
Number Theory (part 3): Cryptography and Related Topics (by Evan Dummit, 2020, v. 2.00)

Contents

3 Cryptography and Related Topics 1

3.1 Overview of Cryptography . 2

3.1.1 Substitution Ciphers . 3

3.1.2 The Vigenère Cipher . 5

3.1.3 Symmetric and Asymmetric Cryptosystems . 8

3.2 Rabin Encryption . 9

3.3 RSA Encryption . 12

3.3.1 Procedure for RSA . 12

3.3.2 Attacks on RSA . 14

3.4 Zero-Knowledge Proofs . 17

3.5 Primality and Compositeness Testing . 20

3.5.1 The Fermat Compositeness Test . 21

3.5.2 The Miller-Rabin Compositeness Test . 22

3.5.3 The AKS Primality Test . 23

3.6 Factorization Algorithms . 24

3.6.1 The Fermat Factorization . 24

3.6.2 Pollard's p− 1 Algorithm . 25

3.6.3 Pollard's ρ-Algorithm . 27

3.6.4 Sieving Methods . 28

3 Cryptography and Related Topics

In this chapter, we give a brief introduction to modern cryptography and related topics. Much of modern cryptog-
raphy makes heavy use of modular arithmetic and number theory, and most of these methods rely on the assumed
di�culty of solving one or more problems in number theory, such as computing discrete logarithms, factoring large
integers, and computing square roots modulo composite integers.

We will �rst discuss a few pre-modern cryptosystems, pointing out the �aws that ultimately led to their abandon-
ment. We then discuss modern �public-key� cryptosystems and a number of related procedures (e.g., for secret
key creation and two-party authentication), and compare their relative strengths and weaknesses. There are many
other cryptographic algorithms used in practice today, but many of them are substantially similar to the examples
we give.

E�ective implementation of these cryptosystems requires generating large primes that can be quickly proven to be
prime, and on the assumed di�culty of factoring large integers, so we close with a discussion of primality testing
and some factorization algorithms.

1

3.1 Overview of Cryptography

• Cryptography is the name given to encoding and transmitting information in a way that makes it di�cult for
someone else to intercept and use.

◦ Many of the earliest uses of cryptography were to send secure military information and orders that could
not be decoded by enemy forces.

◦ In the modern day, secure cryptography is at the heart of global commerce, as it allows consumers,
merchants, and banks to exchange purchasing information without anyone else being able to eavesdrop.

• In analysis of cryptography, it is useful to have a standard list of placeholder names:

◦ Alice and Bob refer to two parties attempting to exchange information. (Generally, Alice wants to send
a message to Bob, though the communication can be two-directional.)

◦ Eve refers to a non-malicious eavesdropper, who can listen in to the communications between Alice and
Bob, but will not alter them.

◦ Mallory refers to a malicious eavesdropper, who can listen to Alice and Bob's communications and may
also attempt to impersonate them or alter their messages.

• In general, a cryptographic system works as follows:

◦ Alice wishes to send a secure message to Bob.

◦ Alice takes her unencrypted message, her plaintext, and encrypts it somehow to obtain a ciphertext.

◦ Alice then sends the ciphertext to Bob, who then decodes it to recover Alice's original message.

• We will write plaintexts in bold lowercase and ciphertexts in BOLD UPPERCASE.

◦ For the ease of readability, when it is reasonable we will include spaces (becauseitishardtoreadalengthy-
textwithnospaces) when rendering plaintexts and ciphertexts, but when we encode messages we will not
use the spaces.

• An e�ective cryptosystem must strike a reasonable balance between the following:

1. Being straightforward enough that Alice can easily encode the message.

2. Transmitting the information faithfully so that the ciphertext can be decoded correctly by Bob.

3. Being secure enough that, if Eve intercepts the ciphertext, she cannot recover the original plaintext.

• There are other kinds of attacks on a simple messaging system that cryptography can also addess:

1. Eve could want to decipher just the one message Alice sent, or she may want a method for reading all
messages that Alice has sent. If Alice's procedure is not secure enough, it is possible that if Eve can
decode a single message then she can decode all of Alice's other messages too.

2. A more malicious individual, Mallory, may want not only to read the message, but to alter it before
passing it on to Bob in such a way that Bob thinks Alice sent the altered message.

3. Mallory may also want to pretend to be Bob and communicate with Alice in a way that makes it seem
as if she is actually communicating with Bob.

• Historically, most cryptography relied on making the message appear nonsensical and unreadable, or by hiding
it in some other more innocuous location (e.g., by encoding the message in the �rst letter of each word in a
document).

◦ This latter procedure is sometimes called steganography, the hiding of secret information in plain sight.
It is also interesting, but is not really the purpose of cryptography.

◦ The security of steganography comes only from the obscurity of the method used: once an adversary
learns of the procedure being used to hide the information, it is trivial for them to obtain it.

2

◦ The true strength of cryptography comes from the fact that it is possible to design procedures that, even
if Eve has full knowledge of how Alice encoded her message, Eve still cannot decode it.

• There have been very many attempts at designing secure cryptosystems1, so we cannot come close to describing
them all. Instead, we will discuss two fairly old cryptosystems that are easy to implement by hand.

3.1.1 Substitution Ciphers

• One of the most classical cryptosystems is the Caesar shift algorithm (so named because it was supposedly
used by Julius Caesar): simply shift each letter of the plaintext forward a �xed number of letters in the
alphabet (wrapping around from Z to A, as needed).

◦ Thus, shifting the plaintext evil hal 1 letter forward produces FUJM IBM.

◦ The Caesar shift is quite easy to break for a number of reasons, the most obvious of which is that each
message has only 26 di�erent possible encodings, and all of them can be rapidly written down by shifting
the encrypted message forward by 1 letter 25 separate times.

• An equivalent way to think of this substitution cipher is that it replaces each letter of the plaintext in some
predetermined fashion (e.g., a 7→W, b 7→ C, and so forth).

◦ It is a simple count to see that the number of such functions is 26! ≈ 4.03 ·1026: this is simply the number
of ways to permute the 26 possible symbols.

◦ Obviously, a brute force decoding will not be e�ective against a general substitution cipher: even simply
to store all of the possible decodings of a 100-character message would take approximately 4 · 1016
terabytes of storage space. (For comparison, the total amount of internet tra�c worldwide in 2013 was
estimated to be on the order of 4 · 107 terabytes.)

• If Eve has access to the encoding or decoding mechanism, or to a plaintext/ciphertext pair, she can easily
extract the 26 letter substitutions underlying the cipher.

◦ For example, if Eve has the encoding mechanism, she can ask it to encode the message abcdefgh...z to
determine the encoding of each letter.

◦ If she has the decoding mechanism, she can ask it to decode ABCDEFGH...Z: she can then decode
any message.

◦ If she has a plaintext/ciphertext pair, she needs only �nd each letter in the plaintext and corresponding
ciphertext to make a table of the encodings.

• It is less obvious how Eve can attack a substitution cipher if she only has the ciphertext: a brute-force method
is obviously not going to succeed given the total number of possible keys.

• The standard method for attacking a substitution cipher is a procedure known as frequency analysis: since
each appearance of any given letter in the ciphertext always corresponds to the same letter in the plaintext, if
we count the frequency of each letter in the ciphertext, we can compare them to the typical letter frequencies
in English to try to �nd the correspondence.

◦ Here are the frequencies of the 26 English letters (the nonsense phrase �etaoin shrdlcu� is often used as
a mnemonic to remember the order of the common letters):

Letter e t a o i n s h r d l c u
Frequency 12.7% 9.1% 8.2% 7.5% 7.0% 6.7% 6.3% 6.1% 6.0% 4.3% 4.0% 2.8% 2.8%
Letter m w f g y p b v k j x q z

Frequency 2.4% 2.4% 2.3% 2.0% 2.0% 1.9% 1.5% 1.0% 0.8% 0.2% 0.2% 0.1% 0.1%

1Some of the simpler historical examples of cryptosystems include the rail fence cipher, the Playfair cipher, the four-square cipher,
the ADFGX and ADFGVX ciphers, the Hill cipher, and the tri�d cipher. We refer the interested reader elsewhere for details.

3

◦ Presuming the ciphertext is su�ciently long, counting the frequency of letters allows the original message
to be partially decoded.

◦ To get further, we can repeat the frequency analysis with pairs of consecutive letters (�digrams�) or triples
(�trigrams�): we can search for pairs or triples of consecutive letters that occur in the text and compare
them to a list of common English digrams and trigrams.

◦ In English, the most common digrams are th and he, followed by in, an, er, re, ed, on, es, ea, ti,
st, en, at. For doubled letters, ll, tt, ee, ss are the most common. The most common trigram is the,
followed by ing, and, ere, her.

◦ Once the ciphertext has been partially decoded, the rest of the message can generally be inferred from
context (i.e., from partly decoded words that have only one obvious possible completion). For example,
the partly decoded word Zotato is probably potato.

◦ Actually decoding a substitution cipher usually requires some amount of trial and error or guesswork,
since short messages will often have letter frequencies that do not actually match the averages for typical
English text.

• Example: Decode the message below, which is encrypted with a substitution cipher.

KB TI BQ NBK KB TI KRZK PF KRI XAIFKPBN DRIKRIQ KPF NBTHIQ PN KRI YPNC KB FAWWIQ

KRI FHPNOF ZNC ZQQBDF BW BAKQZOIBAF WBQKANI BQ KB KZGI ZQYF ZOZPNFK Z FIZ BW

KQBATHIF ZNC TJ BEEBFPNO INC KRIY

◦ We �rst compute the frequencies of the letters in the message. Of the 404 characters, there are 19
occurrences of K, 18 of B, 17 of I, 13 of F, 12 of N, 11 of Q and Z, and fewer than 10 of each remaining
letter.

◦ For digrams, there are 6 occurrences of KR and RI, 5 of PN, and 4 of KB, QK, and NC. There are
also 5 occurrences of KRI.

◦ These facts suggest that K is t, that R is h, and that I is e. Making these substitutions produces the
following:

tB Te BQ NBt tB Te thZt PF the XAeFtPBN DhetheQ tPF NBTHeQ PN the YPNC tB FAWWeQ

the FHPNOF ZNC ZQQBDF BW BAtQZOeBAF WBQtANe BQ tB tZGe ZQYF ZOZPNFt Z FeZ BW

tQBATHeF ZNC TJ BEEBFPNO eNC theY

◦ The letter B is likely to be the among the letters a, i, o, n, s. Based on the words it already appears
in, such as tB, it is most likely to be o. Similarly, the letter Z is likely to be a since it is common and
appears in the word thZt, and also is a word by itself.

to Te oQ Not to Te that PF the XAeFtPoN DhetheQ tPF NoTHeQ PN the YPNC to FAWWeQ

the FHPNOF aNC aQQoDF oW oAtQaOeoAF WoQtANe oQ to taGe aQYF aOaPNFt a Fea oW

tQoATHeF aNC TJ oEEoFPNO eNC theY

◦ At this stage we can try to complete partial words likeDhetheQ using a dictionary search (which returns
only the one possibility whether), which in turn will lead us to other reasonable guesses for words like
aQQoDF/arrowF (arrows) and PF/Ps (is):

to Te or Not to Te that is the XAestioN whether tis NoTHer iN the YiNC to sAWWer

the sHiNOs aNC arrows oW oAtraOeoAs WortANe or to taGe arYs aOaiNst a sea oW

troATHes aNC TJ oEEosiNO eNC theY

◦ At this point we essentially have enough letters in most of the words to be able to �ll in the remainder,
which we can recognize as the beginning of Hamlet's famous soliloquy:

to be or not to be that is the question whether tis nobler in the mind to suffer

the slings and arrows of outrageous fortune or to take arms against a sea of

troubles and by opposing end them

4

3.1.2 The Vigenère Cipher

• One way to try to improve on the basic substitution cipher is the Vigenère (keyword) cipher, which is a
modi�cation of the Caesar shift using a vector of length n to encode blocks of n letters at a time.

◦ This cryptosystem was actually �rst described in the 1550s in Italy, but it was later attributed to Blaise
de Vigenère (a Frenchman who actually invented several other stronger cryptosystems in the late 1500s)
in the 19th century, and the name stuck.

