1, . . . , Xn are independent and identically nor-
mally distributed with mean µX and standard deviation σ, and that Y1, . . . , Ym are independent and identically
normally distributed with mean µY and standard deviation σ. If µ̂X , µ̂Y , SX , and SY denote the sample means
and sample standard deviations of {X1, . . . , Xn} and {Y1, . . . , Yn}, then for the pooled standard deviation

Spool =

√
(n− 1)S2

X + (m− 1)S2
Y

m+ n− 2
=

√∑n
i=1(Xi − µ̂X)2 +

∑m
j=1(Yj − µ̂Y )2

m+ n− 2
, the distribution of the test

statistic
(µ̂X − µ̂Y )− (µX − µY )

Spool

√
1

n
+

1

m

is Tm+n−2, the t distribution with m+ n− 2 degrees of freedom.

◦ The idea of the proof is similar to the theorem we proved earlier for the probability density function of
the t distribution, and we will in fact reduce to applying the arguments of that theorem in a special case.

◦ Proof (outline): Observe that the test statistic is the quotient of
(µ̂X − µ̂Y )− (µX − µY )

σ

√
1

n
+

1

m

by
Spool
σ

.

◦ The �rst term
(µ̂X − µ̂Y )− (µX − µY )

σ

√
1

n
+

1

m

, from our discussion above, is normally distributed with mean 0

and standard deviation 1 (i.e., its distribution is simply the standard normal).

◦ The other term has square
S2
pool

σ2
=

1

m+ n− 2

[∑n
i=1

(
Xi−µ̂X

σ

)2
+
∑m
j=1

(Yj−µ̂Y

σ

)2]
.

◦ As noted in the proof of our earlier theorem, the sum
∑n
i=1

(
Xi−µ̂X

σ

)2
can be rewritten as the sum of

squares of n−1 standard normal variables, and by the same argument,
∑n
i=1

(
Xi−µ̂X

σ

)2
can be rewritten

as the sum of squares of m− 1 standard normal variables.

◦ Therefore, the sum of these terms is the sum of squares of m+ n− 2 standard normal variables.

◦ But as we showed in our earlier theorem, the distribution of a ratio
x− µ
S/
√
n

=
(x− µ)/(σ/

√
n)

S/σ
=
N0,1

S/σ
is the t distribution Tn−1 with degrees of freedom equal to the number of squares of standard normal
variables summed in the denominator.

◦ Since there arem+n−2 standard normal variables, that means that our quotient of
(µ̂X − µ̂Y )− (µX − µY )

σ

√
1

n
+

1

m

by
Spool
σ

is t-distributed with m+ n− 2 degrees of freedom, as claimed.

• This theorem gives us an explicit procedure for performing a two-sample t test with a pooled standard deviation
where the population variances are assumed to be equal. This test is known as Student's equal-variances t test.

◦ First, we select appropriate null and alternative hypotheses and a signi�cance level α.

◦ Our null hypothesis will be of the form H0: µA − µB = c for some constant c that is our hypothesized
value for the di�erence of the means (usually 0).
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◦ We take the test statistic t =
(µ̂A − µ̂B)− c

Spool

√
1

nA
+

1

nB

, where Spool =

√
(nA − 1)S2

A + (nB − 1)S2
B

nA + nB − 2
is the pooled

standard deviation estimate.

◦ From our theorem above, the distribution of the test statistic will be the t-distribution TnA+nB−2 with
nA + nB − 2 degrees of freedom.

◦ We can then calculate the p-value based on the alternative hypothesis.

◦ If the hypotheses are H0 : µA − µB = c and Ha : µA − µB > c, then the p-value is P (TnA+nB−2 ≥ t).
◦ If the hypotheses are H0 : µA − µB = c and Ha : µA − µB < c, then the p-value is P (TnA+nB−2 ≤ t).
◦ If the hypotheses are H0 : µA−µB = c and Ha : µA−µB 6= c, then the p-value is P (|TnA+nB−2| ≥ |t|) ={

2P (TnA+nB−2 ≥ t) if t ≥ µ
2P (TnA+nB−2 ≤ t) if t < µ

.

◦ We then compare the p-value to the signi�cance level and then either reject or fail to reject the null
hypothesis, as usual.

• Before doing an example, we can also give some brief motivation for why these particular choices of parameters
(the pooled standard deviation, the test statistic, and the number of degrees of freedom) are logical.

◦ The denominator of the test statistic is analogous to the standard deviation

√
σ2

nA
+
σ2

nB
for the di�erence

of the two normal distributions, and is what we would divide by if we were doing a two-sample z test to
get a normalized statistic.

◦ The pooled standard deviation can be thought of as arising from the pooled variance: if the two sample
means were actually equal to the same number µ, then the pooled variance of the set {X1, X2, . . . , Xn, Y1, . . . , Ym}
would be

1

m+ n

[
(X1 − µ)2 + · · ·+ (Xn − µ)2 + (Y1 − µ)2 + · · ·+ (Ym − µ)2

]
.

◦ However, since the two sets don't have the same mean, we instead measure them relative to their own
means. Furthermore, the resulting variance estimate is biased (for the same reason that the estimate for

the sample variance for a single sample is biased), so we must divide by
1

m+ n− 2
rather than

1

m+ n
to unbias it.

◦ We can then rewrite the complicated sum above more simply in terms of the sample standard deviations
SX and SY : this is precisely the pooled standard deviation Spool.

◦ The number of degrees of freedom of the t distribution is m+n− 2, because we have m+n data points,
but we lose one degree of freedom by comparing A to its mean, and we lose another by comparing B to
its mean.

• Example: A statistics instructor wants to determine whether students do better on exams in a morning class
or in an evening class. They randomly sample 11 exams from the morning class, which have an average score
of 84 and a sample standard deviation of 13, and compare to a random sample of 11 exams from the evening
class, which have an average score of 77 and a sample standard deviation of 9. Assuming that the population
variances are equal, test at the 11%, 3%, and 0.7% signi�cance levels the hypotheses that (i) the average score
in the morning class is higher, (ii) the average score in the two classes are di�erent, and (iii) the average score
in the morning class is at least 2 points higher than the evening class.

◦ Since the population variances are assumed to be equal, we use Student's equal-variances t test.

◦ For (i), our hypotheses are H0 : µm − µe = 0, Ha : µm − µe > 0; we want this one-sided alternative
hypothesis since the morning class average is higher than the evening class average.

◦ The pooled standard deviation is Spool =

√
(11− 1) · 132 + (11− 1) · 92

11 + 11− 2
= 11.1803.

◦ The test statistic is t =
(84− 77)− 0

11.1803 ·
√

1

11
+

1

11

= 1.4683, giving p-value P (T20 ≥ 1.4683) = 0.07878.
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◦ Since the p-value is less than the �rst signi�cance level, we reject the null hypothesis in that case.
However, it is greater than the other two signi�cance levels, so we fail to reject the null hypothesis in
those cases.

◦ For (ii), our hypotheses are H0 : µm − µe = 0, Ha : µm − µe 6= 0; we want this two-sided alternative
hypothesis since now we want only to test whether the scores are equal.

◦ The parameters are the same as in (i) above; the only di�erence is that the p-value is now 2P (T20 ≥
1.4683) = 0.1576.

