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0 Complex Numbers

In this supplementary chapter, we will outline basic properties along with some applications of complex numbers.

0.1 Arithmetic with Complex Numbers

• Complex numbers may seem daunting, arbitrary, and strange when �rst introduced, but they are (in fact)
very useful in mathematics and elsewhere. Plus, they're just neat.

• Some History: Complex numbers were �rst encountered by mathematicians in the 1500s who were trying to
write down general formulas for solving cubic equations (i.e., equations like x3 + x+ 1 = 0), in analogy with
the well-known formula for the solutions of a quadratic equation. It turned out that their formulas required
manipulation of complex numbers, even when the cubics they were solving had three real roots.

◦ It took over 100 years before complex numbers were accepted as something mathematically legitimate:
even negative numbers were sometimes suspect, so (as the reader may imagine) their square roots were
even more questionable.

◦ The stigma is still evident even today in the terminology (�imaginary numbers�), and the fact that
complex numbers are often glossed over or ignored in mathematics courses.

◦ Nonetheless, they are very real objects (no pun intended), and have a wide range of uses in mathematics,
physics, and engineering.

◦ Among neat applications of complex numbers are deriving trigonometric identities with much less
work (see later) and evaluating certain kinds of de�nite and inde�nite integrals. For example, using
the theory of functions of a complex variable, one can derive many rather unusual results, such asˆ ∞
−∞

cos(x)

1 + x2
dx =

π

e
.

• De�nitions: A complex number is a number of the form a + bi, where a and b are real numbers and i is the
�imaginary unit�, de�ned so that i2 = −1.

◦ Notation: Sometimes, i is written as
√
−1. In certain areas (especially electrical engineering), the letter

j can be used to denote
√
−1, rather than i (which is used to denote electrical current).

◦ The real part of z = a+ bi, denoted Re(z), is the real number a.

◦ The imaginary part of z = a+ bi, denoted Im(z), is the real number b.

◦ The complex conjugate of z = a+ bi, denoted z, is the complex number a− bi.
∗ The notation for conjugate varies among disciplines. The notation z∗ is often used in physics and
computer programming to denote the complex conjugate, in place of z.

◦ The modulus (also called the absolute value, magnitude, or length) of z = a+ bi, denoted |z|, is the real
number

√
a2 + b2.

◦ Example: Re(4− 3i) = 4, Im(4− 3i) = −3, 4− 3i = 4 + 3i, |4− 3i| = 5.

• Two complex numbers are added (or subtracted) simply by adding (or subtracting) their real and imaginary
parts: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.
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◦ Example: The sum of 1 + 2i and 3− 4i is 4− 2i . The di�erence is (1 + 2i)− (3− 4i) = −2 + 6i .

• Two complex numbers are multiplied using the distributive law and the fact that i2 = −1: (a+ bi)(c+ di) =
ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

◦ Example: The product of 1 + 2i and 3− 4i is (1 + 2i)(3− 4i) = 3 + 6i− 4i− 8i2 = 11 + 2i .

• For division, we rationalize the denominator:
a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i.

◦ Example: The quotient of 2i by 1− i is 2i

1− i
=

2i(1 + i)

(1− i)(1 + i)
=
−2 + 2i

2
= −1 + i .

• A key property of the conjugate is that it is multiplicative: if z = a + bi and w = c + di, then zw = z · w.
(This is easy to see just by multiplying out the relevant quantities.) From this we see that the modulus is
also multiplicative: |zw| = |z| · |w|.

◦ Example: If z = 1 + 2i and w = 3 − i, then z = 1 − 2i and w = 3 + i. We compute zw = 5 + 5i and
z ·w = 5−5i, so indeed zw = z ·w. Furthermore, we have |z| =

√
5,|w| =

√
10, and |zw| =

√
50 = |z| · |w|.

◦ This is the underlying reason for why division works in general: we write
z

w
=
z · w
w · w

=
z · w
|w|2

, where the

denominator is now the real number |w|2 = c2 + d2.

• Using complex numbers, we can give meaning to the solutions of a quadratic equation even when they are not
real numbers.

◦ Explicitly, by completing the square, we see that the polynomial az2 + bz + c = 0 has the two solutions

z =
−b±

√
b2 − 4ac

2a
over the complex numbers. (Technically, this is not quite true when b2 − 4ac = 0:

in this case, the convention is to say that this polynomial still has two roots, but they are equal.)

◦ Notice that the expression for the roots now makes sense even if b2 − 4ac < 0: the roots are simply
non-real complex numbers.

◦ We can then factor the polynomial as az2 + bz + c = a(z − r1)(z − r2) where r1 =
−b−

√
b2 − 4ac

2a
and

r2 =
−b+

√
b2 − 4ac

2a
are the two roots.