• Here is the procedure for the Vigenère cipher:

◦ First, we choose a keyword, which (numerically) is a vector of some length n.

◦ We then break the message into letter blocks of length n, and then encrypt each block of letters by
adding the keyword vector to it. We then put all of the blocks together in the appropriate order.

◦ To decrypt, we simply do the inverse: break the ciphertext into blocks of length n and subtract the
keyword vector.

• Example: Encode the message twentysix using the Vigenère cipher with keyword one.

◦ Here is a table of the encryption procedure:
Plaintext t w e n t y s i x

19 22 4 13 19 24 18 8 23
Key letter o n e o n e o n e
Key # 14 13 4 14 13 4 14 13 4

Encoding 7 9 8 1 6 2 6 21 1
Ciphertext h j i b g c g v b

◦ Thus we obtain the ciphertext HJIBGCGVB .

◦ Note that the letter t appears twice in the plaintext, but is represented in the ciphertext by two di�erent
characters: the �rst time by H and the second by G.

◦ Inversely, the letter G appears twice in the ciphertext, but represents di�erent letters from the plaintext.

• Example: The encoding of the message

to be or not to be that is the question whether tis nobler in the mind to suffer

the slings and arrows of outrageous fortune or to take arms against a sea of

troubles and by opposing end them

under the Vigenère cipher with keyword eleven is

xz fz se rzx os oi elvx vw elz uhidxdsa asiolrv emn rbfwim ma xsi hmah es nysjpv

olr wwmikf eyh vveshw jj byevvkrsfw asexfrz se xz xvor ecqn etetrnx n wpe jj

gvzywprw lry fl satjwvrr iih glpq

• Observe that the Vigenère cipher is equivalent to encoding each letter of the plaintext using a di�erent Caesar
shift, according to the terms in the keyword.

◦ If we take a key of length n = 1, then the procedure is the same as the Caesar shift.

◦ In the example above with a key length of 3, the 1st, 4th, 7th, 10th, ... , 3n+1st letters of the plaintext
are all encoded with the Caesar shift corresponding to o, while the 2nd, 5th, 8th, 11th, ... , 3n + 2nd
letters are all encoded with the Caesar shift by n, and the 3rd, 6th, 9th, ... , 3nth letters are all encoded
with the Caesar shift by e.

• It is rather less obvious what Eve should do if she only has the ciphertext.

◦ The Vigenère cipher resisted e�orts to break it for centuries, but it can, in fact, be broken.

◦ A direct frequency analysis approach is unlikely to succeed: although e is still likely to be the most com-
mon letter in the plaintext, it can be encoded as several di�erent characters in the ciphertext depending
on which letter of the key it is encoded with.

5

◦ If Eve can determine the length of the key, however, then she is essentially reduced to the much simpler
problem of decoding several interleaved Caesar shifts.

◦ For example, if Eve learns that the key has length 3, then she can separate the ciphertext into the 3
pieces each corresponding to one letter of the key, and then do a frequency analysis to determine the
most likely possibilities for each of the three Caesar shifts.

◦ Even a comparatively short text should yield only a small number of possibilities, because of the un-
evenness of letter distributions (there are not likely to be a large number of qs or zs in a plaintext of
substantial length, for example).

• There are several procedures for determining the length of the key. They each rely on the observation that if
the ciphertext is su�ciently long, the same word or partial word is likely to appear encoded in the same way
by the key, since there tend to be repetitions of the same letter combinations in written language (the word
�the� appears very often, for example).

• The �rst procedure relies on �nding �agreements� between shifts of the ciphertext with the original ciphertext:

◦ To test for a key of length k, translate the ciphertext ahead by k characters. Then count the number of
places that the translated ciphertext agrees with the original ciphertext. A large number of agreements
with a shift of k characters suggests that the key has length k.

◦ For example, if the text is ABAXMQAMZMRT and k = 2 then there are two such agreements
(underlined):

A B A X M Q A M Z M R T
A B A X M A A M Z M R T

◦ The idea underlying this method is that if we take a sample of text that is Caesar-shifted forward by i
letters and a second sample shifted forward by j letters, then the samples will have far more agreements
when i = j than otherwise.

◦ In our situation, if we translate forward by the same length as the key, then each comparison will compare
letters that have been shifted by the same amount, and are therefore more likely to be the same.

◦ To explain why this works, write the letter distribution frequencies for English text as a vector of length
26: v0 = 〈a, b, c, . . . , z〉. The letter distribution for a sample of text that is Caesar-shifted forward by i
letters will be given by the vector vi obtained by shifting the elements in v0 forward by i slots.

◦ Consider the proportion of times that a Caesar-i shifted sample of English text would have a letter agree
with a Caesar-j shifted sample of English text: it is equal to the sum of the number of times each text
has the letter a, plus the number of times each text has the letter b, and so forth, which is simply a
lengthier description of the dot product vi · vj .
◦ Now observe that if we �x i and let j vary, the largest value of this dot product occurs when j = i.

◦ Intuitively, this is true because the vectors each have the same elements, but permuted: the dot product
vi · vi pairs up all of the largest elements together, whereas vi · vj will pair large elements of vi with
smaller ones in vj , yielding a smaller dot product.

◦ More rigorously, we can appeal to the geometric fact that for any two vectors, it is true that vi · vj =
||vi|| ||vj || cos(θ) where θ is the angle between the vectors and ||v|| denotes the length of the vector v. (In
general vector spaces, this fact is a corollary of the Cauchy-Schwarz inequality for inner product spaces.)
Since each vector has the same length, the dot product is maximized when the vectors are parallel (i.e.,
equal).

• Example: Find the most likely key length of the following message encoded with a Vigenère cipher:

xz fz se rzx os oi elvx vw elz uhidxdsa asiolrv emn rbfwim ma xsi hmah es nysjpv

olr wwmikf eyh vveshw jj byevvkrsfw asexfrz se xz xvor ecqn etetrnx n wpe jj

gvzywprw lry fl satjwvrr iih glpq

◦ Using the �rst procedure, we count the number of agreements between the ciphertext and its shift forward
by k characters:

Shift 1 2 3 4 5 6 7 8 9 10 11 12
Agreements 9 8 5 5 3 13 5 9 5 8 5 6

6

◦ We see a much larger number of agreements with a shift of 6, so the key length is most likely 6 . (In
fact, it is 6: this is the same message we encoded earlier.)

• Another method for �nding the key length, which is often more di�cult to perform in practice, relies on
�nding repeated blocks of letters:

◦ Search for blocks of 3 or 4 letters that appear multiple times in the ciphertext. If we assume that these
repeated blocks correspond to the same word in the plaintext, then these corresponding blocks are each
encoded in the same way by the key, and therefore the di�erence in their positions is a multiple of the
key length.

◦ Finding several such duplicated sequences (of su�cient length that it is unlikely they occurred by chance)
and then taking the gcd of the shift lengths will give a list of candidates for the key length, and then
each of these possibilities can be analyzed separately.

• Once Eve has the key length, she can study each of the individual Caesar shifts separately.

◦ This can be done by hand using frequency analysis: the most common two letters are likely to each be
one of etaoin, and there are very few possible Caesar shifts that can make that happen.

◦ Furthermore, the letters vwxyz are fairly uncommon but are followed by the common letters abcde,
so searching for a cluster of uncommon letters followed by a cluster of common letters is also likely to
successfully identify the correct shift.

◦ Using dot products, we can make the procedure a bit more algorithmic. Speci�cally, if w is the vector
of letter frequencies that are all encoded with the same letter of the key, then by assumption w will be
close to (a multiple of) one of the vectors vi. By our analysis above, the dot product will be maximized
when i = j, meaning that the value of j maximizing the dot product w · vj is the most likely key letter.

• Example: Identify the key used to encode the following message with a Vigenère cipher:

aonqsuuoffselttmxlzttquxlsfusqdhqflhytuerrilqdmqahqymqktaeyimedflhzluzkvhnpmvuvweajr

btdmkhvuersuauzqsuaofmohhryeejhizexdzemajwyognphzazpfbvpbawlugqzhwoeyfsgpefawolebzsp

vrqmrgiymephlpfawdfwqqrgahqtidytmolhhnpflhahagwdudzmxxyaxelrjkefldafxqwkpstqmuaofuwd

jozeyptafusqkehaywsyfafhdietigaopuiwvsxqisaoexihwpqdgkhnoqxrkrqmqdfttqvhzttqvxifadmq

ahmfwolebajglaftakhtpdidtsymcfvmqilhuwqteylstgjisepajiahueqrytmxgrplygwwnihqyvwagei

◦ First we �nd the key length. We count the number of agreements between the ciphertext and its translate
forward by k characters:

Shift 1 2 3 4 5 6 7 8 9 10 11 12
Agreements 13 10 17 18 18 34 19 14 13 9 15 22

◦ There is a large peak at 6, so the key probably has length 6.

◦ Now we break the ciphertext apart into the 6 Caesar-shifted pieces:

aulzldyiakmzhvbvaahhzyzvuoplvilfayhauyjapajtksdavawhkfziallhtvulsaypnw

oottshtlhtelnwtuuorieoapgeeerypwhtnhdakfsooaeyiosopnrttfheatsmwsehtlia

nfttfquqqadupedezfyzmgzbqyfbqmfqqmpazxextfzfhfepxeqoqttambfpyqqtpumyhg

qfmqufedyefzmamrqmeeanpazfazmeaqtofgmefqqueuaatuqxdqmqqdfatdmitgaexgqe

ssxuslrmmylkvjkssoexjpfwhswsrpwrillwxllwmwysyfiiiigxqvvmwjaiclejjqgwyi

uelxqhrqqihvurhuuhjdwhblwgopghdgdhhdxrdkudpqwhgwshkrdhxqogkdfhyiirrwv

◦ We want to determine the most likely Caesar shift for each piece.

◦ For the �rst piece, the frequency list is {12, 1, 0, 2, 0, 2, 0, 6, 3, 2, 3, 7, 1, 1, 1, 3, 0, 0, 2, 2, 4, 6, 2, 0, 5, 5}.
◦ It might seem that the �rst letter is probably to be e, but this would give very few i, r, s, t. If instead
the �rst letter on the list is t, then there would be very few uvwxyz (as expected) and also a reasonable
number of abcdef (also as expected). This corresponds to the key letter h.

◦ For the second piece, the frequency list is {5, 0, 0, 1, 8, 2, 1, 6, 3, 0, 1, 3, 1, 3, 8, 3, 0, 3, 5, 10, 2, 0, 3, 0, 2, 0}.
Testing the various possibilities suggests this corresponds to the key letter a, since this puts the largest
numbers in the slots of e, o, and t.

◦ We can perform the same analysis for the remaining four pieces to see that the key is hammed . (The
original message is a lengthier portion of Hamlet's soliloquy.)

7

3.1.3 Symmetric and Asymmetric Cryptosystems

• All of the classical cryptosystems we have previously discussed are examples of symmetric cryptosystems: the
information required to encode a message is the same as the information required to decode a message.

◦ For example, the key for encoding a Caesar shift is an integer k giving the number of letters the message
is shifted forward. The knowledge of the integer k allows one both to encode and decode a message.

◦ Similarly, knowing the key for a Vigenère cipher is required to encode or to decode a message.

• We will mention that there are several symmetric cryptosystems that are in current use and considered to be
strong: it is avowedly not the case that symmetric cryptosystems are inherently vulnerable to simple attacks
the way the historical cryptosystems we discussed are.

• One such symmetric cryptosystem that was adopted as a national standard for unclassi�ed data by the United
States in 1977 is known as the Data Encryption Standard (DES).

◦ The DES cryptosystem was a 64-bit block cipher (meaning that it operated on blocks of data 64 bits in
length), with a key length of 56 bits. 8 bits were devoted to parity checks, in order to detect errors in
data transmission.

◦ To describe the system in detail would take a great deal of time and e�ort. Ultimately, our interest is
not in the speci�c details of the system, but rather in the basic idea behind it: the system operates on
a data block by applying 16 identical stages of processing called �rounds�, each of which scrambles the
block according to a particular nonlinear procedure dictated by the key and the algorithm.