◦ Since the p-value is above all three signi�cance levels, we fail to reject the null hypothesis in each case.

◦ For (iii), our hypotheses are H0 : µm − µe = 2, Ha : µm − µe > 2; we want this one-sided alternative
hypothesis since the morning class actually did score more than two points above the evening class.

◦ The pooled standard deviation is the same as before.

◦ The test statistic is t =
(84− 77)− 2

11.1803 ·
√

1

11
+

1

11

= 1.0488, giving p-value P (T20 ≥ 1.0488) = 0.1534.

◦ Since the p-value is above all three signi�cance levels, we fail to reject the null hypothesis in each case.

• In most situations when we are comparing two populations, it is not reasonable to assume that the population
variances are the same. For this reason, various unpooled two-sample t tests have been developed.

◦ The most popular such test is known as Welch's unequal-variances t test. It is generally more accurate
than Student's equal-variances t test (described above) in the situation where the two sample variances
are far apart, or when the sample sizes di�er drastically.

◦ With null hypothesis H0: µA − µB = c, the test statistic is t =
(µ̂A − µ̂B)− c

Sunpool
, where Sunpool =√

S2
A

nA
+
S2
B

nB
is the natural standard deviation estimate for the di�erence in the sample means.

◦ As we discussed earlier, the resulting test statistic does not actually have an exact distribution we can
describe in any convenient way.

◦ However, as proven by Welch, it is approximately t-distributed by the t distribution with the number of

degrees of freedom equal to the rather complicated formula df =
(S2
A/nA + S2

B/nB)2

1
nA−1 (S2

A/nA)2 + 1
nB−1 (S2

B/nB)2
.

◦ Most computer systems allow the number of degrees of freedom to be an arbitrary positive real number
(in which case one may use the exact value given above); otherwise, such as when using tables, one
usually rounds to the nearest integer.

• Welch's result is quite technical, but we can describe roughly where the formula for the degrees of freedom
comes from.

◦ The idea is to rewrite the quotient in the test statistic (in the same way we did in the theorem earlier)
and try to write the denominator ratio as the sum of squares of independent standard normals.

◦ This cannot be done exactly, but if it could, we would then be able to �nd the number of terms by using
the method of moments to compare the means and variances of the two expressions.

◦ Carefully going through the calculations eventually yields the degree-of-freedom formula given above.

• We can use Welch's unequal-variances t test to compare the sample means for populations whose variances
are not assumed to be equal.

• Example: Use Welch's unequal-variances t test with the previous example (morning class with 11 exams of
average score 84 and sample standard deviation 13, evening class with 11 of average score 77 and sample
standard deviation 9) to test at the 11%, 3%, and 0.7% signi�cance levels the hypotheses that (i) the average
score in the morning class is higher, (ii) the average score in the two classes are di�erent, and (iii) the average
score in the morning class is at least 2 points higher than the evening class.
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◦ For (i), our hypotheses are H0 : µm − µe = 0, Ha : µm − µe > 0; we want this one-sided alternative
hypothesis since the morning class average is higher than the evening class average.

◦ The unpooled standard deviation is Sunpool =

√
132

11
+

92

11
= 4.7673.

◦ The test statistic is t =
(84− 77)− 0

4.7673
= 1.4683, and the number of degrees of freedom is df =

(132/11 + 92/11)2

1
11−1 (132/11)2 + 1

11−1 (92/11)2
= 17.7951 giving p-value P (T17.7951 ≥ 1.4683) = 0.07973.

◦ Since the p-value is less than the �rst signi�cance level, we reject the null hypothesis in that case.
However, it is greater than the other two signi�cance levels, so we fail to reject the null hypothesis in
those cases.

◦ Remark: Note from before that the pooled p-value estimate was 0.07878, which is quite close.

◦ For (ii), our hypotheses are H0 : µm − µe = 0, Ha : µm − µe 6= 0; we want this two-sided alternative
hypothesis since now we want only to test whether the scores are equal.

◦ The parameters are the same as in (i) above; the only di�erence is that the p-value is now 2P (T17.7951 ≥
1.4683) = 0.1594.

◦ Since the p-value is above all three signi�cance levels, we fail to reject the null hypothesis in each case.

◦ For (iii), our hypotheses are H0 : µm − µe = 2, Ha : µm − µe > 2; we want this one-sided alternative
hypothesis since the morning class actually did score more than two points above the evening class.

◦ The unpooled standard deviation and degrees of freedom are the same as before.

◦ The test statistic is t =
(84− 77)− 2

4.7673
= 1.0488, giving p-value P (T17.7951 ≥ 1.0488) = 0.1542.

◦ Since the p-value is above all three signi�cance levels, we fail to reject the null hypothesis in each case.

◦ Remark: Note from before that the pooled p-value estimate was 0.1534, which is again quite close.

• We can also adapt the two testing methods to give con�dence intervals for the di�erence of two sample means.

◦ Using either Student's or Welch's procedure, we simply compute the appropriate t-statistic for the t
distribution with the number of degrees of freedom indicated by the method, and take as the standard

deviation either S = Spool

√
1

nA
+

1

nB
or S = Sunpool respectively.

◦ Then the desired 100(1− α)% con�dence interval will be given by (µ̂A − µ̂B)± tα/2,dfS.

• Example: The salaries of six randomly-chosen male faculty in a university's math department are $51000,
$90500, $46000, $97000, $108000, $85000 and the salaries of �ve randomly-chosen female faculty in the same
department are $56600, $55000, $104000, $70500, $87000. Test at the 20%, 11%, and 2% signi�cance levels
whether the average salary of male faculty is equal to the average salary of female faculty using (i) both
Student's equal-variances t test and (ii) Welch's unequal-variances t test. Also, �nd 80% and 95% con�dence
intervals for the di�erence between the average salaries of male and female faculty.

◦ For the male faculty (nm = 6) the sample mean is µ̂m = $79583 and the sample standard deviation is
Sm = $25315, while for the female faculty (nf = 5) the sample mean is µ̂f = $74620 and the sample
standard deviation is Sf = $20875.

◦ Our hypotheses are H0 : µm − µf = 0 and Ha : µm − µf 6= 0.

◦ For (i), the pooled standard deviation is Spool =

√
(6− 1) · $253152 + (5− 1) · $208752

6 + 5− 2
= $23446.

◦ The test statistic is t =
($79583− $74620)− 0

$23446 ·
√

1

6
+

1

5

= 0.3496, giving p-value 2P (T9 ≥ 0.3496) = 0.7347.

◦ The p-value is quite large so we fail to reject the null hypothesis in all cases.

◦ For (ii), the unpooled standard deviation is Sunpool =

√
$253152

6
+

$208752

5
= $13927.
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◦ The test statistic is t =
($79583− $74620)− 0

$13927
= 0.3564, and the number of degrees of freedom is

df =
($253152/6 + $208752/5)2

1
6−1 ($253152/6)2 + 1

5−1 ($208752/5)2
= 8.9991 giving p-value P (T8.9991 ≥ 0.3564) = 0.7298.

◦ The p-value is again quite large so we fail to reject the null hypothesis in all cases.

◦ To compute the 80% and 95% con�dence intervals, we need to compute the appropriate t-statistics.

◦ We see that the di�erence in the average salaries is µ̂m − µ̂f = $4963.

