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5 Linear Di�erential Equations

In this chapter our goal is to study linear di�erential equations, and our treatment will be generally similar to our
discussion of �rst-order equations. Solving general linear di�erential equations explicitly is typically very di�cult,
unless we are lucky and the equation has a particularly nice form: thus, we will instead �rst show some general facts
about the structure of the solutions to a linear di�erential equation. We will then narrow our focus to a speci�c
classes of linear di�erential equations whose solutions we can give an algorithm for �nding: the linear di�erential
equations with constant coe�cients.

We will �nish with a discussion of some of the applications of linear di�erential equations, which arise primarily in
the context of physics.

5.1 General Linear Di�erential Equations

• The general nth-order linear di�erential equation can be written in the form y(n) + Pn(x) y(n−1) + · · · +
P2(x) y′ + P1(x) y = Q(x), for some functions Pn(x), · · · , P2(x), P1(x), and Q(x).

◦ Note that y(n) denotes the nth derivative of y.

• Our goal in this section is to study the general solution structure of this di�erential equation.

◦ We can only give a method for writing down the full set of solutions for a small class of linear equations:
namely, linear di�erential equations with constant coe�cients.

◦ There are a few equation types (e.g., Euler equations like x2y′′ + xy′ + y = 0) which can be reduced to
constant-coe�cient equations via substitution. We will not discuss this, nor will we discuss nonlinear
higher-order equations (whose solutions are in general even harder to �nd).
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5.1.1 Terminology and Classi�cation

• We �rst revisit some terminology for classifying di�erent kinds of di�erential equations.

• De�nition: An nth order di�erential equation is an equation in which the highest derivative is the nth deriva-
tive.

◦ Example: The equations y′ + xy = 3x2 and y′ · y = 2 are �rst-order.

◦ Example: The equation y′′ + y′ + y = 0 is second-order.

• De�nition: A di�erential equation is linear if it is a linear combination of y and its derivatives. (Note that
coe�cients are allowed to be functions of x.) In other words, if there are no terms like y2, or (y′)3, or y · y′,
or ey.

◦ Example: The equations y′ + xy = 3x2 and y′′ + y′ + y = 0 are linear.

◦ Example: The equations y′ · y = 3x2 and y′′ + ey = 0 are not linear.

• De�nition: The standard form of a linear di�erential equation is when it is written with all terms involving y
or higher derivatives on one side, and functions of the variable on the other side: that is, when it has the form
y(n) + Pn(x) y(n−1) + · · ·+ P2(x) y′ + P1(x) y = Q(x) for some functions Pn(x), · · · , P2(x), P1(x), and Q(x).

◦ Example: The equation y′′ + y′ + y = 0 is in standard form.

◦ Example: The equation y′ = 3x2 − xy is not in standard form.

• De�nition: A linear di�erential equation y(n) +Pn(x) y(n−1) + · · ·+P2(x) y′+P1(x) y = Q(x) in standard form
is homogeneous if Q(x) is the zero function, and it is nonhomogeneous otherwise. It has constant coe�cients
if the functions P1, ... , Pn are all constants.

◦ Example: The equation y′′ + y′ + y = 0 is homogeneous with constant coe�cients.

◦ Example: The equation y′′′ + 3y′ = ex is nonhomogeneous with constant coe�cients.

◦ Example: The equation y′ + xy = 3x2 is nonhomogeneous.

5.1.2 Solution Structure and Existence-Uniqueness Theorem

• Like with �rst-order equations, we have an existence-uniqueness theorem for the general linear di�erential
equation y(n) + Pn(x) y(n−1) + · · ·+ P2(x) y′ + P1(x) y = Q(x).

◦ Roughly speaking, in analogy with the �rst-order linear di�erential equation y′ + P (x)y = Q(x), where
one integration is needed to solve the equation, we would need to integrate n times to �nd the solution
to a general linear di�erential equation. This would introduce n arbitrary constants of integration, so we
should expect there to be n parameters in the general solution.