◦ Much is known about the security of DES, as it was the subject of signi�cant research, but it turns out
that there are few attacks that are much faster than a simple brute-force search.

◦ Various procedures were developed to quicken a brute-force search, and a direct approach to breaking
the cipher takes on the order of 243 calculations. To give an idea of how feasible such an attack is, to
store the result of 243 single-bit calculations would require a mere 1 terabyte of data storage, less than
a typical desktop computer hard drive.

◦ Ultimately, owing to the small key size, DES was phased out in the 1980s, and in 1999 a single DES key
was broken in less than 24 hours.

• In the 1980s, a su�cient number of security concerns about DES, as well as some concerns about the slowness
of the algorithm itself when implemented in software (it was originally designed for hardware implementation),
motivated the deployment of additional block cipher algorithms.

◦ Many of these simply reused the basic structure of DES but increased the size of the data blocks, the
size of the key, or the number of rounds.

◦ Most such algorithms are proprietary, although there are some such as Blow�sh that are open-source,
and others that are proprietary but available royalty-free such as CAST-128.

• The generally-considered successor to DES is known as the Advanced Encryption System (AES) and also
known as Rijndael, from a portmanteau of its creators' names (Joan Daemen and Vincent Rijmen).

◦ The National Institute of Standards and Technology (NIST) held an open competition for the successor
to DES in the late 1990s, and, following a lengthy evaluation, Rijndael was eventually selected from the
15 submissions as satisfying the constraints of security, e�ciency, and portability.

◦ Part of the motivation for the open and lengthy evaluation process were some suspicions (of varying
legitimacy) about whether previous algorithms like DES had hidden �backdoors� built in.

◦ The AES cipher is a 128-bit block cipher with possible key lengths of 128, 192, or 256 bits, and operates
in a similar manner to DES, invoking a number of rounds of operations (10, 12, or 14) each of which
rearranges and transforms the block according to the key.

◦ It is generally believed that AES is resistant to most kinds of direct attacks, and it has been approved
by the US government for use on classi�ed information.

8

◦ Current estimates place the computational di�culty of breaking a single 128-bit AES key, using the best
known attacks, at roughly 296 operations in a worst-case scenario, with an expected number of operations
typically closer to 2126, and an estimated memory requirement of about 256 bits (approximately 4 million
terabytes).

• One of the fundamental drawbacks of symmetric cryptosystems is that, by de�nition, being able to encode
a message is equivalent to being able to decode a message. But there are certain situations where we might
prefer to have an asymmetric cryptosystem, one in which the encoding and decoding procedures are su�ciently
di�erent that being able to encode messages does not imply that one can decode them.

◦ For example, a fundamental issue with symmetric cryptosystems is that of key exchange: if Alice and
Bob want to communicate via a symmetric cryptosystem over a long distance, they must �rst share the
key with one another, but they require a method that will not allow Eve to learn the key. They could
do this by using a di�erent cryptosystem, but again: how do they decide what key to use for the second
cryptosystem, and how do they tell each other without letting Eve know?

◦ With an asymmetric system, this is not a problem: Alice simply tells Bob how to send her an encrypted
message, and Bob can send her the key they will use for subsequent communications.

◦ As another example, if Alice wishes to digitally sign a document to indicate that it belongs to her, she
wants it to be easy for anyone to verify that the signature is actually hers, yet also very di�cult to
decouple the signature from the document itself (because this would allow anyone to forge her signature
on a new document).

• It turns out that, perhaps surprisingly, it is possible to create secure cryptosystems in which one can make
the encryption method completely public: such systems are known as public-key cryptosystems.

◦ Sending a message via public-key encryption is then very easy: Alice simply asks Bob for his public key
(and the encryption procedure), and then follows the procedure.

◦ Bob can feel free giving her this information even knowing that Eve might also be listening, because of
the asymmetry in the cryptosystem: the fact that Eve knows how to encode a message does not mean
that she can decode anything.

◦ A good analogy for public-key encryption is a locked dropbox: anyone can place an envelope into the
dropbox, but only the owner (or at least, the person who has the key) can retrieve the letters from the
box.

• Ultimately, public-key cryptosystems revolve around the existence of so-called one-way functions: functions
which are easy to evaluate (�easy forward�) but very di�cult to invert (�hard backward�) on most outputs.

◦ Many examples of one-way functions come from number theory.

◦ As an example, consider the function f(p, q) = pq that takes two prime numbers and outputs their
product.

◦ It is a trivial matter of arithmetic to compute the product pq given p and q, but if we are given pq and
asked to �nd p and q, we would need to know how to factor an arbitrary integer; this is believed to be
much, much harder.

◦ Ultimately, the property that factorization is much harder than multiplication is the basis for many
public-key cryptosystems, including the famous RSA cryptosystem, which we will discuss imminently.

3.2 Rabin Encryption

• A simple example of a public-key cryptosystem is the Rabin public-key cryptosystem.

◦ This procedure was �rst published in 1979 by Michael O. Rabin. It is one of the �rst non-classi�ed
public-key cryptosystems, and it is also one of the simplest.

• First, Bob must create his public key.

◦ To do this, he simply computes two large primes p and q each congruent to 3 modulo 4.

9

◦ Bob then publishes N = pq. This value N is his public key.

• Now suppose that Alice wants to send Bob a message.

◦ First, Alice converts her message into an integer m modulo N in some agreed-upon manner.

◦ For example, if N has 257 digits in base 2, then Alice could break her message into pieces that are each
256 base-2 digits long, and encode each one separately.

◦ If Alice's message is text, she would of course convert it to a number using some �xed text encoding,
and then break it into pieces as above.

◦ Alice then computes m2 modulo N and sends the result to Bob.

• If Bob receives a message m2, then to decode the message Bob needs to compute the square root of m2 modulo
pq.

◦ By the Chinese Remainder Theorem, Bob can equivalently �nd the solutions to x2 ≡ a (mod p) and
x2 ≡ a (mod q), where a = m2.

◦ Each of these congruences has two solutions, and �nding one of them immediately gives the other:
x2 ≡ m2 mod p is equivalent to p|(x−m)(x+m), meaning x = ±m mod p.

◦ The key observation is that x = a(p+1)/4 has the property that x2 ≡ a (mod p): since a = m2 (mod p)
and mp−1 ≡ 1 (mod p) by Euler's theorem, we have

x2 ≡ a(p+1)/2 ≡ mp+1 ≡ m2 ≡ a (mod p).

◦ Therefore, to decrypt the message, Bob must solve the simultaneous congruences x = ±a(p+1)/4 (mod p)
and x = ±a(q+1)/4 (mod q), which he can do easily with the Chinese Remainder Theorem.

• Note that once Bob decrypts the message, he will have four values each of which squares to m2 modulo N :
how does he know which one was actually Alice's original message?

◦ Without additional information, Bob cannot determine which of these four values was actually Alice's
message.

◦ One way of �xing this problem is for Alice to append some particular string of digits to the beginning of
her message m: it is then very unlikely that any of the other square roots of m2 will also start with this
string of digits.

• Example: Bob sets up a Rabin public-key cryptosystem with N = 1817 = 23 · 79. Alice sends him the
encrypted message 347, and tells Bob that the two-digit message was padded with starting digits �11�. Decode
the message.

◦ Decoding requires solving x2 ≡ 347 (mod 1817) for x.

◦ By our analysis, the solutions satisfy x ≡ ±347(23+1)/4 (mod 23) and x ≡ ±347(79+1)/4 (mod 79).

◦ Successive squaring yields x ≡ ±18 (mod 23) and x ≡ ±49 (mod 79).

◦ Using the Chinese Remainder Theorem, we obtain the four solutions x ≡ ±662, ±741 (mod 1817).

◦ Hence the original message was one of x = 662, 741, 1076, 1155. The only one of these that starts with
�11� is x = 1155, so the original message was 55 .

• Now suppose that Eve intercepts the encrypted message m2 and wants to decode it. In order to do this, Eve
would need to be able to compute all the square roots of m2 modulo N .

• We claim that computing these square roots is equivalent to factoring N when N is a product of two primes.

◦ Explicitly, suppose that m is a unit modulo N , and we are looking for the solutions of x2 ≡ m2 (mod
N).

◦ By the Chinese Remainder Theorem, solving x2 ≡ a (mod pq) is equivalent to solving x2 ≡ m2 (mod p)
and x2 ≡ m2 (mod q).

10

◦ Observe that x2 ≡ m2 (mod p) is equivalent to (x−m)(x+m) ≡ 0 (mod p), or p|(x−m)(x+m), from
which x ≡ ±m (mod p).

◦ Similarly, x ≡ m2 (mod q) is equivalent to x ≡ ±m (mod q).

◦ Thus, there are four solutions to the congruence x2 ≡ m2 (mod n): they are ±m and ±w, where w ≡ m
(mod p) and w ≡ −m (mod q).

◦ Now observe that w +m ≡ 2m (mod p) and w +m ≡ 0 (mod q), so q divides w +m but p does not.
Therefore, gcd(w +m, pq) = p.

◦ Therefore, if we are given the three values w, m, and pq = N , we can �nd the value of a prime factor
of N , and thus its factorization because N is the product of two primes, by computing gcd(w +m, pq).
(Computing the greatest common divisor is very fast using the Euclidean algorithm.)

◦ What this means is: breaking Rabin encryption for a single message is equivalent to factoring N .

◦ If p and q are both very large, then it is believed to be extremely di�cult to factor N : thus, Eve will be
unable to decode Alice's message.

• Rabin encryption is very simple, yet it is easy to prove that breaking it (in general) is equivalent to factoring
the public key N . However, it does su�er from some weaknesses of varying severity, of which we will list a
few.

• Attack 1 (Brute force): If the number of possible plaintexts is small and Eve wants to know how a message
decodes, she could simply encrypt all possible plaintexts and compare them to the ciphertext.

◦ This is not really a problem of Rabin encryption per se: the same problem exists for any cryptosystem
with a small number of possible plaintexts.

◦ To avoid this issue, Bob simply needs to choose his value of N to be su�ciently large that it is infeasible
for Eve to test every possible plaintext, and then to pad each message with a random string at the
beginning (or end), of su�cient length that makes it infeasible for Eve to test all of the possibilities.

◦ Padding can also overcome the nonuniqueness of square roots, but (in this case) breaking the encryption
is no longer provably equivalent to factorization.

• Attack 2 (Chosen-ciphertext): Eve chooses a random message m and asks Bob's decoding machine to decode
m2 for her. Eve then has a good chance of being able to use the result to determine Bob's key.

◦ As we explained above, there are four square roots of m2 modulo n: ±m and ±w, where w is the solution
to w ≡ m (mod p) and w ≡ −m (mod q).

◦ When Bob's computer decodes Eve's message, it has a 50% chance of erroneously assuming that w or
−w was actually Eve's message.

◦ Suppose it gives Eve the value of w: then by using the attack we described above, gcd(m+ w, n) = q is
one of the prime divisors of Bob's public key N .

◦ Similarly, if the computer gives Eve the value −w, then gcd(m− w,N) = p.

◦ Hence, there is a 50% chance that Eve would be able to factor Bob's public key and thus break the
encryption.

◦ If Even repeats this process a mere ten times, she will be overwhelmingly likely to obtain a factorization
of Bob's public key.

◦ Bob can attempt to prevent this by never revealing a decrypted message to anyone. But in a computerized
implementation of the procedure, this is very hard to manage.

• The second attack is su�ciently serious that (in addition to the rather annoying issue of nonuniqueness of
square roots) Rabin encryption, despite being provably equivalent to factorization, is not suitable for modern
use.

◦ One way to try to �x the problem is to pad each message to make them adhere to a particular format
(for example, by encoding messages in blocks of 1024 bits, where the last 128 bits are duplicates of the
previous 128) and then refuse to return a decoded message that does not decode to the correct format.

11

◦ It would not be possible to use a chosen-ciphertext attack to get around such a procedure since the
number of attempts required to �nd a ciphertext message whose corresponding plaintext adheres to the
correct encoding is on the order of 2126 or so (each ciphertext has 4 associated plaintexts, and a random
plaintext has a 1/2128 probability of having the right formatting).