◦ For the pooled estimate, there are 9 degrees of freedom, so using a t table or computer yields tα/2,n =
1.3830 for the 80% con�dence interval and tα/2,n = 2.2622.

◦ Then S = Spool

√
1

6
+

1

5
= $14197, so our 80% con�dence interval is $4963 ± 1.3830 · $14197 =

(−$14672, $24598) and our 95% con�dence interval is $4963± 2.2622 · $14197 = (−$27153, $37079).

◦ For the unpooled estimate, there are df = 8.9991 degrees of freedom, so using a t table or computer
yields tα/2,n = 1.3830 for the 80% con�dence interval and tα/2,n = 2.2622. (The degrees of freedom are
so close to 9 in this case it actually doesn't matter if we just round to 9.)

◦ Then S = Sunpool = $13927, so our 80% con�dence interval is $4963±1.3830·$14197 = (−$14298, $24225)
and our 95% con�dence interval is $4963± 2.2622 · $14197 = (−$26542, $36469).

◦ We can see here that the two estimates are quite close, since the sample variances are not far away from
each other.

• We make a few brief remarks about when to use these various t tests.

◦ Most sources still identify Student's t test as the preferred test to use when the sample variances are not
far away from each other, and give various approximate rules for deciding what �far away� means (e.g.,
requiring the variance not to di�er by a factor of more than 2).

◦ When the sample variances are far apart, Welch's t test tends to give more reliable results (in the sense
of having lower type I and type II error probabilities). Even when the sample variances are close, Welch's
t test is generally not that much worse than Student's t test (which has a higher power in the situations
where it should be used).

◦ Neither test is exact (in the sense that it gives exact p-values) except in the case of Student's t test
where the population variances are equal. In practice, this means that the type I error rate will deviate
somewhat from the desired signi�cance level α.

◦ Welch's t test tends to maintain a type I error rate closer to the desired signi�cance level α than Student's
t test does (although of course there are scenarios in which it is worse).

◦ It is also worth noting that, as the sample sizes of both groups become large, both tests are very close
to the two-sample z test we have previously described. In practice, with samples larger than 100-200 or
so, there is a negligible di�erence between the results of these t tests and the simpler z test.

• We also mention one additional scenario involving t tests and the comparison of two samples, involving
matched pairs.

◦ In matched-pairs comparisons, we are comparing the means of two sets of paired data.

◦ A common situation is to make a before-and-after comparison of measurements taken before applying a
treatment to measurements taken after applying the treatment: the goal is to determine whether (and
how) the treatment a�ected the average outcome.

◦ Although this scenario involves two data sets, the matched-pairs design means that the initial and later
measurements will be correlated, so it is not appropriate to use a two-sample t test.

◦ Instead, what we do is compute the di�erence in the results (for each individual), and use a one-sample
t test to compare the average outcome to 0.

• Example: To test whether studying improves students' exam scores, an instructor has 6 students take a pre-
assessment, complete a study module, and then a post-assessment. The results are summarized in the table
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below. Test, at the 9%, 1%, and 0.3% signi�cance levels whether the students' scores improved after studying:
Student A B C D E F

Pre-study 61 71 90 81 55 81
Post-study 74 88 97 80 85 93

◦ Here, we have matched-pair data, because the measurements of the scores are coming from the same
students. Since the values in the samples are not independent, but come from matched pairs, we want
to use a one-sample t test here.

◦ Our hypotheses are H0 : µpost = µpre and Ha : µpost > µpre, which we can rephrase in terms of the
di�erence in means µdi� = µpost − µpre as H0: µdi� = 0 and Ha : µdi� > 0.

◦ Our test statistic is the di�erence in means µdi�, which will be t-distributed with 6 − 1 = 5 degrees of
freedom.

◦ Our sample data set consists of the six di�erences of scores {13, 17, 7,−1, 30, 12}, with mean µ̂di� = 13 and

sample standard deviation S = 10.3730, and the value of the sample statistic is t =
µ̂di� − 0

S/
√
n

= 3.0698.

◦ Thus, the p-values is P (T5 ≥ 3.0698) = 0.01389.

◦ Since the p-value is below 9% we reject the null hypothesis at that signi�cance level, but since it is above
1% and 0.3% we fail to reject at those signi�cance levels.

5.1.5 Robustness of t Tests

• We will make a few comments about robustness: the accuracy of the tests when applied to distributions that
are not exactly the ones predicted by the model.

◦ All of our discussion of z tests and t tests has been predicated on the assumption that the underlying
populations we are studying are normally distributed.

◦ In reality, except for very rare examples arising in physics with phenomena having exact theoretical
models, no population is precisely normally distributed.

◦ It is therefore important to understand how well the tests we have developed will perform in situations
where the underlying distributions are not exactly normal, but only approximately normal.

◦ It is a similar concern to the one that motivated our discussion of the t distribution and t tests: we could
simply have tried using z tests but with S in place of σ. The resulting test would then not be exact, but
we could hope that it is fairly close.

◦ As we have explained, with small samples using a z place instead of a t test will generally be much less
accurate (in the sense that the type I and type II error probabilities will generally be much larger).

◦ However, with large samples (e.g., n around 100 or more) then the di�erence between the standard
normal distribution and the t distribution is negligible, and so using a z test in place of a t test in such
situations does not introduce much error.

◦ In principle, if we had a di�erent underlying distribution (e.g., a uniform distribution), we could develop
analogues of the z test and t test, and in fact there are many other statistical tests that have been
developed precisely to allow accurate study of data sets that have very non-normally-shaped distributions.

• It turns out that the t test is actually fairly robust, in that it performs fairly well even with distributions that
are moderately non-normal.

◦ Here are some examples for di�erent simulations of the t-statistic
x− µ
S/
√
n
for sampling the uniform dis-

tribution on [−1, 1]:
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◦ Here are the results for sampling the �peak� distribution with p(x) = 1− |x| on [−1, 1]:

◦ Here are the results for sampling the Poisson distribution with parameter λ = 3:

◦ Here are the results for sampling the exponential distribution with parameter λ = 1/2:
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◦ We can see from the simulations that the t distribution is fairly close for the uniform and peak distribu-
tions, it is o� a bit for the Poisson, and it is very far o� for the exponential.

◦ The uniform and peak distributions are both symmetric and do not have wide tails.

◦ The Poisson distribution is more skewed and has a wider tail. It also has the di�culty that it is discrete
and that small samples will sometimes yield all identical values (giving a sample standard deviation of
0, yielding an unde�ned test statistic): this explains the peculiar spike at 0.

◦ The exponential distribution is very skewed, which causes the resulting test statistic also to be skewed.
We can see that the t distribution is not a very good model here even with a sample size n = 10.

• In general, the t distribution models the sample statistic
x− µ
S/
√
n

well when the underlying distribution is

symmetric, but not as well when the underlying distribution is asymmetric or skewed to one side.

◦ When the underlying distribution is asymmetric or skewed, using a t test will not generally give reliable
results with small sample sizes, and it is necessary to use di�erent tests that are more robust for skewed
data.

◦ With large sample sizes (the exact de�nition of large, of course, depends on the scenario, but as we
have seen in our discussion of the central limit theorem, usually n = 100− 200 or so is quite su�cient),
the central limit theorem will eventually take over and cause the sample average to be approximately
normally distributed, even if the original distribution was asymmetric or skewed.