◦ More generally, the Fundamental Theorem of Algebra says that any polynomial equation anx
n+an−1x

n−1+
· · · + a0 can be completely factored into a product of linear terms over the complex numbers. (This a
foundational result in algebra and it was �rst correctly proven by Argand and Gauss in the early 1800s.)

0.2 Complex Exponentials, Polar Form, and Euler's Theorem

• We often think of the real numbers geometrically, as a line. The natural way to think of the complex numbers
is as a plane, with the x-coordinate denoting the real part and the y-coordinate denoting the imaginary part.

◦ Once we do this, there is a natural connection to polar coordinates: namely, if z = x + yi is a complex
number which we identify with the point (x, y) in the complex plane, then the modulus |z| =

√
x2 + y2

is simply the coordinate r when we convert (x, y) from Cartesian to polar coordinates.

◦ Furthermore, if we are given that |z| = r, we can uniquely identify z given the angle θ that the line
connecting z to the origin makes with the positive real axis. (This is the same θ from polar coordinates.)

• From our computations with polar coordinates (or simple trigonometry), we see that we can write z in the

form z = r · [cos(θ) + i · sin(θ)] .

◦ This is called the polar form of z. The angle θ is called the argument of z and sometimes denoted
θ = arg(z).

2



◦ Notational remark: Since it comes up frequently, some people like to abbreviate cos(θ) + i · sin(θ) by
cis(θ) (�cosine-i-sine�).

◦ Conversely, if we know z = x + iy then we can compute the (r, θ) form fairly easily, since r = |z| and
θ = arg(z).

◦ Explicitly, we have r =
√
x2 + y2 and θ = tan−1

(y
x

)
if x > 0, and θ = tan−1

(y
x

)
+ π if x < 0.

∗ This extra +π is needed because of the speci�c way we've chosen the de�nition of arctangent.
Otherwise we'd get the wrong value for θ if z lies in the second or third quadrants.

∗ Again, note that these are the exact same formulas for converting between rectangular and polar
coordinates.

◦ Example: If z = 1+ i, then the corresponding values of r and θ are r = |z| =
√
2 and θ = tan−1(1) =

π

4
,

so we can write z in polar form as z =
√
2 ·
[
cos

π

4
+ i sin

π

4

]
. (It is easy to multiply this out and verify

that the result is simply 1 + i.)

• We're comfortable with plugging complex numbers into polynomials, but what about other functions? We'd
like to be able to say what something like ea+bi should mean.

◦ We feel like ea+bi should obey the exponential rules, and so we want to say ea+bi = ea · ebi. So really, we
only care about what ebi is.

• The key result is what is called Euler's identity: eiθ = cos(θ) + i sin(θ) .

◦ Notice that this is the same expression that showed up in the polar form of a complex number.

◦ One way to derive Euler's identity is via Taylor series expansions: we know that ex =

∞∑
n=0

xn

n!
for any

real number x. Let us blithely assume that this also holds for any complex number x. Setting x = iθ
then produces

eiθ =

∞∑
n=0

(iθ)n

n!

= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− θ6

6!
− iθ7

7!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
.

◦ But now notice that the real part is the Taylor series for cos(θ), while the imaginary part is the Taylor
series for sin(θ).

◦ Thus, we obtain eiθ = cos(θ) + i sin(θ), which is precisely Euler's formula.

• Euler's identity encodes a lot of information. Here is one application:

◦ Exponential rules state ei(θ+ϕ) = eiθ · eiϕ.
◦ Expanding out both sides with Euler's identity yields

cos(θ + ϕ) + i · sin(θ + ϕ) = [cos(θ) + i · sin(θ)] · [cos(ϕ) + i · sin(ϕ)] .

◦ Multiplying out and simplifying yields

cos(θ + ϕ) + i · sin(θ + ϕ) = [cos(θ) cos(ϕ)− sin(θ) sin(ϕ)] + i · [cos(θ) sin(ϕ) + sin(θ) cos(ϕ)] .

◦ Setting the real and imaginary parts equal yields (respectively) the equalities

cos(θ + ϕ) = cos(θ) cos(ϕ)− sin(θ) sin(ϕ)

sin(θ + ϕ) = cos(θ) sin(ϕ) + sin(θ) cos(ϕ)

and notice that these are exactly the addition formulas for sine and cosine!
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◦ What this means is that the rather strange-looking trigonometric addition formulas, which are rather
weird and arbitrary when �rst encountered, actually just re�ect the natural structure of the multiplication
of complex numbers.

• Another application is the simple relation ei(nθ) = (eiθ)n. Writing out both sides in terms of sines and cosines

gives De Moivre's identity cos(nθ) + i · sin(nθ) = [cos(θ) + i · sin(θ)]n .

◦ Plugging in various values of n and then expanding out the right-hand side via the Binomial Theorem
allows one to obtain identities for sin(nθ) and cos(nθ) in terms of sin(θ) and cos(θ).