◦ However, making any alteration to the Rabin encryption scheme will yield something that is no longer
provably equivalent to factorization.

• We will also remark that it is not necessary to restrict the primes to being congruent to 3 modulo 4.

◦ This assumption is only made because it is much easier to compute square roots modulo such primes
using successive squaring, because (m2)(p+1)/4 ≡ m (mod p).

◦ There are other fast algorithms to compute square roots modulo primes congruent to 1 modulo 4, but
they require some more results from abstract algebra (speci�cally, a �nite �eld factorization algorithm
known as Berlekamp's algorithm).

3.3 RSA Encryption

• One of the practical issues with the Rabin cryptosystem is the nonuniqueness of square roots, since its encoding
function (the squaring map modulo N) is not one-to-one.

• A way to get around this problem is to use a di�erent power map, rather than the squaring map, that is a
one-to-one function modulo N : this is the idea behind RSA encryption.

◦ The RSA cryptosystem was �rst publicly described in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman, from whose surnames the initialism �RSA� was formed.

◦ It turns out that an essentially equivalent system had been developed by Cli�ord Cocks in 1973 while
working for Britain's Government Communications Headquarters (GCHQ). However, his work was not
declassi�ed until 1997, and his system was marginally less general than RSA.

3.3.1 Procedure for RSA

• First, Bob must create his public key.

◦ To do this, he �rst computes two large primes p and q and sets N = pq.

◦ Bob also chooses an integer e which is relatively prime to ϕ(N) = (p− 1)(q − 1).

∗ Often, e = 3 is used. (This requires choosing p and q to be primes congruent to 2 modulo 3.) There
are various reasons, which we discuss later, why e = 3 is not always a good choice.

∗ Another popular choice is e = 216 + 1 = 65537, which is prime and also allows for rapid successive
squaring.

◦ Bob then publishes the two values N and e, which serve as his public key.

• Now suppose that Alice wants to send Bob a message.

◦ Alice converts her message into an integer m modulo N in some agreed-upon manner.

◦ Alice then computes c ≡ me modulo N (using successive squaring) and sends the result to Bob.

• If Bob has received a ciphertext block c ≡ me (mod N), he wishes to recover the value of m.

◦ We claim that Bob can recover m by computing cd modulo N using successive squaring, where d is the
inverse of e modulo ϕ(N).

◦ By choosing e to be relatively prime to ϕ(N), such a d will always exist, and Bob can easily compute it
via the Euclidean algorithm because he knows ϕ(N) = (p− 1)(q − 1).

◦ Most actual implementations of RSA use the Chinese Remainder Theorem to do the decoding modulo p
and modulo q separately, and then combine the results. This is faster since the moduli are much smaller,
but it is not strictly necessary.

12

• One way to show that the decryption procedure will work is via the Chinese Remainder Theorem and Fermat's
Little Theorem.

◦ Explicitly, since N = pq, by the Chinese Remainder Theorem it is enough to show that cd ≡ m (mod p)
and cd ≡ m (mod q).

◦ By assumption, de ≡ 1 (mod ϕ(N)) and ϕ(N) = (p− 1)(q − 1), so in particular de ≡ 1 (mod p− 1), so
de = 1 + k(p− 1) for some integer k.

◦ Now since c ≡ me (mod p), we have cd ≡ mde ≡ m1+k(p−1) ≡ m · (mp−1)k (mod p).

◦ If m ≡ 0 (mod p) then cd ≡ 0 ≡ m (mod p) so the result holds.

◦ Otherwise, if p does not divide m, by Fermat's Little Theorem we have mp−1 ≡ 1 (mod p), so cd ≡
m · 1k ≡ m (mod p), as claimed.

◦ We can use the same argument to see that cd ≡ m (mod q): thus, cd ≡ m (mod pq), as required.

• There is a slightly faster way to see how the procedure works using Euler's theorem.

◦ Again, since c ≡ me (mod N), we obtain cd ≡ mde (mod N).

◦ Also, since de ≡ 1 (mod ϕ(N)) we can write de ≡ 1 + rϕ(N) for some integer r.

◦ Then by Euler's theorem, if m is relatively prime to N we have mϕ(N) ≡ 1 (mod N), so we can write

cd ≡ mde ≡ m1+rϕ(N) ≡ m · (mϕ(N))r ≡ m · 1r ≡ m (mod N)

as required.

◦ Note that technically, this explanation only applies when m is relatively prime to N .

◦ In practice, however, this is essentially always the case, since the only time m is not relatively prime to
N is when m is divisible by p or by q, which happens only with probability about 1/p+ 1/q.

• Example: Encode, and then decode, the message m = 444724 using RSA, with N = 18 212 959 and e = 3.

◦ To encode, we simply compute m3 modulo N , which is 12 534 939 .

◦ To decode, we �rst factor N = 3329 · 5471, and compute ϕ(N) = 3328 · 5470 = 18 204 160.

◦ Next, we need to �nd the decryption exponent d, which is the inverse of 3 modulo ϕ(N) = 18204160.

◦ Applying the Euclidean algorithm will eventually produce the relation 18204160− 6068053 · 3 = 1, from
which we can see that the inverse is −6068053 ≡ 12 136 107.

◦ Hence d = 12 136 107.

◦ Now we simply compute 12 534 93912 136 107 modulo N via successive squaring. (Of course, this requires
a computer.)

◦ We eventually obtain the decrypted message 444 724 , which is, of course, what we should have gotten.

• It is clear from our description that RSA is fairly straightforward to implement, at least in principle.

◦ The encoding and decoding procedures only require successive squaring, which is quite fast.

◦ Bob's computation of the decryption exponent d requires the Euclidean algorithm, which is also quite
fast.

◦ It is not so obvious, however, that RSA is secure.

• Suppose Eve is spying on Alice and Bob.

◦ Eve will have the values of N and e, since those are public, and she will also have the ciphertext c ≡ me

(mod N).

◦ Thus, Eve's goal is to solve the congruence me ≡ c (mod N) for m, given the values of e, c,N .

• One way for Eve to try to decode the message is for her to �nd the decryption exponent d.

◦ Suppose the order of m modulo N is r: then Eve needs to �nd is a d such that r divides ed− 1.

13

◦ To see this: if med ≡ m (mod N), then med−1 ≡ 1 (mod N), hence r divides ed − 1 by properties of
order.

◦ Conversely, if d is such that ed ≡ 1 mod r, then med ≡ m (mod N), since mr ≡ 1 (mod N).

• In general, the expectation is that Eve would essentially need to factor N in order to compute a decryption
exponent in a reasonable amount of time. Without knowledge of the exact value of ϕ(N), there is no known
way to construct such a d that also allows for e�cient computation.

◦ Furthermore, it can be shown that computing ϕ(N) is equivalent to factoring N , if N is the product of
two primes.

◦ It can also be shown that the order of a unit modulo N = pq divides lcm(p − 1, q − 1), and that there
are always units whose order is exactly equal to this value.

◦ If p−1 and q−1 have many factors in common (e.g., if p and q were chosen poorly) then the order could
be much smaller than N . On the other hand, if p and q are chosen carefully with gcd(p− 1, q− 1) small,
then the lcm is quite large, meaning there is little hope for Eve to construct a d without knowledge of
ϕ(N).

• To summarize, it is strongly suspected (but not proven) that there does not exist any algorithm that can
compute decryption exponents for RSA that is particularly more e�cient than factoring the public key N .

3.3.2 Attacks on RSA

• There are a number of attacks on RSA, particularly if the encryption exponent is small. We will list a few of
them at varying levels of e�ectiveness.

• Attack 1 (Brute force): If the number of possible plaintexts is small and Eve wants to know how a message
decodes, she could simply encrypt all possible plaintexts and compare them to the ciphertext.

◦ As in our earlier discussion, the same problem exists for any cryptosystem with a small number of possible
plaintexts.

◦ To avoid this issue, Bob simply needs to choose his value of N to be su�ciently large, and then to pad
each message with a random string at the beginning (or end) of su�cient length that makes it infeasible
for Eve to test all of the possibilities.

• Attack 2 (Factoring): If Eve wants to break Bob's RSA key, one method that would certainly work is factoring
N .

◦ Once Eve has a factorization of N , she can compute the decryption exponent the same way Bob does.

◦ In general, it is believed that factorization of large integers is di�cult with a standard (i.e., non-quantum)
computer, provided the primes in the factorization are su�ciently large and not of any particularly special
form (e.g., not congruent to 1 modulo a large power of 2 and not such that p − 1 has a large number
of small divisors). We will describe some general-purpose and special-purpose factorization algorithms
later.

◦ If some extra information about the prime divisors is known to Eve, then there are more e�cient factor-
ization procedures.

◦ For example, if we are trying to factor N = pq where p and q are primes of approximately equal size, and
the �rst half or the last half of the digits of p are known, then the factorization can be found using lattice
reduction methods very quickly, in time polynomial in log2 p. For comparison, a brute-force attempt of
all possible primes less than p whose digits agree with the known ones would take about

√
p steps.

• We will remark that the current (publicly known) record for factorization of an RSA public key is 768 bits,
which took approximately 267 individual computations and a total computing time equivalent to roughly 2000
years on a single-core 2GHz desktop computer.

◦ It is expected that an RSA key of length 1024 bits is probably factorable now in 2016, given su�cient
computing power (e.g., on the order of a government agency). But 2048 bits seems very much out of
reach with current technology.

14

◦ A direct factorization attack using a standard computer appears computationally infeasible for su�ciently
large public keys. However, there exist much faster factorization algorithms, such as Shor's algorithm,
that could be run on a quantum computer, assuming a su�ciently large one can ever be built.

• Attack 3 (Håstad's attack): Suppose the same message m is encrypted using the encryption exponent e = 3
each time and sent to 3 recipients using 3 di�erent public keys N1, N2, and N3, which are assumed to be
relatively prime.

◦ Note that if the public keys are not relatively prime, taking the gcd of two keys would immediately give
a factorization of both, so we are not making that much of an assumption above.

◦ Suppose Eve intercepts the three encoded messages c1, c2, and c3.

◦ Using the Chinese Remainder Theorem, Eve solves the three congruences C ≡ c1 (mod N1), C ≡ c2
(mod N2), and C ≡ c3 (mod N3), to obtain a residue class C modulo N1N2N3, with C ≡ m3 (mod
N1N2N3).

◦ But now, since 0 ≤ m < Ni for each i = 1, 2, 3, it is the case that 0 ≤ m3 < N1N2N3. Since C also lies
in this range and is congruent to m3, in fact C = m3 (as an integer).

◦ But now Eve can compute the plaintext m by �nding the cube root of C over the integers (which is easy
to do numerically).

• Håstad's attack is one of the reasons it can be a poor idea to use a small encryption exponent.

◦ In general, performing Håstad's attack with an encryption exponent of e requires e di�erent encodings
of the message with di�erent public keys.

◦ Identical encodings of the same message with di�erent public keys could happen in a variety of settings.
A natural one would be a mass email that is sent to many di�erent addresses: if each copy of the
message is sent to a di�erent recipient using RSA, then an eavesdropper could obtain tens, hundreds,
or even thousands of encodings of the message with di�erent public keys (certainly enough to decode
the message unless the value of e is extremely large). In practice, email is not usually encoded with
asymmetric encryption, but the principle still holds.

• Although RSA is comparatively fast, it is still much slower than modern symmetric cryptosystems. As such,
a typical use of RSA is to send a key for a symmetric cryptosystem which is then used to encode future
messages. However, if some care is not taken when encoding the message, this procedure can be attacked.

• Attack 4 (Short plaintext attack): Suppose it is 1983 and Alice wants to send Bob a 56-bit key for DES, of
which there are about 256 possibilities. Alice simply encodes the message as a 56-bit integer and sends it to
Bob using Bob's 200-digit RSA key.

◦ A direct brute-force attack is not feasible for Eve to perform because 256 is a fairly large computation
even by modern standards. (Remember that it is 1983 in this example.)

◦ Eve instead gambles that the key Alice encoded was a composite number with prime factors that were
not unreasonably large, say m = ab for some integers a, b with a, b ≤ 230. This is reasonably likely to
occur in practice.