◦ In such cases, since the t distribution is so close to the normal distribution, either the t test or the z test
will be fairly reliable.

◦ For example, here are the results of simulating the test statistic for larger n with exponentially distributed
data:

◦ We can see here that although there is still some skewness in the histogram, it is now better approximated
by the t distribution.

5.2 The χ2
Distribution and χ2

Tests

• Our goal in this section is to discuss the χ2 distribution and three di�erent χ2 tests, which allow us to expand
our hypothesis tests to testing statements about the variance (and standard deviation) of a distribution.

◦ All of our hypothesis tests so far have essentially focused on testing statements about the mean of a
distribution.

◦ However, in certain scenarios, some of which we will discuss now, we might also want to test hypotheses
about the variance of a distribution.

◦ If the underlying distribution is normal, or obtained as a sum of normal distributions, we can use the χ2

distribution to construct such tests.
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5.2.1 The χ2 Distribution

• We have previously discussed (at length) methods for constructing con�dence intervals for the mean µ of a
normally-distrbuted random variable with (known or unknown) standard deviation σ, given a random sample
x1, . . . , xn from this normal distribution.

• Our present goal is to apply the same ideas to construct con�dence intervals for the variance σ2 (or equivalently
the standard deviation σ) of the normal distribution.

◦ Of course, the problem is only interesting when we do not already know σ, which is to say, when we are
estimating it from the sample.

◦ As we have also discussed at length, the sample variance S2 =
1

n− 1

[
(x1 − x)2 + · · ·+ (xn − x)2

]
gives

an unbiased estimator for σ2.

◦ In order to construct con�dence intervals for σ2, it is enough to write down the underlying distribution

of the statistic
(n− 1)S2

σ2
=

(
x1 − x
σ

)2

+ · · ·+
(
xn − x
σ

)2

.

• De�nition: The χ2 distribution with k degrees of freedom is the continuous random variable Qk whose prob-

ability density function pQk
(x) =

1

2k/2Γ(k/2)
· x(k/2)−1e−x/2 for all real numbers x > 0.

◦ As we will outline in a moment, the χ2 distribution with n − 1 degrees of freedom is the proper model

for the test statistic
(n− 1)S2

σ2
.

◦ Example: The χ2 distribution with 1 degree of freedom has probability density function pQ1
(x) =

1√
2πx

e−x/2 for x > 0.

◦ Example: The χ2 distribution with 2 degrees of freedom has probability density function pQ1(x) =
1

2
e−x/2

for x > 0, which is the exponential distribution with parameter λ = 1/2.

◦ Example: The χ2 distribution with 3 degrees of freedom has probability density function pQ1
(x) =√

x√
2π
e−x/2 for x > 0.

◦ It is not hard to show using the probability density function that the χ2 distribution with k degrees of
freedom has mean k and variance 2k.

◦ We also emphasize that the χ2 distribution, unlike the normal and t distributions, is quite skewed to the
right, but the skewness decreases with more degrees of freedom. Here are plots of some of these pdfs:
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• Proposition (χ2 Distribution From Normals): IfX1, . . . , Xn are independent standard normal random variables
(i.e., with mean 0 and standard deviation 1), then the random variableQn = X2

1+· · ·+X2
n has a χ

2 distribution
with n degrees of freedom.

◦ The proof is a relatively straightforward calculation using the joint pdf of X1, . . . , Xn (which is simply
the product of the one-variable pdfs, since these variables are independent).

◦ We then just have to set up and evaluate the appropriate n-dimensional integral to compute the proba-
bility density function of Qn = X2

1 + · · ·+X2
n.

◦ We will omit the explicit details of the calculations, although we will mention that the main idea in the
computation of the integral is to convert to n-dimensional spherical coordinates.

◦ As a corollary, since the χ2 distribution is obtained by summing independent, identically-distributed
random variables, by the central limit theorem it approaches the appropriate normal distribution (with
the same mean and variance) as k →∞.

• Theorem (χ2 Distribution As Sampling Distribution): Suppose n ≥ 2 and that X1, X2, . . . , Xn are in-
dependent, identically normally distributed random variables with mean µ and standard deviation σ. If

X =
1

n
(X1+· · ·+Xn) denotes the sample mean and S2 =

1

n− 1

[
(X1 −X)2 + (X2 −X)2 + · · ·+ (Xn −X)2

]
denotes the sample variance, then the distribution of the test statistic

(n− 1)S2

σ2
is the χ2 distribution Qn−1

with n− 1 degrees of freedom.

◦ Proof: Let W =
∑n
i=1

[
Xi − µ
σ

]2
. Then

W =

n∑
i=1

[
(Xi −X) + (X − µ)

σ

]2
=

n∑
i=1

[
Xi −X

σ

]2
+ 2

n∑
i=1

[
Xi −X

σ

] [
X − µ
σ

]
+

n∑
i=1

[
X − µ
σ

]2
.

◦ In this last expression, the �rst term is
(n− 1)S2

σ2
, the middle term is zero by evaluating the sum

(since
∑n
i=1Xi =

∑n
i=1X), and the last term is n

[
X − µ
σ

]2
=

[
X − µ
σ/
√
n

]2
. Thus, we see that W =

(n− 1)S2

σ2
+

[
X − µ
σ/
√
n

]2
.

◦ Note thatW is the sum of squares of n independent standard normal variables, so it has a χ2 distribution
with n degrees of freedom.

◦ Also, S and X are independent (as we previously noted in our derivation of the properties of the t
distribution).

◦ Thus, since

[
X − µ
σ/
√
n

]2
is the square of a standard normal variable, and S is independent from it, this

means the distribution of
(n− 1)S2

σ2
= W−

[
X − µ
σ/
√
n

]2
is given by the sum of squares of n−1 independent

standard normal variables4.

◦ This means
(n− 1)S2

σ2
has a χ2 distribution with n− 1 degrees of freedom, as claimed.

5.2.2 χ2 Con�dence Intervals and Hypothesis Tests

• The theorem above tells us that we can use the χ2 distribution as a model for the ratio between the sample
variance and the population variance, after rescaling appropriately.

4Technically, this step requires additional justi�cation: one may make this argument completely precise using moment-generating
functions.
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◦ Thus, we can construct con�dence intervals for the population variance using χ2-statistics and the sample
variance.

◦ Speci�cally, since the statistic
(n− 1)S2

σ2
is modeled by the χ2 distribution Qn−1 with n − 1 degrees

of freedom, we can compute a 100(1 − α)% con�dence interval using χ2-statistics in place of the z-
and t-statistics that we used for the con�dence intervals for the mean of a normally distributed random
variable.

◦
◦ Here, we want the parameters χ2

α/2 and χ
2
1−α/2 to satisfy P (Qn−1 ≤ χ2

α/2) = α/2 = P (Qn−1 ≥ χ2
1−α/2),

so that the total area in each tail of the distribution is α, leaving an area 1− α in the middle.

◦ In other words, we have P (χ2
α/2 ≤ Qn−1 ≤ χ2

1−α/2) = 1 − α. Since (n− 1)S2

σ2
is χ2-distributed, this is

equivalent to saying that P (χ2
α/2 ≤

(n− 1)S2

σ2
≤ χ2

1−α/2) = 1− α.