◦ If we also specify n initial conditions, then (in principle) we should expect there to be a unique solution,
since the initial conditions would give n linear equations in the n parameters appearing in the general
solution. Indeed, this is exactly what happens:

• Theorem (Existence-Uniqueness for Linear Equations): For any a, if Pn(x), · · · , P1(x) and Q(x) are functions
continuous on an interval containing a, then there is a unique solution on that interval to the initial value
problem y(n) +Pn(x) y(n−1) + · · ·+P2(x) y′+P1(x) y = Q(x), for any initial conditions y(a) = b1, y

′(a) = b2,
· · · , and y(n−1)(a) = bn.

◦ As with the �rst-order existence-uniqueness theorem, the proof of this result is rather technically involved
and we will omit it.

• The solutions to an nth order linear di�erential equation have a structure very similar to those of a system of
linear equations in n variables.

2



• Proposition: Suppose ypar is one solution to the linear di�erential equation y
(n)+Pn(x) y(n−1)+· · ·+P2(x) y′+

P1(x) y = Q(x). Then the general solution ygen to this equation may be written as ygen = ypar + yhom, where
yhom is a solution to the homogeneous equation y(n) + Pn(x) y(n−1) + · · ·+ P2(x) y′ + P1(x) y = 0.

◦ Proof: Suppose that y1 and y2 are solutions to the general equation. We claim that their di�erence
y2 − y1 is a solution to the homogeneous equation: this implies the statement of the proposition.

◦ To see this we subtract (y2−y1)(n)+· · ·+P1(x) (y2−y1) =
[
y
(n)
2 + · · ·+ P1(x) y2

]
−
[
y
(n)
1 + · · ·+ P1(x) y1

]
=

Q(x)−Q(x) = 0, where we used the property that the kth derivative of a di�erence is the di�erence of
the kth derivatives.

◦ Remark: Another way to interpret this result is to observe that the map L sending y to y(n) +
Pn(x) y(n−1) + · · · + P2(x) y′ + P1(x) y is a linear transformation. Then L(y1) = Q(x) = L(y2) im-
plies L(y1 − y2) = Q(x) − Q(x) = 0 by properties of linear transformations, meaning that y1 − y2 is a
solution to the homogeneous equation.

• The solutions to a homogeneous linear di�erential equation have even more structure:

• Theorem (Homogeneous Linear Equations): If Pn(x), · · · , P1(x) are continuous functions on an interval I, then
the set of solutions to the homogeneous nth order equation y(n) + Pn(x) y(n−1) + · · ·+ P2(x) y′ + P1(x) y = 0
on I is an n-dimensional vector space.

◦ Proof: First, we will check the subspace criterion for solutions to y(n) + Pn(x) y(n−1) + · · ·+ P2(x) y′ +
P1(x) y = 0:

∗ [S1]: The zero function is a solution.

∗ [S2]: If y1 and y2 are solutions, then by adding the equations y
(n)
1 +Pn(x) ·y(n−1)1 + · · ·+P1(x) ·y1 = 0

and y
(n)
2 + Pn(x) · y(n−1)2 + · · · + P1(x) · y2 = 0 and using properties of derivatives shows that

(y1 + y2)(n) + Pn(x) · (y1 + y2)(n−1) + · · ·+ P1(x) · (y1 + y2) = 0, so y1 + y2 is also a solution.

∗ [S3]: If α is a scalar and y1 is a solution, then scaling y
(n)
1 +Pn(x)·y(n−1)1 +· · ·+P2(x)·y′1+P1(x)·y1 = 0

by α and using properties of derivatives shows that (αy1)(n)+Pn(x)·(αy1)(n−1)+· · ·+P1(x)·(αy1) = 0,
so αy1 is also a solution.

◦ Now we need to show that the solution space is n-dimensional. We will do this by �nding a basis.

∗ Choose any a in I. By the existence part of the existence-uniqueness theorem, for each 1 ≤ i ≤ n

there exists a function yi such that y
(i−1)
i (a) = 1 and y

(k)
i = 0 for all 0 ≤ k ≤ n− 1 with k 6= i.

∗ The functions y1, y2, . . . , yn are linearly independent because their Wronskian matrix evaluated at
x = a is the identity matrix. (In particular, the Wronskian is not the zero function.)

∗ Now suppose y is any solution to the homogeneous equation, with y(a) = a1, y
′(a) = a2, ... ,

y(n−1)(a) = an.