◦ Eve then computes a list of the values of xe (mod N) for all 1 ≤ x ≤ 230 and all values cy−e (mod N)
for all 1 ≤ y ≤ 230.

◦ If Eve �nds an element common to both lists with then she knows xe ≡ c y−e (mod N) so that (xy)e ≡ c
(mod N). Raising to the dth power gives xy ≡ cd ≡ m (mod N), so Eve can compute m since she knows
x and y.

◦ This attack is much more e�cient because Eve only needs to store two lists of 230 elements each (only a
few terabytes) and compare them to each other.

◦ This attack is easy to defeat using a padding procedure: if Alice instead tells Bob ahead of time that she
will be including 100 random digits before and after her 56-bit key, Bob can simply delete them once he
decodes the message, but Eve's attack will no longer work since the message m is not likely to have a
factorization into small terms.

15

• Attack 5 (Low decryption exponent): If the decryption exponent d is su�ciently small relative to N = pq
and the primes p and q are reasonably close together, it is possible to compute d very rapidly using continued
fractions.

◦ Speci�cally, if q < p < 2q and if d <
1

3
N1/4, then d can be computed rapidly.

◦ First, observe that N − ϕ(N) = p+ q − 1 < 3
√
N by the assumptions on p and q.

◦ Now if de = 1+kϕ(N), since d <
1

3
N1/4 and e < ϕ(N) we see ϕ(N)k < de <

1

3
ϕ(N)·N1/4 so k <

1

3
N1/4.

◦ Then 0 <
k

d
− e

N
=
kn− ed
dN

=
k(n− ϕ(N))

dN
<

1/3 ·N1/4 · 3
√
N

dN
=
n3/4

dN
<

1

3d2
.

◦ So what this means is that

∣∣∣∣ eN − k

d

∣∣∣∣ < 1

3d2
. Recall that we are trying to compute d: what this says is

that the rational number k/d is very close to e/N .

◦ From the theory of continued fractions, it is known that for any real number α, if

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
then

p/q is one of the convergents to the continued fraction expansion of α. (We will not actually discuss the
details of computing continued fractions since it would take us too far a�eld, but su�ce it to say that
they are easy to compute.)

◦ Since k/d lies within the required bound, it must be one of the convergents to the continued fraction
of e/N . Eve can compute the convergents very rapidly, and then test whether each pair (k, d) gives an
integer solution to de = 1 + kϕ(N) for ϕ(N).

◦ When she obtains an integer solution for ϕ(N), she can then compute the factorization of N since she
has both N and ϕ(N).

• Attack 6 (Partially-known plaintext, low exponent): If a portion of a plaintext is known and the encryption
exponent is low, it can be possible to decode the remaining piece of the ciphertext.

◦ An example where this kind of situation can occur is when interacting with automated scripts: when
resetting a password over a secure channel, the response message is likely to be something of the form
�Thank you for changing your password. As con�rmation, your new password is ���� (where the dashes
indicate the user's password).

◦ We will illustrate the basic ideas in the case where e = 3. If the beginning of the plaintext is known,
then the message m has the form m = A + x where A is a known large number and x is an unknown
small number.

◦ The ciphertext is then c ≡ (A+ x)3 = x3 + 3Ax2 + 3Ax+A3 (mod N).

◦ Eve therefore wants to �nd a small solution x to the polynomial congruence x3+3Ax2+3A2x+(A3−c) ≡ 0
(mod N).

◦ Eve can apply a lattice reduction algorithm such as LLL to some well-chosen vectors to �nd a small
solution to the modular congruence, and then solve the resulting polynomial over the real numbers to
determine the value of x.

◦ When N is su�ciently large relative to x, this procedure will be much faster than any kind of brute-force
attack using the known plaintext information.

• Attack 7 (Timing attack): Depending on the algorithms that are used, it is possible to determine information
about the decryption exponent by measuring how long it takes to perform each step of the computation.

◦ Such attacks have nothing to do with the RSA cryptosystem itself, but rather the potentially insecure
ways in which the algorithm is implemented by a computer.

◦ Here is the rough idea behind a timing attack: most implementations on binary computers use �power
chain� squaring to do modular exponentiation, since this requires much less memory than the direct
successive squaring procedure we described.

◦ When doing power-chain squaring, when there is a bit 1 in the exponent the computer must do a
multiplication before squaring, and when there is a bit 0 the computer only needs to square.

16

◦ If, for example, each multiplication and each squaring took 1 nanosecond, and the computer required 20
nanoseconds to decrypt a message whose decryption exponent has 16 bits, then there were 16 squarings
(because of the size of the decryption exponent) and thus 4 multiplications.

◦ This would tell us that the decryption exponent had exactly 4 ones in its binary representation.

◦ Of course in practice, there is substantial variation in hardware and software computing speeds, but
taking an average over a su�ciently large sample would give a fairly good estimate of the number of
multiplications.

◦ To extract additional information about the positioning of the ones in the binary representation, we can
study the variation in the computing speed.

◦ Explicitly: if a particular bit in the decryption exponent is equal to 0, then the amount of time it
takes to do a single multiplication at that stage will be independent of the amount of time the remaining
computation takes (since the computation does not require a multiplication there). But if the bit is equal
to 1, the time it takes to do a single multiplication will not be independent (since that multiplication is
part of the computation).

◦ It is possible to determine whether two random variables are correlated or uncorrelated using basic statis-
tical analysis (e.g., by plotting the values for many observations and computing a regression coe�cient):
by doing this, Eve can determine whether each successive bit in the decryption exponent was 0 or 1.

◦ A variation on this attack is instead to measure the power consumption of the computer: it will use more
power when it is doing a computation than when it is not, so one can glean information about what is
occurring during the di�erent steps of the computation by recording the processor's power usage.

• This kind of timing / power measurement attack is hard to guard against for reasons that are deeply ingrained
in modern computer architecture.

◦ One way to try to prevent timing attacks is to intentionally mask the speed of the calculations by making
the computer evaluate a multiplication at every stage (even though the result is not actually used half
the time). Then each step will take essentially the same amount of time no matter what the bits of
the decryption exponent are, so there is no information leaked by measuring how long the computations
take.

◦ However, most software compilers are speci�cally designed to streamline program code when converting
it to machine language, and they will do things like removing computations that are not used at any
subsequent time. From a programming perspective this is an extremely helpful thing for a compiler to
do, since any unused branches of code are simply a drag on the computer: removing them from the
machine code will speed up the computation.

◦ But of course, in the case where we intentionally add an unused calculation to prevent a timing attack,
the compiler's attempts to be helpful will make the implementation vulnerable again!

◦ Even when we can arrange matters so that the compiler does not add a vulnerability (which is for obvious
reasons a di�cult computational problem), the computer processor itself might create one.

◦ Most (perhaps all) computer processors use a �branch predictor� to try to guess whether a particular
branch will be taken in a program will be taken before it actually occurs. The goal is to improve the
speed of the program by partially executing the branch that the computer predicts will be taken: if
the prediction is correct, the processor has e�ectively saved time by evaluating a later part of the code
already, but if the prediction is wrong, the processor will have to back up and use the correct branch.

◦ By analyzing the performance of a branch predictor in an appropriately devious way, it is essentially
possible to reproduce a timing attack even when the power-chain squaring algorithm is modi�ed to have
essentially the same computations regardless of the bits in the decryption exponent.

◦ There are ways to code the successive squaring algorithm in such a way to avoid this kind of attack, but
(at the least) it is not clear whether other implementations might not be vulnerable to other kinds of
attacks.

3.4 Zero-Knowledge Proofs

• One major obstacle to key exchange is the lack of authentication of the participants. We would like to
construct an identity-veri�cation system wherein one participant can prove their identity to the other.

17

◦ The two participants in such an identity-veri�cation system are traditionally named Peggy (for �prover�)
and Victor (for �veri�er�).

• Peggy would like to have a way of proving her identity to Victor in a way that does not allow anyone else to
impersonate her using the information. This is the fundamental idea of a zero-knowledge proof2, which we
can explain with an informal example:

◦ Peggy claims to have the amazing ability to count the number of leaves on any tree she sees, instantly.

◦ Victor does not believe that Peggy has this ability, so he challenges her by pointing to a tree and asking
her to count the number of leaves.

◦ Peggy responds �That tree has exactly 66,712 leaves�.

◦ Of course, it would be completely infeasible for Victor to count the leaves himself to verify that Peggy
was telling the truth.

◦ It might seem that Victor has no other way to test Peggy's ability, but eventually, they develop the
following protocol:

1. Peggy �rst looks at the tree (and counts the current number of leaves), and then looks away.

2. Victor then either removes one leaf from the tree, or two leaves.

3. Peggy then looks back at the tree and tells Victor whether he removed one leaf or two leaves.

◦ Victor and Peggy then repeat this protocol many times. If Peggy really does have the amazing ability she
claims, then she can always pass the test because she can always tell how many leaves Victor removed.

◦ If she doesn't have the ability, then she only has a 50-50 chance of guessing right each time. So if they
perform the test many times, it will be very unlikely that Peggy can pass every time.

• We now give an example of a zero-knowledge proof system modeled on the Rabin cryptosystem:

◦ Peggy chooses two large primes p and q and publishes N = pq. She also chooses a secret s, computes s2

(mod N), and publishes this value. These two values serve as her identity.

◦ Victor wants Peggy to prove that she knows the secret value s. They do this according to the following
protocol:

1. Peggy chooses a random unit u modulo N , and sends Victor the value of u2 (mod N).

2. Victor then chooses to ask for u or su at random.

3. Peggy sends Victor the quantity he requested.

4. If Victor asked for u, he squares the value and compares it to the value u2 (mod N) which Peggy
sent earlier. If Victor asked for su, he squares the value and compares it to s2 · u2 (mod N), which
he can also compute. If the appropriate value agrees, Peggy passes.

◦ The challenges are repeated until Victor is satis�ed that Peggy does indeed know the secret s.

• Example: Peggy chooses N = 564481 and s = 53402, and publishes the value of N along with the value
15592 ≡ s2 (mod N). We analyze some possible scenarios:

1. Victor challenges Peggy to prove she knows s.

◦ Peggy �rst chooses u = 364210 and sends Victor the message �404948�, which is u2 (mod N).

◦ Victor then �ips a coin and sends Peggy the message �Send me su�.

◦ Peggy responds with the message �349565�, which is su (mod N).

◦ Victor then checks whether (su)2 = 3495652 agrees with the values s2 · u2 = 15592 · 404948 that
Victor already has. He indeed sees that 3495652 ≡ 229231 (mod N), and 15592 · 404948 ≡ 229231
(mod 77) as well, so Peggy passes the �rst test.

◦ Victor and Peggy then repeat the challenge 100 more times, and Peggy passes each time.

2. Eve attempts to impersonate Peggy. Victor challenges Eve to prove she knows s.

2The idea of a zero-knowledge proof was originally promulgated in a paper by Goldwasser, Micali, and Racko� in 1985. (The paper
was actually written in 1982 but was rejected from major conferences several times before �nally appearing.)

18

◦ Eve knows n = 564481 and s2 ≡ 15592 (mod N), since these were published by Peggy, but Eve does
not actually know s.

◦ Eve guesses that Victor is going to ask for su. She chooses a random x = 412009, and then sends
Victor the message �403457�, which is equal to x2 · (s2)−1 mod N . (She computes the inverse of s2

using the Euclidean algorithm.)

◦ Victor then �ips a coin and sends Eve the message �Send me su�.

◦ Eve made her choice in such a way that she could respond to Victor's challenge if he asked for su:
she responds with her value of x: �412009�.

◦ Victor veri�es that (su)2 = 4120092 ≡ 15592 · 403457 = s2 · u2 modulo N . Eve passes this round.

3. Victor challenges Eve again.

◦ This time, Eve guesses that Victor is going to ask for u.

◦ She chooses a random unit u = 116533, and sends Victor the message �220672�, which is u2 (mod
N).

◦ Victor then �ips a coin and sends Eve the message �Send me su�.

◦ This time, Eve cannot respond to the challenge: she knows u (and could have responded to Victor's
challenge if he had asked for u) but she does not know su, because she does not know s.