◦ We can then rewrite the above equation to get the desired 100(1− α)% con�dence interval for σ:

• Proposition (χ2 Con�dence Intervals): A 100(1 − α)% con�dence interval for the unknown variance σ2 of a

normal distribution with unknown mean and standard deviation is given by

(
(n− 1)S2

χ2
1−α/2,n

,
(n− 1)S2

χ2
α/2,n

)
where

n sample points x1, . . . , xn are taken from the distribution, µ̂ = 1
n (x1 + · · · + xn) is the sample mean,

S =
√

1
n−1 [(x1 − µ̂)2 + · · ·+ (xn − µ̂)2] is the sample standard deviation, and χ2

α/2,n and χ2
1−α/2,n are the

constants satisfying P (Qn−1 ≤ χ2
α/2,n−1) = α/2 = P (Qn−1 ≥ χ2

1−α/2,n−1) where Qn−1 is χ
2-distributed with

n− 1 degrees of freedom.

◦ For a 100(1−α)% con�dence interval for σ we just take the square root:

(√
n− 1

χ2
1−α/2,n−1

S,

√
n− 1

χ2
α/2,n−1

S

)
.

◦ In order to compute the necessary χ2 statistics, we must (as with the normal distribution or t distribu-
tion) either use a table of values or a computer to evaluate the inverse cumulative distribution function.
Here is a small table of such values:

Inverse-CDF entries give χ2
β,n such that P (Qn < χ2

β,n) = β.

df 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995

1 0.0000 0.0002 0.0010 0.0039 0.0158 2.7055 3.8415 5.0239 6.6349 7.8794
2 0.0100 0.0201 0.0506 0.1026 0.2107 4.6052 5.9915 7.3778 9.2103 10.5966
3 0.0717 0.1148 0.2158 0.3518 0.5844 6.2514 7.8147 9.3484 11.3449 12.8382
4 0.2070 0.2971 0.4844 0.7107 1.0636 7.7794 9.4877 11.1433 13.2767 14.8603
5 0.4117 0.5543 0.8312 1.1455 1.6103 9.2364 11.0705 12.8325 15.0863 16.7496
6 0.6757 0.8721 1.2373 1.6354 2.2041 10.6446 12.5916 14.4494 16.8119 18.5476
7 0.9893 1.2390 1.6899 2.1673 2.8331 12.0170 14.0671 16.0128 18.4753 20.2777
8 1.3444 1.6465 2.1797 2.7326 3.4895 13.3616 15.5073 17.5345 20.0902 21.9550
9 1.7349 2.0879 2.7004 3.3251 4.1682 14.6837 16.9190 19.0228 21.6660 23.5894
10 2.1559 2.5582 3.2470 3.9403 4.8652 15.9872 18.3070 20.4832 23.2093 25.1882
15 4.6009 5.2293 6.2621 7.2609 8.5468 22.3071 24.9958 27.4884 30.5779 32.8013
20 7.4338 8.2604 9.5908 10.8508 12.4426 28.4120 31.4104 34.1696 37.5662 39.9968
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◦ We need to compute both χ2
α/2,n and χ2

1−α/2,n, since the χ
2 distribution is not symmetric.

• Example: A normal distribution is sampled six times yielding values −3, 1, 5, −2, 7, and 8. Find 80%, 90%,
and 99% con�dence intervals for the standard deviation of the distribution.

◦ We �rst compute the sample mean µ = 2.6667 and sample standard deviation S = 4.6762.

◦ Since there are 6 values, the number of degrees of freedom for the underlying χ2 statistics is 5.

◦ For the 80% con�dence interval, the required values are χ2
0.9,5 = 9.2364 and χ2

0.1,5 = 1.6103, and so the

con�dence interval for σ is

(√
5

9.2364
· 4.6762,

√
5

1.6103
· 4.6762

)
= (3.4405, 8.2400) .

◦ For the 90% con�dence interval, the required values are χ2
0.95,5 = 11.0705 and χ2

0.05,5 = 1.1455, and so

the con�dence interval for σ is

(√
5

11.0705
· 4.6762,

√
5

1.1455
· 4.6762

)
= (3.1426, 9.7697) .

◦ For the 99% con�dence interval, the required values are χ2
0.995,5 = 16.7496 and χ2

0.005,5 = 0.4117, and so

the con�dence interval for σ is

(√
5

16.7496
· 4.6762,

√
5

0.4117
· 4.6762

)
= (2.5549, 16.2962) .

• We can also adapt our characterization to give a procedure for doing a hypothesis test about the unknown
variance of a normal distribution based on an independent sampling of the distribution yielding n values
x1, x2, . . . , xn.

◦ As usual with hypothesis tests, we �rst select appropriate null and alternative hypotheses and a signi�-
cance level α.

◦ Our null hypothesis will be of the form H0: σ
2 = c for some constant c, with an appropriate one-sided

or two-sided alternative hypothesis.

◦ We take the test statistic χ2 =
(n− 1)S2

c
, where S is the sample standard deviation.

◦ From our results about the χ2 distribution, the test statistic is χ2-distributed with n − 1 degrees of
freedom.

◦ If the test is one-sided, we can calculate the p-value based on the alternative hypothesis.

◦ If the hypotheses are H0 : σ2 = c and Ha : σ2 > c, then the p-value is P (Qn−1 ≥ χ2).

◦ If the hypotheses are H0 : σ2 = c and Ha : σ2 < c, then the p-value is P (Qn−1 ≤ χ2).

◦ If the hypotheses are H0 : σ2 = c and Ha : σ2 6= c, then it is not as obvious how to compute a p-value
because of the asymmetry of the χ2 distribution. We will take the convention of doubling the appropriate
one-sided tail probability (as we did with z tests and t tests).

◦ We then compare the p-value to the signi�cance level and then either reject or fail to reject the null
hypothesis, as usual.

• Example: A normal distribution is sampled six times yielding values −3, 1, 5, −2, 7, and 8. Test at the 10%
and 1% signi�cance levels the hypothesis that the variance of this distribution is (i) greater than 16, and (ii)
less than 225.

◦ We calculated the sample standard deviation S = 4.6762 earlier, and the number of degrees of freedom
is still 5.

◦ For (i), our hypotheses are H0 : σ2 = 16 and Ha : σ2 > 16, since in fact the sample standard deviation
is greater than 16.

◦ Our test statistic is χ2 =
(n− 1)S2

σ2
=

5 · 4.67622

16
= 6.8333, and so the p-value is P (Q5 > 6.8333) =

0.2333.

◦ Since the p-value is greater than both signi�cance levels, we fail to reject the null hypothesis in both
cases.
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◦ This result is reasonable, since the sample variance is not that much greater than 16. We can also see
that σ = 4 lies well inside the 80% con�dence interval we computed earlier.

◦ For (ii), our hypotheses are H0 : σ2 = 225 and Ha : σ2 < 225, since in fact the sample standard deviation
is less than 225.

◦ Our test statistic is χ2 =
(n− 1)S2

σ2
=

5 · 4.67622

225
= 0.4859, and so the p-value is P (Q5 < 0.4859) =

0.00737.

◦ Since the p-value is less than both signi�cance levels, we fail reject the null hypothesis in both cases.