∗ Then the function z = a1y1 + a2y2 + · · ·+ anyn also has z(a) = a1, z
′(a) = a2, ... , z

(n−1)(a) = an,
and is a solution to the homogeneous equation.

∗ But by the uniqueness part of the existence-uniqueness theorem, there is only one such function, so
we must have y(x) = z(x) for all x: therefore y = a1y1 + a2y2 + · · ·+ anyn, meaning that y is in the
span of y1, y2, . . . , yn.

∗ This is true for any solution function y, so y1, y2, . . . , yn span the solution space. Since they are also
linearly independent, they form a basis of the solution space, and because there are n of them, we
see that the solution space is n-dimensional.

• Example: Solve the homogeneous equation y′′(x) = 0 and verify that the solution space is 2-dimensional.

◦ We can just integrate twice to see that the solutions are y(x) = Ax+B , for arbitrary constants A and

B.

◦ Indeed, as the theorem dictates, the solution space is 2-dimensional, spanned by the two basis elements
1 and x.

• If we combine the above results, we can write down a fairly nice form for the solutions of a general linear
di�erential equation:
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• Corollary: The general solution to the nonhomogeneous equation y(n)+Pn(x) y(n−1)+· · ·+P2(x) y′+P1(x) y =
Q(x) has the form y = yp + C1y1 + C2y2 + · · · + Cnyn, where yp is any one particular solution of the
nonhomogeneous equation, y1, . . . , yn are a basis for the solutions to the homogeneous equation, and C1, . . . , Cn
are arbitrary constants.

◦ This corollary says that, in order to �nd the general solution, we only need to �nd one function which
satis�es the nonhomogeneous equation, and then solve the homogeneous equation.

• Example: Find the general solution to the di�erential equation y′′(x) = ex.

◦ We can just try simple functions until we discover that y(x) = ex has y′′(x) = ex, and so y = ex is a
particular solution.

◦ Then we need only solve the homogeneous equation y′′(x) = 0, whose solutions we saw are Ax+B.

◦ Thus the general solution to the general equation y′′(x) = ex is y(x) = ex +Ax+B .

◦ We can also verify that if we impose the initial conditions y(0) = c1 and y′(0) = c2, then (as the
existence-uniqueness theorem dictates) there is a unique solution y = ex + (c2 − 1)x+ (c1 − 1).

5.2 Homogeneous Linear Equations with Constant Coe�cients

• The general linear homogeneous di�erential equation with constant coe�cients is y(n) + an−1y
(n−1) + · · · +

a1y
′ + a0y = 0, where an−1, · · · , a0 are some constants.

◦ From the existence-uniqueness theorem we know that the set of solutions is an n-dimensional vector
space.

◦ Based on solving �rst-order linear homogeneous equations (i.e., y′ + ky = 0), we might expect the
solutions to involve exponentials. If we try setting y = erx then after some arithmetic we end up with
rnerx + an−1r

n−1erx + · · · + a1re
rx + a0e

rx = 0. Multiplying both sides by e−rx and cancelling yields

the characteristic equation rn + an−1r
n−1 + · · ·+ a1r + a0 = 0 .

◦ If we can �nd n values of r satisfying this nth-degree polynomial (i.e., if we can factor the polynomial
and see that it has n distinct roots) then the theorem tells us we will have found all of the solutions. If
we are unlucky and the polynomial has a repeated root, then we need to try something else.

◦ If there are non-real roots (note they will come in complex conjugate pairs) r1 = α+ βi and r2 = α− βi
then we would end up with er1x and er2x as our solutions. But we really want real-valued solutions,
and er1x and er2x have complex numbers in the exponents. To �x this, we can just write out the real
and imaginary parts using Euler's Theorem and take linear combinations to obtain the two real-valued

solutions eαx sin(βx) =
1

2i
[er1x − er2x] and eαx cos(βx) =

1

2
[er1x + er2x].

◦ Taking motivation from the case of y(k) = 0, whose characteristic equation is rk = 0 (with the k-fold
repeated root 0) and whose solutions are y(x) = A1 + A2x+ A3x

2 + · · ·+ Akx
k−1, we can guess that if

other roots are repeated, we want to multiply the corresponding exponentials erx by a power of x.