◦ Thus, Eve fails the challenge, and now Victor knows she is an imposter.

• In order to verify that this protocol is a zero-knowledge proof, we must check three things.

1. The test must be complete: Peggy can always pass the test.

◦ This is obvious, because Peggy knows both u and s.

2. The test must be sound: if Eve does not actually know the value of s, then she cannot always pass the
test.

◦ In order to pass the test, Eve needs to be able to compute square roots of both (su)2 and u2 modulo
n. But if she can do this, she can easily compute s, so this is equivalent to knowing s.

◦ If Eve does not know s, then she can provide at most one of the two values u, su when challenged
by Victor, so she has at most a 1/2 probability of passing the test in this case.

3. The test must be zero-knowledge: Eve does not acquire any information about the secret s by observing
real conversations between Peggy and Victor.

◦ It is su�cient to show that Eve can simulate conversations with the same distribution as valid
conversations between Peggy and Victor. If she can do this, then she gains no information by
monitoring the actual conversations, because they are indistinguishable from fake conversations.

◦ Eve simulates a challenge in the following way: �rst, she randomly decides whether �Victor� will ask
for u or su.

◦ In the �rst case, she has �Peggy� send the initial message x2 (mod N), where she chooses x at
random: then the response from �Peggy� to �Victor's� challenge for a square root of x2 is simply x
(which Eve knows).

◦ In the second case, she has �Peggy� send the initial message x2s−2 (mod N), where she again chooses
x at random: then the response from �Peggy� to �Victor's� challenge for a square root of s2(x2s−2)
is just x again (which Eve knows).

◦ In either case, this simulated conversation between �Peggy� and �Victor� is valid.

◦ But now since Eve chose Victor's choice of u or su, along with the value of x randomly, the distri-
bution of outcomes is the same as that of a real conversation.

• We will note that the strength of this identity-veri�cation system depends on the di�culty of computing
square roots modulo N , which is the same underlying problem that the Rabin encryption algorithm relies on,
and which we proved was equivalent to factoring N .

• It is also very important to note that the above system is not a �proof of identity� in the way the term
is colloquially used. The only information that is obtained, by anyone, following the zero-knowledge proof
protocol is: Victor is now con�dent that the person he is communicating with knows the secret number s.

19

• This zero-knowledge proof system is easily adapted to create an authentication protocol using Rabin en-
cryption. (For simplicity we will ignore the issues of nonuniqueness of square roots, but they can be dealt
with.)

◦ Alice creates a public key Na as in Rabin encryption, and Bob creates his own public key Nb. Alice and
Bob need to be con�dent that these public keys were actually created by one another (which they could
do, for example, by creating the keys in each other's presence), and that nobody else can factor their
keys.

◦ Bob then wants to send Alice an encoded message m and makes her prove she can decode it, without
revealing any other information. Bob follows Rabin encryption and sends Alice the value of m2 modulo
Na.

◦ He and Alice then perform the zero-knowledge protocol described above to prove that Alice actually
knows the secret value m (which she does, because she knows how to factor Na and hence can compute
the square root of m2).

◦ Now Bob knows that his message reached someone who successfully decoded it, which (by assumption)
can only be Alice.

◦ The procedure works in the other direction as well: Alice can send Bob an encrypted message and verify
that it was decoded correctly by Bob.

◦ Alice and Bob can now continue sending messages to one another using their separate public keys
(performing a zero-knowledge proof with each message), to be secure in the knowledge that the other
party has received and decoded them.

• Now suppose Mallory is recording all of the conversations, or even attempting to impersonate Alice or Bob.

◦ Whatever Mallory does, there is no way to interfere with the authentication procedure in either direction,
because any change to any of the messages will cause the zero-knowledge proof to fail.

◦ Mallory also cannot decrypt any of the encrypted messages, since that is equivalent to breaking Rabin
encryption (which is assumed to be di�cult).

◦ At worst, Mallory could simply prevent messages from passing between Alice and Bob at all, but that is
always possible over any communication channel.

• One of the drawbacks of the basic Rabin zero-knowledge protocol is that it requires many rounds of commu-
nication between Peggy and Victor. This is not really an issue since it is very easy to parallelize the challenge
rounds to do them all simultaneously, but introduces the extra cost of making the messages correspondingly
longer.

◦ Explicitly, to begin Peggy generates 100 di�erent values u1, u2, ... , u100 and send all of their squares to
Victor in a single message.

◦ Victor then �ips 100 coins and responds with the results, which indicate to Peggy which of ui or sui he
wants.

◦ Peggy then responds to the 100 challenges with the 100 corresponding values, and �nally Victor checks
all of the results. If they are all correct, then he believes Peggy knows the secret s, and if any of them
is incorrect he rejects her claim. (Perhaps even to account for the occasional transmission error, Victor
could decide only to reject if Peggy fails 5 or more of the 100 challenges.)

3.5 Primality and Compositeness Testing

• In order to implement the public-key cryptosystems we have discussed, we need a way to generate large prime
numbers.

• It might seem that �nding large prime numbers would be very di�cult, but it is actually relatively simple.

◦ The Prime Number Theorem says that the approximate number of primes less than X is
X

lnX
.

20

◦ Therefore (roughly) the probability that a randomly-chosen large integer N is prime is about
1

lnN
.

◦ So for example, if we choose a random integer with 100 digits (in base 10), it has an approximately
1

ln(10100)
≈ 0.4% chance of being prime.

◦ However, this probability includes the possibility that we chose N to be even, or divisible by 3, or 5, or
7, and so forth. If we throw away integers divisible by primes less than 20, the probability of picking a
prime randomly increases to about 2.5%.

◦ We would like to develop e�cient methods for testing whether a given large integer is prime: if we can,
then it should be relatively straightforward to �nd large primes by choosing essentially random numbers
until we get one that passes all the tests.

◦ For example, if we take 200 randomly chosen 100-digit integers with no divisors less than 20 (it is easy
to screen out integers with small divisors), the probability that at least one of them is actually prime is
about 1− 0.975200 ≈ 99.4%, which is extremely high!

• Thus, the only remaining ingredient for generating big primes is a method for determining whether a given
large integer n is prime or composite, without needing to factor it in the event that it is composite.

• There are various naive methods for doing this (such as attempting to divide n by each prime smaller than√
n to see if it divides evenly), but these are extremely impractical if n has hundreds of digits. Our goal is to

describe several e�ective primality testing methods that are motivated by the results we have already proven.

• We will note that there are a wide variety of primality/compositeness tests and factorization algorithms of
varying complexity, many of which we do not possess the background to discuss. Therefore, we will cover only
a few of the most approachable techniques.

3.5.1 The Fermat Compositeness Test

• Fermat's Little Theorem says that if p is prime, then ap ≡ a (mod p) for every a. By taking the contrapositive,
we obtain a su�cient condition for an integer to be composite.

• Test (Fermat Test): If a is an integer such that an 6≡ a (mod n), then n is composite.

◦ Warning: The Fermat test is not a primality test: it is a compositeness test. There are only two possible
outcomes of the test: either it shows that n is composite, or it yields no result. In particular, it can never
be used to say that an integer is actually prime.

• Example: Apply the Fermat test to determine whether n = 56 011 607 is composite.

◦ Using successive squaring, we can compute 256 011 607 ≡ 48 437 830 (mod n): therefore, n is composite .

◦ Note that the test does not tell us anything about the factorization of n: we know is that n is composite,
but we don't have any information about the factorization.

◦ In fact, n is the product of the two primes 6653 and 8419.

• It would be quite pleasant if the Fermat test were successful for every composite number. Unfortunately, this
is not the case, as it is possible to make a bad choice for a.

• Example: Apply the Fermat test to decide whether n = 341 is composite.

◦ Using successive squaring, we can compute that 2341 ≡ 2 (mod 341), so the test provides no information
with a = 2.

◦ We instead try a = 3: successive squaring yields 3341 ≡ 168 (mod 341), whence we see that 341 is
composite.

• We might still hope that there will always be some a for which the Fermat test succeeds. Unfortunately, this
is not the case either: there exist integers with the property that the Fermat test fails for every residue class
a.

21

• Proposition: The Fermat test fails, for every a, to recognize 561 = 3 · 11 · 17 as composite.

◦ Proof: By the Chinese Remainder Theorem, it is enough to see that a561 ≡ a modulo 3, 11, and 17 for
every a.

◦ Fermat's Little Theorem implies that a3 ≡ a (mod 3). Multiplying both sides by a2 gives a5 ≡ a3 ≡ a.
Iterating, we see more generally that a2k+1 ≡ a (mod 3) for any k. In particular, taking k = 280 yields
a561 ≡ a (mod 3).

◦ In the same way we see that a10k+1 ≡ a (mod 11), so in particular taking k = 56 gives a561 ≡ a (mod
11). Similarly, we have a16k+1 ≡ a (mod 17), so by taking k = 35 we see a561 ≡ a (mod 17).

• De�nition: An integer m for which the Fermat test fails modulo m for every a is called a Carmichael number
(or pseudoprime).

◦ It has been shown that there are in�nitely many Carmichael numbers, but that they are signi�cantly
less common than primes (in an appropriate sense).

• In practice, Fermat's test is fairly e�ective when performed for enough values of a. Nonetheless, because of
the existence of Carmichael numbers, it has a positive probability of failing to identify a number as composite.

3.5.2 The Miller-Rabin Compositeness Test

• We would like to improve on the Fermat test, since it has a positive probability of failing to yield any results.
To begin, suppose p is prime and consider the solutions to r2 ≡ 1 (mod p).

◦ This congruence is equivalent to p|(r2 − 1) = (r− 1)(r+1), so since p is prime, the solutions are r ≡ ±1
(mod p).

◦ Now, if m is an odd integer that is prime, and a is any nonzero residue class, Fermat's Little Theorem
implies that for r = a(m−1)/2, we have r2 = am−1 ≡ 1 (mod m).

◦ By the above, we can conclude that a(m−1)/2 ≡ ±1 (mod m).

◦ Furthermore, in the event that r ≡ 1 (mod m) and m− 1 is divisible by 4, we see that for s = a(m−1)/4,
we have s2 = a(m−1)/2 = r ≡ 1 (mod m).

◦ By the above logic applied again, we necessarily have s = ±1 (mod m).

◦ We can clearly repeat the above argument if s ≡ 1 (mod m) and m− 1 is divisible by 8, and so on and
so forth.

• Test (Miller-Rabin Test): Let m be an odd integer and write m − 1 = 2kd for d odd. For a residue class a

modulo m, calculate each of the values ad, a2d, a4d, ... , a2
kd modulo m. If the last entry is 6≡ 1 (mod m)

then m is composite. Furthermore, if any entry in the list is ≡ 1 (mod m) and the previous entry is not ≡ ±1
(mod m), then m is composite.

◦ Proof: The �rst statement is simply the Fermat test. The second statement is an application of the
contrapositive of the statement �r2 ≡ 1 (mod p) implies r ≡ ±1 (mod p)�, proven above.

◦ Warning: Like with the Fermat test, a single application of the Miller-Rabin test cannot prove a�rma-
tively that a given number is prime: it can only show that m is composite.

• Example: Use the Miller-Rabin test to determine whether 561 is prime.

◦ We will try a = 2 with m = 561. Observe m− 1 = 24 · 35, so k = 4 and d = 35.

◦ We need to compute a35, a70, a140, a280, a560 modulo 561.

◦ We can do this rapidly by successive squaring: this yields the list 263, 166, 67, 1, 1.

◦ Since the fourth term is 1 and the previous term is not ≡ ±1 (mod 561), we conclude that 561 is
composite.

• Example: Use the Miller-Rabin test to determine whether 2047 is prime.

22

◦ We try a = 2 with m = 2047. Observe m− 1 = 2 · 1023, so k = 1 and d = 1023.

◦ We need to compute a1023, a2046 modulo 2047.

◦ Successive squaring yields the values 1, 1: thus, the test is inconclusive for a = 2.

◦ Next we try a = 3: successive squaring yields 1565, 1013. The last entry is not ≡ 1, so m is composite.