◦ This result is also reasonable, since the sample variance is quite a bit less than 225. We can also see
that σ = 15 lies well outside the 80% con�dence interval we computed earlier, but it is inside the 99%
con�dence interval (corresponding to the fact that the p-value is greater than 0.005).

5.2.3 The χ2 Test For Goodness of Fit

• We often have reasons to believe that sample data should adhere to a particular shape or distribution. However,
in many cases, we need to verify whether a particular model actually �ts the data set we have collected.

◦ In situations where we have a single variable of interest, we can often use the hypothesis tests we have
already developed to test the reasonableness of a model.

◦ For example, our z-test for unknown proportion is, very directly, testing whether a particular Bernoulli
random variable is a good model for the observed data set (i.e., the collection of successes and failures
observed in a sequence of Bernoulli trials).

◦ However, most situations have a wider array of data values that we will want to compare to a prediction,
and the hypothesis tests we have previously developed are not suitable for that more complicated task.

◦ For example, we might want to test whether a die is fair by rolling it many times and tabulating the
number of times each of the outcomes 1-6 is observed.

◦ Of course, when we roll the die, we do not expect to get a proportion of precisely 1/6 for each possible
outcome (indeed, the distribution of the number of each roll will be binomially distributed).

◦ What we want is a way to combine these results into a single test statistic to determine whether all of
the results are collectively reasonable or unreasonable.

• The following theorem of Pearson gives a χ2 test statistic for precisely this type of scenario where values are
drawn from a discrete random variable:

• Theorem (χ2 Goodness of Fit): Suppose that a discrete random variable E has outcomes e1, e2, . . . , ek with
respective probabilities p1, p2, . . . , pk. If we sample this random variable n times, obtaining the respective

outcomes e1, e2, . . . , ek a total of x1, x2, . . . , xk times, then as n→∞ the random variable D =
(x1 − np1)2

np1
+

(x2 − np2)2

np2
+ · · ·+ (xk − npk)2

npk
is χ2-distributed with k − 1 degrees of freedom.

◦ Note that each individual total x1, x2, . . . , xk is binomially distributed (n trials, success probability pi).
The precise joint distribution of all of these totals is called a multinomial distribution.

◦ Thus, the quantity npi represents the expected number of times we would expect to see the outcome ei
if we sample the random variable n times.

◦ As a practical matter, the approximation will be good whenever the expected frequencies npi are all at
least 5 or so.

◦ We will not prove this theorem, as the actual details are quite technical (the idea relies on using moment-
generating functions).

◦ However, we can give some brief motivation: since xi is binomially distributed, in the scenario where the
normal approximation to the binomial is good, then xi is approximately normally distributed with mean
npi and standard deviation

√
npi(1− pi).
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◦ Equivalently, that means
xi − npi√

npi
is approximately normally distributed with mean 0 and standard

deviation
√

1− pi, and so the quantity (1−pi)
(x1 − np1)2

np1
is approximately χ2-distributed with 1 degree

of freedom.

◦ Summing over all of the random variables and noting that (1 − p1) + (1 − p2) + · · · + (1 − pn) = n − 1
shows that D is essentially the sum of n−1 χ2-distributed variables each with 1 degree of freedom, which
is equivalent to saying that it is a χ2-distributed variable with n− 1 degrees of freedom.

◦ This argument is not rigorous because it does not account for the non-independence of the totals; it is
only intended as an approximate outline of the main ideas.

• Using this theorem, we can give a hypothesis testing procedure for analyzing the goodness of �t of a model:

◦ We take our test statistic as d =
(x1 − np1)2

np1
+

(x2 − np2)2

np2
+· · ·+(xk − npk)2

npk
=
∑
data

[Observed− Expected]
2

Expected
.

◦ Our hypotheses are usually H0 : d = 0 and Ha : d > 0, since the value d = 0 means the model is perfect
and a positive value of d indicates deviation from the model.

◦ In order to apply Pearson's result above, we must verify that most of the predicted observation sizes npi
are at least 5. Again, this is a heuristic estimate, so many di�erent versions of a criterion are possible
here. We will adopt the convention that at least 80% of the entries should be at least 5 or larger. Another
option is to combine some of these small entries into groups that have a predicted size greater than 5.

◦ If that is the case, then the test statistic is χ2-distributed with k − 1 degrees of freedom, and we can
calculate the p-value as P (Qk−1 ≥ d).

◦ We then compare the p-value to the signi�cance level and then either reject or fail to reject the null
hypothesis, as usual.

◦ Remark: In some situations, we may instead want to test whether a model is �too good to believe� (e.g.,
if we are investigating whether it is reasonable to think that the data have been falsi�ed or altered to
adhere too closely to a model). In those situations we would instead want the hypotheses to be H0 : d = c
and Ha : d < c for (an arbitrary) positive c, and we would compute the p-value instead as P (Qk−1 ≤ d).

• Example: To test for fairness, a six-sided die is rolled 2000 times, yielding the results below. Test at the 10%,
3%, and 0.4% signi�cance levels whether the die is fair.

Outcome 1 2 3 4 5 6

Observed 354 347 318 312 333 336

◦ If the die is fair, we would expect each outcome to occur with probability 1/6, meaning that the expected
totals are 2000/6 = 333.3 for each of the six possibilities.

◦ Our test statistic is d =
(354− 333.3)2

333.3
+

(347− 333.3)2

333.3
+

(318− 333.3)2

333.3
+

(312− 333.3)2

333.3
+

(333− 333.3)2

333.3
+

(336− 333.3)2

333.3
= 3.934.

◦ We can tabulate the test statistic a bit more conveniently by adding two extra rows to the table:
Outcome 1 2 3 4 5 6

Observed 354 347 318 312 333 336
Expected 333.3 333.3 333.3 333.3 333.3 333.3

(O − E)2/E 1.2813 0.5603 0.7053 1.3653 0.0003 0.0213

◦ Since there are 6 possible outcomes, there are 6− 1 = 5 degrees of freedom.

◦ Thus, the p-value is P (Q5 ≥ 3.934) = 0.5590. Since this is well above each of our signi�cance levels, we
fail to reject the null hypothesis in each case.

◦ Remark: The values were obtained by actually simulating a fair die roll, so it is not surprising that the
p-value is large!
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• Example: To determine whether a pollster is actually conducting their polls, the tenths-place digits from a
random sample of 200 of their reported results are tabulated. The results are given below. It is expected that
the tenths-place digit from poll percentages of thousands of people should be essentially uniformly distributed.
Test at the 10%, 1%, and 0.02% signi�cance levels whether the data appear to adhere to a uniform model.

Tenths Digit 0 1 2 3 4 5 6 7 8 9

Observed 7 26 13 44 25 10 9 41 12 13

◦ Here are the expected and χ2-statistic values added to the table:
Tenths Digit 0 1 2 3 4 5 6 7 8 9

Observed 7 26 13 44 25 10 9 41 12 13
Expected 20 20 20 20 20 20 20 20 20 20

(O − E)2/E 8.35 1.8 2.45 28.8 1.25 5 6.05 22.05 3.2 2.45

◦ Our test statistic is d = 8.45 + 1.8 + 2.45 + 28.8 + 1.25 + 5 + 6.05 + 22.05 + 3.2 + 2.45 = 81.5.