◦ Example: cos(2θ) + i · sin(2θ) = [cos(θ) + i · sin(θ)]2 =
(
cos2 θ − sin2 θ

)
+ i · (2 sin θ cos θ), and so we

recover the double-angle formulas for sine and cosine.

• Even setting θ = π in Euler's identity tells us something very interesting: we obtain eiπ = −1, or, better,
eiπ + 1 = 0 .

◦ The constants 0, 1, i, e, and π are, without a doubt, the �ve most important numbers in all of mathe-
matics.

◦ That there exists one simple equation relating all �ve of them is (to the author at least) quite amazing.

• We can use Euler's identity to simply the evaluation of certain integrals, such as

ˆ
eax cos(bx) dx.

◦ Using Euler's identity we have eibx = cos(bx)+ i sin(bx) and e−ibx = cos(bx)− i sin(bx), so by adding the

equations we see that cos(bx) =
1

2

[
eibx + e−ibx

]
.

◦ Then we can successively compute

ˆ
eax cos(bx) dx =

1

2

ˆ
eax
[
eibx + e−ibx

]
dx

=
1

2

ˆ
(e(a+bi)x + e(a−bi)x) dx

=
1

2

[
e(a+bi)x

a+ bi
+
e(a−bi)x

a− bi

]
=

1

2
· (a− bi)e

(a+bi)x + (a+ bi)e(a−bi)x

a2 + b2

=
1

2
· eax (a− bi)(cos(bx) + i sin(bx)) + (a+ bi)(cos(bx)− i sin(bx))

a2 + b2

= eax · a cos(bx) + b sin(bx)

a2 + b2

where we used the fact that
´
e(a+bi)x dx =

e(a+bi)x

a+ bi
, and then combined the fractions and simpli�ed the

resulting expression.

◦ Using the same method we can also compute the integral
´
eax sin(bx) dx = eax · a sin(bx)− b cos(bx)

a2 + b2
:

the only di�erence is that we instead write sin(bx) =
1

2i

[
eibx − e−ibx

]
at the beginning.

◦ Remark: It is also possible to evaluate this integral using integration by parts twice.

• Using Euler's identity and the polar form of complex numbers above, we see that every complex number can

be written as z = r · eiθ for some r and θ. We call this the exponential form of z.

◦ Example: We can draw 1 + i in the complex plane, or use the formulas, to see that |1 + i| =
√
2 and

arg(1 + i) =
π

4
, and so we see that 1 + i =

√
2 · eiπ/4 .
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◦ Example: Either by geometry or trigonometry, we see that
∣∣1− i√3∣∣ = 2 and arg(1− i

√
3) = −π

3
, hence

1 + i
√
3 = 2 · e−iπ/3 .

• It is very easy to take powers of complex numbers when they are in exponential form: (r · eiθ)n = rn · ei(nθ).

◦ Example: Compute (1 + i)8.

∗ From above we have 1+ i =
√
2 · eiπ/4, so (1 + i)8 =

(√
2 · eiπ/4

)8
= (
√
2)8 · e8iπ/4 = 24 · e2iπ = 16 .

∗ Note how much easier this is compared to multiplying (1 + i) by itself eight times.

◦ Example: Compute (1− i
√
3)9.

∗ From above we have 1− i
√
3 = 2 · e−iπ/3, so (1− i

√
3)9 = 29 · e−9iπ/3 = 512 · e−3iπ = −512 .

• Taking roots of complex numbers is also easy using the polar form. We do need to be slightly careful, since
(like having 2 possible square roots of a positive real number), there are n di�erent nth roots of any nonzero
complex number.

◦ The general formula says that the n possible nth roots of z = r · eiθ are n
√
reiθ/n · e2iπk/n , where k

ranges through 0, 1, · · · , n− 1.

◦ One can check that the nth power of all of these numbers is indeed r · eiθ, since e2iπk = 1 (for k an
integer) by Euler's formula. And they are clearly all distinct, and so they are all of the nth roots.

• Example: Find all complex square roots of 2i.

◦ We are looking for square roots of 2i = 2 · eiπ/2. By the formula, the two square roots are
√
2 · ei[π/4+kπ]

for k = 0, 1.

◦ Converting from exponential to rectangular form using Euler's formula gives the two square roots as
1 + i,−1− i .

◦ Indeed, we can easily multiply out to verify that (1 + i)2 = (−1− i)2 = 2i, as it should be.

• Example: Find all complex numbers z = a+ bi with z3 = 1.

◦ We are looking for cube roots of 1 = 1 · e0. By the formula, the three cube roots of 1 are 1 · e2kiπ/3, for
k = 0, 1, 2.

◦ Converting from exponential to rectangular form using Euler's formula gives the roots as 1, −1

2
+

√
3

2
i, −1

2
−
√
3

2
i

in x+ yi form.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this
material without my express permission.
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