• The Miller-Rabin test is much stronger than the Fermat test, as can be seen from the example above: we
showed earlier that 561 is a Carmichael number, meaning that the Fermat test will never show it is composite.
On the other hand, the Miller-Rabin test succeeds in showing 561 is composite using only the residue a = 2.

• De�nition: If m is odd and composite, and the Miller-Rabin test fails for a modulo m, we say that m is a
strong pseudoprime to the base a.

◦ It turns out that strong pseudoprimes are fairly uncommon. For example, it has been proven that, for
any odd composite m, the Miller-Rabin test succeeds for at least 75% of the residue classes modulo m.

◦ In particular, there are no �Carmichael numbers� for the Miller-Rabin test, where the test fails for every
residue class.

◦ Furthermore, if an integer m passes the Miller-Rabin test for more than m/4 residue classes modulo m,
then m is prime. This is not a computationally e�ective way to show that an integer is prime, since it
requires m/4 calculations (far more than trial division).

◦ However, it is believed that the bound can be substantially lowered from m/4. If we assume the Gener-
alized Riemann Hypothesis (which is typically believed to be true), then it has been proven that testing
the �rst 2(logm)2 residues modulo m is su�cient.

• In practice, the Miller-Rabin test is used �probabilistically�: we apply the test many times to the integer m,
and if it passes su�ciently many times, we say m is probably prime.

◦ Any given residue has at least a 3/4 probability of showing that m is composite, so the probability that
a composite integer m can pass the test k times with randomly-chosen residues a is at most 1/4k.

◦ Taking k = 100 gives a probability negligable enough to use for all practical purposes (since the proba-
bility of having a hardware or programming error is certainly higher than 1/4100).

◦ The Miller-Rabin test is very fast: a single application of the test to an integer m requires approximately
(logm)2 calculations (to perform the required modular exponentiations), so even for integers with hun-
dreds or thousands of digits, the method will quickly return a result that is correct with extremely high
probability.

◦ As noted above, if we assume the Generalized Riemann Hypothesis then the Miller-Rabin test would
give a proof of primality in roughly 2(logm)4 steps.

3.5.3 The AKS Primality Test

• What we still lack is a provably fast algorithm that determines whether a given integer m is prime. A starting
point is the following observation:

• Proposition: If a is relatively prime to m and x is variable, then (x+ a)m ≡ xm + a (modulo m) holds, as a
polynomial congruence in x with coe�cients modulo m, if and only if m is prime.

◦ For example, if a = 2 and m = 5, the result says (x + 2)5 = x5 + 10x4 + 40x3 + 80x2 + 80x + 32 is
equivalent (modulo 5) to the polynomial x5 + 2, which is indeed the case.

◦ Conversely, if a = 1 and m = 4, the result says (x+1)4 = x4+4x3+6x2+4x+1 should not be equivalent
(modulo 4) to the polynomial x4 + 1, which it is not.

◦ Proof: Expanding out the power with the binomial theorem shows that (x+ a)m ≡ xm + a (modulo m)
is equivalent to saying that

(
m
k

)
is divisible by m for all 0 < k < m, and am ≡ a (mod m).

◦ If p is prime, then we can write
(
p
k

)
=

p!

k! · (p− k)!
and observe that the numerator is divisible by p but

the denominator is not. Furthermore, Fermat's Little Theorem says ap ≡ a (mod p).

23

◦ Now suppose m is not prime. We claim that one of the binomial coe�cients
(
m
k

)
with 0 < k < m is

not divisible by m. Explicitly, if m = prd where p is prime and d is not divisible by p, then
(
m
p

)
=

m(m− 1) · · · (m− p+ 1)

p!
is not divisible by pr, since the only term in the numerator divisible by p is

n = pr, but there is a factor of p in the denominator.

• Although this result is a primality test, it is not especially useful, since computing the necessary binomial
coe�cients takes quite a long time. One way to speed up the computation is to take both sides modulo the
polynomial xr − 1 for some small r: in other words, to check whether the relation (x + a)m ≡ xm + a (mod
xr − 1) holds, where coe�cients are also considered modulo m.

◦ The di�culty is that we may lose information by doing this. It turns out that if we choose r carefully, and
verify the congruence for enough di�erent values of a, we can prove that it necessarily holds in general.

• Test (Agrawal-Kayal-Saxena Test): Let m > 1 be an odd integer that is not of the form ab for any b > 1.

◦ Let r be the smallest value such that the order of r modulo m is greater than (logm)2.

∗ This value can be computed simply by �nding the orders of 2, 3, ... , until one of them has an order
exceeding this bound.

∗ If any of these integers divides m, then m is clearly composite.

∗ If there is no such residue less than m, m is prime. (This can only happen for m < 107.)

∗ There will always be such an r satisfying r ≤ 1 + (logm)5.

◦ For each a with 1 ≤ a ≤
√
ϕ(r) logm, check whether (x+ a)m ≡ xm + a (mod xr − 1,m).

∗ If any of these congruences fails, m is composite.

∗ Otherwise, m is prime.

• We will not prove the correctness of the AKS algorithm here.

◦ However, we will note that the algorithm gives an a�rmative declaration of whether m is prime or
composite (unlike the previous tests we have discussed).

◦ Furthermore, the runtime of this algorithm is a polynomial in logm: it is much more e�cient than (say)
trial division, which has a runtime of roughly

√
m.

◦ The version above runs in time roughly equal to (logm)12, and there have been subsequent modi�cations
that lowered the time to approximately (logm)6. However, this is much slower than the �probabilistic�
tests like the Miller-Rabin test, which is believed to run in time approximately (logm)4.

3.6 Factorization Algorithms

• All of the compositeness tests we have discussed so far are nonconstructive: they show that an integer m is
composite without explicitly �nding a divisor.

• We now turn to the question of actually factoring large integers. In general, factorization seems to be very
much more computationally di�cult than primality testing. We will describe some of the most common
techniques.

3.6.1 The Fermat Factorization

• Suppose we wish to factor n = pq, where p < q are odd numbers. (Usually they will be primes in the examples
we consider, but this is not necessary.)

◦ From the di�erence-of-squares identity, we write n =

(
q + p

2

)2

−
(
q − p
2

)2

.

◦ If q−p is small, then the term
(
q − p
2

)2

will be much smaller than

(
q + p

2

)2

. This means that

(
q + p

2

)2

will be a perfect square that is only a small amount larger than n.

24

◦ We can then simply compute the �rst integer k ≥
√
n and then check whether any of the integers k2−n,

(k + 1)2 − n, (k + 2)2 − n, ... ends up being a perfect square. If it is, the di�erence-of-squares identity
yields a factorization.

◦ Note that we can compute square roots to very high accuracy, extremely rapidly, using logarithms, since√
n = eln(n)/2.

• The method above is called the Fermat factorization: we search for a and b such that n = a2−b2 = (a+b)(a−b).

• Example: Factor n = 1298639.

◦ We try looking for a Fermat factorization. We can compute numerically that
√
n ≈ 1139.58.

◦ We then compute 11402 − n = 961, which is 312.

◦ Hence we get the factorization n = (1140− 31) · (1140 + 31) = 1109 · 1171. (Both of these integers turn
out to be prime.)

• Example: Factor n = 2789959.

◦ We try looking for a Fermat factorization. We compute
√
n ≈ 1670.32.

◦ We then compute 16712 − n = 2282, which is not a square.

◦ Next we try 16722 − n = 5625, which is 752.

◦ We obtain the factorization n = (1672− 75) · (1672 + 75) = 1597 · 1747. (Both of these integers turn out
to be prime.)

• Of course, the e�ectiveness of the Fermat factorization technique depends on how small q − p is.

◦ The number of iterations is more or less equal to
√
(q + p)/2 −

√
n, which, if q − p < n1/3, is bounded

above by 2n1/6. Trial division takes roughly
√
n = n1/2 iterations in the worst case, so the Fermat

factorization is signi�cantly faster than trial division if q − p is small.
◦ On the other hand, if q is roughly 2p, then we would need to examine about p squares before we would
�nd the factorization. In this case, n ≈ 2p2, so in terms of n we end up doing about

√
n checks, which

is the same as trial division.

• There are ways to modify the Fermat factorization that can overcome the issue of having q be larger than p.

◦ For example, if it is known or suspected that n = pq where q/p is close to 2, then applying the Fermat
factorization technique to 8N will quickly return 8N = 4p ·2q, because 4p and 2q are very close together.
(Multiplying by 8 is necessary because 2N = (p+ q/2)

2 − (p − q/2)2 is not a di�erence of squares of
integers.)

• Ultimately, however, the Fermat factorization is totally ine�ective if p and q each have hundreds of digits:
even if their �rst few digits are the same, searching for perfect squares will only be marginally faster than
trial division.

3.6.2 Pollard's p− 1 Algorithm

• One way to look for divisors of an integer n is as follows:

◦ If a is a random residue modulo n = pq, then it is likely that the order of a modulo p is di�erent from
the order of a modulo q.

◦ Suppose that the order of a modulo p is k, and is less than the order of a modulo q.

◦ Then ak ≡ 1 (mod p) while ak 6≡ 1 (mod q), meaning that gcd(ak − 1, n) = p.

◦ Of course, if n = pq is a product of two primes, then it is likely that the order of a modulo p and modulo
q is quite large, and so a direct search for the order would be very ine�cient.

◦ One way to speed the computation is to notice that we do not need to �nd the exact order of a: any
multiple of it will su�ce, as long as that multiple is not also divisible by the order of a modulo q.

25

◦ A reasonably e�ective option that is also easy to implement is to evaluate the values a1!, a2!, a3!, a4!, ...
, aB! modulo n (for some bound B), since the jth term is simply the jth power of the previous term.
This procedure is guaranteed to return a result congruent to 1 modulo p provided that the order of a
divides B!.

• Algorithm (Pollard's (p− 1)-Algorithm): Suppose n is composite. Choose a bound B and a residue a modulo
n. Set x1 = a, and for 2 ≤ j ≤ B, de�ne xj = xjj−1 (mod n). Compute gcd(xB − 1, n): if the gcd is between
1 and n then we have found a divisor of n. If the gcd is 1 or n, start over with a new residue a.

◦ If the gcd is 1, it may be possible to extend the computation to obtain a divisor by increasing the bound
B. It is easy to resume such an aborted computation: we can simply compute additional terms xj past
xB using the same recursion.

◦ If the gcd is n, it may have been the case that B was chosen too large (i.e., we carried the computation
su�ciently far that B! was a multiple of the order modulo p and modulo q). In such a case, we could
repeat the computation with a smaller bound (e.g., B/2) to see if stopping the calculation earlier would
catch one of the orders modulo p or modulo q but not the other.

◦ The idea behind the algorithm is if p is a prime divisor of n such that p− 1 has only small prime factors,
then the order of any element modulo p will divide B! where B is comparatively small. On the other
hand, if the other prime factors qi of n are such that qi − 1 has a large prime factor, it is unlikely that a
randomly chosen residue will have small order modulo q.

◦ Thus, when we apply Pollard's (p − 1)-algorithm to a composite integer n = pq where p − 1 has only
small prime divisors, it is likely that the procedure will quickly �nd the factorization. (This is the reason
for the algorithm's name.)

◦ It is a nontrivial problem in analytic number theory to determine the optimal choice for the bound B.
In practice, for integers with 20 digits or fewer, one usually chooses B on the order of 105 or so: such a
computation can be done essentially instantaneously by a computer.

• Example: Use Pollard's (p− 1)-algorithm with a = 2 to �nd a divisor of n = 4913429.

◦ We start with a = 2, so that x1 = 2. For emphasis we will compute gcd(xj − 1, n) for each value of j
until we �nd a gcd larger than 1:

Value j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
xj 2 4 64 2036929 251970 3059995 1426887

gcd(xj − 1, n) 1 1 1 1 1 1 2521

◦ After the 7th step, we obtain a nontrivial divisor 2521, giving the factorization n = 2521 · 1949 .

◦ Observe that 2521−1 = 2520 = 23325171 has only small divisors, and indeed 2520 divides 7! (so we were
guaranteed to obtain it by the 7th iteration of the procedure).

◦ On the other hand, 1949 − 1 = 22 · 481 has a large prime divisor, so it would usually take B = 481 to
�nd 1949 as a divisor.