◦ There are 10 possible outcomes hence 10− 1 = 9 degrees of freedom.

◦ Thus, the p-value is P (Q9 ≥ 81.5) = 8.13 ·10−14. This is extremely small, so we reject the null hypothesis
at all of the indicated signi�cance levels.

◦ Remark: We can see here that the digits 3 and 7 were substantially overused, while 0 was underused.
This sort of tendency to overuse certain digits and underuse others is common when humans try to
generate lists of random digits.

• Example: It is believed that a Poisson model is appropriate to model the number of collisions at a particular
busy intersection in a given week. The collisions are tabulated over a 5-year period (a total of 261 weeks),
and the results are given below. Test at the 9% and 1% signi�cance levels the accuracy of the model with
parameter (i) λ = 2.2, and (ii) λ = 2.9.

# Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

◦ If the Poisson model is accurate, we would expect the proportion of outcomes yielding d collisions to be
λde−λ

d!
, so the expected number of occurrences would be 261 times this quantity.

◦ For (i), here are the results for λ = 2.2 added to the table:
# Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7
Expected 28.92 63.63 69.99 51.32 28.23 12.42 4.55 1.95

(O − E)2/E 4.9128 13.7927 0.2270 0.2635 3.3833 5.9271 12.1744 13.1090

◦ Here, we have 2 entries out of 8 that are less than 5. This is a su�ciently large percentage that we can
use our χ2 test.

◦ Our test statistic is d = 4.9128+13.7927+0.2270+0.2635+3.3833+5.9271+12.1744+13.1090 = 53.7898.

◦ Since there are 8 possible outcomes, there are 8− 1 = 7 degrees of freedom.

◦ Thus, the p-value is P (Q7 ≥ 53.7898) = 2.588 · 10−9. Since this is far below our signi�cance levels, we
reject the null hypothesis in both cases.

◦ For (ii), here are the results for λ = 2.9 added to the table:
# Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7
Expected 14.36 41.65 60.39 58.38 42.32 24.55 11.86 7.50

(O − E)2/E 0.4849 0.2699 0.5215 0.1952 0.4414 0.5125 0.0016 0.0327

◦ Our test statistic is d = 0.4849 + 0.2699 + 0.5215 + 0.1952 + 0.4414 + 0.5125 + 0.0016 + 0.0327 = 2.4597.

◦ As above there are 7 degrees of freedom, so the p-value is P (Q7 ≥ 2.4597) = 0.9301. This is quite large,
so we fail to reject the null hypothesis.

◦ Remark: The data set was generated by sampling a Poisson distribution whose actual parameter was
λ = 2.9, so it is not so surprising that the null hypothesis is rejected here!
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• In this last example, we could have performed a maximum likelihood estimation for the Poisson parameter to
�nd the ideal λ �tting the observed data.

◦ The maximum likelihood estimator for that example ends up being λ̂ = 2.7586, which is not far from
the actual value.

◦ However, if we do this sort of �tuning� of the model to �t the data, we would expect to get somewhat
better agreement than without being able to adjust a parameter to get a better �t.

◦ In order to correct for this, if we use a model with r unknown parameters that have been calculated to
obtain optimal �t to the observed data, we should use a χ2 test with k − 1− r degrees of freedom.

◦ Roughly speaking, each unknown parameter removes one degree of freedom from the hypothesis test,
since each parameter value we are allowed to choose will allow us to model one additional outcome from
the list of k correctly.

5.2.4 The χ2 Test for Independence

• As a �nal application of the χ2 test, we will apply it to study the independence of discrete random variables.

◦ Recall that we can test whether two discrete random variables X and Y are independent by checking
whether pX,Y (x, y) = pX(x) · pY (y).

◦ If we construct a joint probability distribution table, we can check whether X and Y are independent by
computing the row and column sums, and then testing whether each entry pX,Y (x, y) in the table is the
product of its associated row sum pX(x) and its associated column sum pY (y).

◦ Now suppose we are computing the joint distribution table for two random variablesX and Y by sampling
a population. We would expect the entries in the resulting table (which are now counts of individual
observations) to show some random variation in their values away from the true proportion pX,Y (x, y).

◦ Thus, if we try to determine whether X and Y are independent using the criterion pX,Y (x, y) = pX(x) ·
pY (y), it is very unlikely that we would see exact independence.

◦ We can, however, adapt Pearson's χ2 test for goodness-of-�t to give a hypothesis test for independence:
the scenario we are describing is essentially identical to the one we just analyzed.

• Theorem (χ2 Independence): Suppose that the discrete random variables X and Y have outcomes x1, . . . , xa
and y1, . . . , yb. Suppose that (X,Y ) is sampled n times, such that the outcome xi occurs a proportion pi
times, the outcome yj occurs a proportion qj times, and the outcome pair (xi, yj) occurs ai,j times for each

1 ≤ i ≤ a and 1 ≤ j ≤ b. Then, as n→∞, the random variable D =

a∑
i=1

b∑
j=1

(ai,j − npiqj)2

npiqj
is χ2-distributed

with (a− 1)(b− 1) degrees of freedom.

◦ The idea is that if X and Y are independent, then npiqj is the expected number of times we should
obtain the outcomes xi (probability pi) and yj (probability qj) together.

◦ Thus, we are computing the same sum D =
∑
data

[Observed− Expected]
2

Expected
as before.

◦ The proof of this result is similar to the one we gave earlier for goodness-of-�t: for large n, each of the

ratios
(ai,j − npiqj)2

npiqj
will behave like a scaled χ2 distribution with 1 degree of freedom.

• We will brie�y explain the non-obvious fact about why the number of degrees of freedom is (a− 1)(b− 1).

◦ Essentially, the idea is that if we are �lling entries into the joint pdf table of X and Y , then all of the
entries in the a× b table are completely determined once we �ll in the upper left (a− 1)× (b− 1) table,
under the presumption that we also know the row and column sums pi and qj (because we extract pi
and qj from the data, we view them as parameters that we have selected).

◦ We can �ll in all the entries because once we have all but one entry in a given row, we can �ll in the last
entry since we know the row sum. The same holds true for the columns, so applying this for each row
and column (including the bottom row that we just �lled) allows us to �ll the entire grid.
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◦ On the other hand, if we have fewer than (a− 1)(b− 1) entries, we cannot �ll the entire grid. Thus, the
total number of independent values is (a− 1)(b− 1), so this is the number of degrees of freedom.

◦ An equivalent (and more highbrow) way to make this observation is that the entries in the upper (a −
1)× (b− 1) subgrid form a basis for the vector space consisting of the entries of the grid with �xed row
and column sums.

• Using this theorem, we can give a hypothesis testing procedure for analyzing the independence of two random
variables X and Y :

◦ First, we write down the a × b joint probability distribution table for the observed values of X and Y ,
and compute the row proportions pi and column proportions qj .

◦ Then we compute the expected value of each entry npiqj , and calculate the test statistic as d =
a∑
i=1

b∑
j=1

(ai,j − npiqj)2

npiqj
=
∑
data

[Observed− Expected]
2

Expected
.

◦ We take as our hypotheses H0 : d = 0 and Ha : d > 0, since the value d = 0 means that the model is
perfect (indicating that all of the entries are exactly equal to the predicted value, which means X and
Y are independent) and a positive value of d indicates deviation from independence.

◦ In order to apply Pearson's result above, we must verify that most of the predicted observation sizes npi
are at least 5. We will adopt the same convention as above, that at least 80% of the entries should be at
least 5 or larger.

◦ If that is the case, then the test statistic is χ2-distributed with (a− 1)(b− 1) degrees of freedom, and we
can calculate the p-value as P (Q(a−1)(b−1) ≥ d).

◦ We then compare the p-value to the signi�cance level and then either reject or fail to reject the null
hypothesis, as usual.

• Example: The faculty members in a university mathematics department are either tenure-track or non-
tenure-track. These categories are broken down further by gender as indicated below. Test at the 9% and
0.8% signi�cance levels whether the two variables of tenure track status and gender are independent.

Observed Tenure-Track Non-Tenure-Track

Male 20 8
Female 4 8

◦ There are 40 faculty in total, so we can compute the row and column proportions and then �ll in the
table of expected values as follows:

Expected Tenure-Track Non-Tenure-Track Proportion

Male 40 · 0.42 = 16.8 40 · 0.28 = 11.2 0.7
Female 40 · 0.18 = 7.2 40 · 0.12 = 4.8 0.3

Proportion 0.6 0.4

◦ Then the test statistic is given by
(20− 16.8)2

16.8
+

(8− 11.2)2

11.2
+

(4− 7.2)2

7.2
+

(8− 4.8)2

4.8
= 5.0794.

◦ The total number of degrees of freedom is (2−1)(2−1) = 1, so the p-value is given by P (Q1 ≥ 5.0794) =
0.02421.

◦ Since the p-value is below the 9% signi�cance level but above the 0.8% signi�cance level, we reject the
null hypothesis in the �rst case but not in the second case.

◦ Our interpretation of the test is that we have moderately strong evidence that the variables are not
independent.

• Example: A survey is taken of 400 households asking about the number of children and the number of TVs
in the household. Test at the 11% and 2% signi�cance levels whether the number of TVs is independent of
the number of children.

Observed 0 Children 1 Child 2 Children 3+ Children

0 TVs 10 25 29 16
1 TV 19 88 104 29
2+ TVs 9 24 29 18
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◦ We compute the row and column proportions and then �ll in the table of expected values as follows:
Expected 0 Children 1 Child 2 Children 3+ Children Proportion

0 TVs 7.6 27.4 32.4 12.6 0.2
1 TV 22.8 82.2 97.2 37.8 0.6
2+ TVs 7.6 27.4 32.4 12.6 0.2

Proportion 0.095 0.3425 0.405 0.1575

◦ Then the test statistic is given by
(10− 7.6)2

7.6
+

(25− 27.4)2

27.4
+ · · ·+ (18− 12.6)2

12.6
= 9.1602.

◦ The total number of degrees of freedom is (4−1)(3−1) = 6, so the p-value is given by P (Q6 ≥ 9.1602) =
0.1648.

◦ Since the p-value is above the 11% and 2% signi�cance levels, we fail reject the null hypothesis in both
cases

◦ Our interpretation is that we have fairly weak evidence that the variables are not independent: the
number of TVs and the number of children do not appear to be far o� independence.

• Example: A poll is taken on a trenchant political issue and the support is broken down by age group, as
shown below. Test at the 8%, 2%, and 0.3% signi�cance levels whether the level of support is independent of
the age group.

Observed Age 18-29 Age 30-49 Age 50-64 Age 65+

Support 20 13 12 8
Oppose 7 9 14 17

◦ There are 100 responses in total, so we can compute the row and column proportions and then �ll in the
table of expected values as follows:

Expected Age 18-29 Age 30-49 Age 50-64 Age 65+ Proportion

Support 14.31 11.66 13.78 13.25 0.53
Oppose 12.69 10.34 12.22 11.75 0.47

Proportion 0.27 0.22 0.26 0.25

◦ Then the test statistic is given by
(20− 14.31)2

14.31
+

(13− 11.66)2

11.66
+ · · ·+ (17− 11.75)2

11.75
= 10.057.

◦ The total number of degrees of freedom is (4−1)(2−1) = 3, so the p-value is given by P (Q3 ≥ 10.057) =
0.01809.

◦ Since the p-value is below the 8% and 2% signi�cance levels, we reject the null hypothesis in those cases.
However, it is above the 0.3% signi�cance level, so we fail to reject the null hypothesis in that case.

◦ Our interpretation of the test is that we have fairly strong evidence that the variables are not independent:
the support does appear to depend on the age group.

• We will remark that for 2× 2 tables (i.e., the situation of 1 degree of freedom), there does exist an exact test
due to Fisher, known as Fisher's exact test, that allows for performing a hypothesis test associated to a given
table without the need for using a χ2 approximation.

◦ The idea is that if the row and column totals are known, then (as we have noted above) only the single
upper-left entry is required to determine the full table.

◦ Fisher's original example was of the �lady tasting tea�, who claimed to be able to decide, solely by the
�avor, whether a cup of tea with milk had the milk poured into the tea or the tea poured into the milk.

◦ Eight cups were poured, four with milk �rst and four with tea �rst; the lady tasted each and decided
whether the tea or the milk had been poured �rst. Suppose that the results were as follows:

Observed Lady: Milk �rst Lady: Tea �rst

Milk poured �rst a b
Tea poured �rst c d

◦ Under the null hypothesis of random guessing, we assume that the lady would guess exactly 4 cups of
each type, since she was aware that there were 4 of each type.
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◦ Thus, to obtain the table above the lady will always guess a+ c of the cups to have milk �rst and b+ d

to have tea �rst, so there are a total

(
a+ b+ c+ d

a+ c

)
possible tables satisfying this condition.

◦ To obtain the speci�c table above, exactly a of the a + c cups the lady says have milk must actu-
ally have milk, and exactly d of the cups the lady says have tea must actually have tea. There are(
a+ c

a

)
·
(
b+ d

d

)
ways of making these selections, so the total probability of obtaining the given table

is

(
a+ c

a

)(
b+ d

d

)
/

(
a+ b+ c+ d

a+ c

)
.

◦ We can then compute the probability of obtaining a result at least as extreme (in the direction of
accuracy) by summing over the possible tables with upper-left entry at least as large as the observed
value.

◦ For example, if the results had been
Observed Lady: Milk �rst Lady: Tea �rst

Milk poured �rst 3 1
Tea poured �rst 1 3

then the probability of obtaining this precise table is
(
4
3

)(
4
3

)
/
(
8
4

)
=

16

70
≈ 0.2286. The only result

yielding more correct responses would be the table with entries (4, 0), (0, 4) which occurs with probability(
4
4

)(
4
4

)
/
(
8
4

)
=

1

70
≈ 0.0143. Thus, the tail probability is the sum

16

70
+

1

70
≈ 0.2429. We would likely not

view this as conclusive evidence.

◦ In fact, the results of the actual test were that the lady correctly identi�ed all 8 cups. In that case,

the probability of obtaining the result by random guessing is
(
4
4

)(
4
4

)
/
(
8
4

)
=

1

70
≈ 0.0143: much more

compelling!

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2020. You may not reproduce or distribute this material
without my express permission.
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