• We will remark that the speed of Pollard's (p− 1)-algorithm depends on the size of the largest prime divisor
of p− 1, which can vary quite substantially even for primes p of approximately the same size.

◦ If p is an odd prime, then p−1 is clearly even, so the �worst case scenario� for Pollard's (p−1)-algorithm
is to have n = pq where p = 2p0 + 1 and q = 2q0 + 1 with p, q, p0, q0 all prime and where p and q are

roughly equal. In such a case, we would require B ≈ p0 ≈
1

2

√
n in order to �nd the factorization (unless

we are lucky with our choice of a).

◦ As an aside, a prime p0 such that 2p0 + 1 is also prime is called a Sophie Germain prime. It is not
known whether there are in�nitely many such primes, although heuristically it is expected there should
be in�nitely many.

◦ It is also a rather involved analytic number theory problem to estimate the �expected� running time for
the algorithm. In general, if we use a bound B = nα/2, then we would expect to have a probability
roughly α−α of �nding a factorization. When α = 1/2 this says we would have about a 25% chance of
obtaining a factorization if we take B = n1/4.

26

◦ When generating an RSA modulus, it is very unlikely to choose a prime p such that p− 1 only has small
divisors by accident (at least, as long as one is choosing them randomly). Nevertheless, it is often a good
idea to generate the modulus in such a way that each prime p has another large prime divisor of p− 1.

◦ If, for example, one wants to generate a 250-digit prime p such that p− 1 has a large prime divisor, one
could �rst generate a 200-digit prime p0 and a random 50-digit number k, and then test the numbers
p = (k + r)p0 + 1 for integers r ≥ 0 until a prime is found. By construction, p − 1 will then have the
200-digit prime p0 as a divisor.

3.6.3 Pollard's ρ-Algorithm

• Another way we can try to generate divisors is in the following way: if we choose k integers modulo n = pq at
random, where k > 2

√
p, then it is likely that two of the k integers will be congruent modulo p, but di�erent

modulo n.

◦ The reason for this is as follows: if we choose k integers modulo p, then the probability that they all lie

in di�erent residue classes is
(
p
k

)
/pk =

(
1− 1

p

)
·
(
1− 2

p

)
· · · · ·

(
1− k − 1

p

)
.

◦ Taking the natural logarithm of this expression yields

k−1∑
j=1

log

(
1− j − 1

p

)
< −

k−1∑
j=1

j − 1

p
< −k

2

2p
, where

we invoked the inequality log(1− x) < −x, which is true for small positive x.

◦ Thus, the probability that two of the k integers lie in the same residue class modulo p is at least
1− e−k2/(2p): so in particular, if k = 2

√
p, the probability will be roughly 1− e−2 ≈ 0.86.

◦ A typical application of this result in basic probability is to set p = 365 and k = 23, which yields the
often-surprising result that if 23 people are chosen at random, the probability that two or more of them
share a common birthday exceeds 1/2.

• Choosing k random residue classes and trying to see whether any of them are congruent modulo p is not much

faster than trial division, since
(
k
2

)
≈ 1

2
k2 comparisons would be needed in order to �nd two that are equal

mod p, and if k ≈ 2
√
p then we do not obtain an improvement over trial division (which would also take p

attempts).

• The observation, initially made by Pollard, is that we can speed up this process by generating the residue
classes by iterating a polynomial map in the following way:

◦ Let p(x) be a polynomial with integer coe�cients, and choose an arbitrary a, and consider the values a,
a1 = p(a), a2 = p(p(a)), a3 = p(p(p(a))), ..., taken modulo n, where in general we set ai = p(ai−1).

◦ Absent any reason to expect otherwise, we would guess that the values p(ai) mod n will be essentially
random, and so if we compare roughly

√
p of them to each other, we are likely to �nd two that are

congruent modulo p, if p is the smallest prime divisor of n.

◦ The advantage lies in the fact that if ai ≡ aj (mod p) for some i < j, then ai+1 ≡ aj+1 (mod p), in turn
implying ai+2 ≡ aj+2 (mod p) and so forth. So the sequence becomes periodic with period j − i.
◦ In particular, if t ≥ i is any multiple of the period j− i, then at ≡ a2t (mod p). This means we can detect
the periodicity of this sequence by looking only at pairs of the form (at, a2t), which is a vast improvement
over having to search all pairs (ai, aj).

◦ To obtain a divisor of n, we therefore want to compute gcd(a2t − at, n).

• Collecting the above observations yields the following algorithm:

• Algorithm (Pollard's ρ-Algorithm): Suppose n is composite and set p(x) = x2 + 1. Choose an arbitrary a,
set x0 = y0 = a, and then de�ne xi = p(xi−1) mod n and yi = p(p(yi−1)) mod n. Compute gcd(yi − xi, n)
for each i until the gcd exceeds 1. If the gcd is n, repeat the procedure with a di�erent u0 or a di�erent
polynomial p(x).

◦ Note that yi = x2i, so we could just have computed the sequence xi and gcd(x2i − xi, n) for each i.

27

◦ However, we organize the algorithm in this way because it only requires a �xed amount of storage space:
we only need to keep track of the most recent pair (xi, yi) to compute the next one.

◦ If we kept track of the xi only, we would need to use more memory: at the step where we compute
gcd(x2i − xi, n), we would need to keep the values xi+1, xi+2, ... , x2i−1 for use later on. As i increases,
so does the number of terms we need to keep track of.

◦ There is also no particularly compelling reason to choose p(x) = x2 +1 aside from the fact that it seems
to work well in practice. (Linear functions do not work, and more complicated polynomials would take
longer to compute.)

• Example: Use Pollard's ρ-algorithm to �nd a divisor of n = 1242301.

◦ We start with u = 1, so that x1 = 2 and y1 = 5, and successively keep track of the terms xi and yi
modulo n.

Value i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
xi 2 5 26 677 458330 743607 710748 894671 544825 121987
yi 5 677 743607 894671 121987 636498 581703 1109702 1195126 635655

gcd(yi − xi, n) 1 1 1 1 1 1 1 1 1 281

◦ We see that at the 10th step, we obtain a nontrivial divisor 281, yielding the factorization n = 281 ·4421.

• We will remark that Pollard's ρ-algorithm is not guaranteed to �nd a divisor on any given attempt: rather,
it is only expected to do so according to some heuristics.

◦ However, we would expect that it should �nd the smallest prime divisor of n after roughly
√
p steps, and

since p ≤
√
n, the expected runtime is on the order of n1/4.

◦ This is signi�cantly faster than the n1/2 we obtain from trial division, but it is still enormously large
if n has hundreds of digits. On the other hand, it is at least more of a guarantee than from Pollard's
(p − 1)-algorithm, which can be very fast, but can also take nearly up to n1/2 steps in the worst-case
scenario.

3.6.4 Sieving Methods

• We can improve on the Fermat factorization method by using the following fact from modular arithmetic,
which already essentially came up when we discussed Rabin encryption:

• Proposition: If n is composite and a2 ≡ b2 (mod n) with a 6= ±b (mod n), then 1 < gcd(a+ b, n) < n.

◦ Note that a2 ≡ b2 with a 6= ±b can only happen if n is composite, since there are only at most two
solutions to any quadratic equation modulo a prime.

◦ Proof: The given hypotheses imply n|(a+ b)(a− b) and that n does not divide either factor.

◦ Hence the gcd of a+ b and n cannot be 1 (since then necessarily n would divide a− b), and it cannot be
n (since then necessarily n would divide a+ b). Hence the gcd must be strictly between 1 and n.

• The point of this proposition is that, since we can compute the gcd rapidly using the Euclidean algorithm,
having such an a and b immediately yields a divisor of n.

◦ Example: Since 102 ≡ 32 (mod 91), we can �nd a divisor of 91 by computing gcd(10 + 3, 91) = 13.
Indeed, 13 is a divisor of 91, with quotient 7.

• The task is then to �nd a more e�cient way to construct such an a and b than brute-force searching.

◦ Note that the goal of the Fermat factorization method is to construct a and b such that n = a2 − b2,
which is a special case of what we are looking for.

◦ It is possible to �nd such a and b when using the Miller-Rabin test: if the test successfully shows m is
composite by �nding c2j ≡ 1 (mod m) with cj 6≡ ±1 (mod m), then (cj)2 ≡ 1 (mod m) while cj 6= ±1
(mod m): then a = cj and b = 1 satisfy the desired conditions.

28

• The method known as the quadratic sieve is one of the fastest procedures for factoring numbers less than 90 dig-
its. Here is an outline of the procedure; the procedure we describe is properly called Dixon's factorization method,
of which the quadratic sieve is an optimization:

◦ Instead of trying to �nd a single value of a for which a2 modulo n is a square, we instead compute a
number of di�erent values of a such that a2 modulo n has all of its prime divisors in a small �xed set.
Then, by taking products of some of these values, one can obtain a congruence of the form a2 ≡ b2 (mod
n) with a 6= ±b (mod n).
◦ For example, modulo 2077, if we search for powers that have small prime divisors we will �nd 462 ≡ 31131

and 592 ≡ 2233131. Multiplying them yields the equality (46 · 59)2 ≡ (2132131)2, which is the same as
6372 ≡ 2342. Then gcd(637− 234, 2077) = 31, which gives a divisor of 2077.

◦ In general, this kind of search requires (i) �nding many squares whose factorizations only involve small
primes, and then (ii) �nding a product of such factorizations that has a square value.

◦ Goal (i) is in general rather di�cult, and we will not describe in detail the methods used to do it.

◦ Goal (ii), however, can be done e�ciently with linear algebra: the idea is to �nd a nonzero linear
dependence between the vectors of prime-factorization exponents, considered modulo 2.

◦ For example, if we want to �nd a set of elements among 6, 10, 30, 150 whose product is a perfect square,
we �rst �nd the prime factorizations 6 = 213150, 10 = 213051, 30 = 213151, 150 = 213152. Then we take
the four vectors of exponents 〈1, 1, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉, 〈1, 1, 2〉 and search for a linear combination of
these vectors whose entries are all even.

◦ In this case, we can see that 〈1, 1, 0〉+〈1, 1, 2〉 = 〈2, 2, 2〉, corresponding to the product 6·150 = 900 = 302.

◦ There are simple linear-algebra procedures for �nding such a linear combination by row-reducing an
appropriate matrix (which is quite computationally e�cient).

• We will also remark that there is an improvement on the quadratic sieve called the general number �eld sieve
that operates on the same kind of principle, except instead of doing its computations with the set of rational
numbers Q, it works using more general number �elds such as Q(

√
2) = {a + b

√
2 : a, b ∈ Q}. (Again, the

details are too technical for us to treat properly here.)

• For su�ciently large integers, the sieving algorithms run far faster than the other methods like Pollard's
ρ-algorithm.

◦ Speci�cally, the computational complexity for the general number �eld sieve to factor n is approximately

e1.95(lnn)
1/3(ln lnn)2/3 , while the complexity for the quadratic sieve is approximately e(lnn)

1/2(ln lnn)1/2 .

◦ As a comparison, Pollard's ρ-algorithm is expected to run in roughly n1/4 = e0.25(lnn)
1

steps.

◦ For small n, the exponent 0.25(lnn)1 will be less than (lnn)1/2(ln lnn)1/2 because of the constant 0.25,
but for large n, the expression with the smaller power of lnn will be smaller.

◦ Similarly, for medium-sized n, 1.95(lnn)1/3(ln lnn)2/3 will be bigger than (lnn)1/2(ln lnn)1/2 because of
the constant 1.95, but for large n, 1.95(lnn)1/3(ln lnn)2/3 is smaller.

◦ Thus, for small integers (roughly 40 base-10 digits or fewer), Pollard's ρ-algorithm will be fastest, while
for integers up to about 90 digits the quadratic sieve is best. For larger integers, the general number
�eld sieve is the best.

◦ There is an algorithm known as Shor's algorithm that could run on a quantum computer that can factor
an integer in approximately (lnn)2(ln lnn)(ln ln lnn) steps, vastly faster than the other algorithms we
have mentioned.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2020. You may not reproduce or distribute this
material without my express permission.

29