◦ If we put all of these ideas together we can prove that this general outline will, in fact, give us n
linearly independent functions, and hence gives the general solution to any homogeneous linear di�erential
equation with constant coe�cients.

• Theorem (Homogeneous Constant-Coe�cient Equations): Suppose that y(n)+an−1y
(n−1)+· · ·+a1y′+a0y = 0

is a homogeneous linear equation with constant coe�cients. If the associated characteristic equation rn +
an−1r

n−1 + · · ·+ a1r+ a0 = 0 factors as (r− r1)s1(r− r2)s2 · · · (r− rk)sk = 0 for complex numbers r1, . . . , rk,
then the functions {er1x, xer1x, . . . , xs1−1er1x}, ... , {erkx, xerkx, . . . , xsk−1erkx} form a basis for the solution
space of the homogeneous equation, where in the event that we have a pair of complex-conjugate roots α±βi,
the associated solutions e(α±βi)x are replaced by eαx sin(βx) and eαx cos(βx).

◦ Proof: For the statement about the complex-conjugate solutions, observe eαx sin(βx) =
1

2i

[
e(α+βi)x − e(α−βi)x

]
and eαx cos(βx) =

1

2

[
e(α+βi)x − e(α−βi)x

]
, and conversely e(α+βi)x = eαx(cosβx+i sinβx) and e(α+βi)x =

eαx(cosβx− i sinβx), so we may freely convert between the complex exponentials and the trigonometric
function solution forms. We will now work only with exponentials.
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◦ Observe that there are n functions in the list {er1x, xer1x, . . . , xs1−1er1x}, ... , {erkx, xerkx, . . . , xsk−1erkx}.
It is a mostly straightforward (if tediously lengthy) calculation using the Wronskian that these functions
are linearly independent, which we will omit.

◦ By the existence-uniqueness theorem, it is therefore su�cient to show that these n functions are all
solutions to the homogeneous equation: we will then have n linearly independent functions in the n-
dimensional solution space, so they necessarily form a basis.

◦ To show that these functions are actually solutions, we will use the language of linear transformations:
�rst, let D represent the linear transformation sending a function to its derivative so that Df = f ′.

◦ Now observe that D2f = (f ′)′ = f ′′ is the second derivative, and by extension Dnf = f (n) is the nth
derivative.

◦ More generally still, if we de�ne the operator L = Dn + an−1D
n−1 + · · ·+ a1D + a0, it is easy to verify

that this is a linear transformation and that Lf = f (n) + an−1f
(n−1) + · · · + a1f

′ + a0f . In particular,
the solutions to the original homogeneous equations are the functions y with Ly = 0 (i.e., the kernel of
L).

◦ Next, notice that if p and q are any polynomials, then p(D)q(D) = q(D)p(D): this follows by expanding
out the products and applying the facts that aiD

ibjD
j = (aibj)D

i+j = bjD
jaiD

i for any constants ai, bj
and any powers Di, Dj .

◦ Repeatedly applying the above property, starting from the polynomial identity rn + an−1r
n−1 + · · · +

a1r+ a0 = (r− r1)s1(r− r2)s2 · · · (r− rk)sk , yields the equality L = Dn + an−1D
n−1 + · · ·+ a1D+ a0 =

(D − r1)k1 · · · (D − rj)kj .
◦ Now we observe that (D−r)xnerx = r xn−1erx, and therefore (D−r)sxderx = 0 whenever d is an integer
with 0 ≤ d ≤ s− 1.

◦ At last we are �nished: applying L = (D−r1)s1 · · · (D−rk)sk to any function on the list {erix, xerix, . . . , xsi−1erix}
will yield zero, since the term (D − ri)si applied to each of these functions is zero. Therefore, all the
functions on our list are mapped to zero by L, meaning that they are all solutions of the homogeneous
equation as claimed.

• To solve a linear homogeneous di�erential equation with constant coe�cients, follow these steps:

◦ Step 1: Rewrite the di�erential equation in the standard form y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0
(if necessary).

◦ Step 2: Factor the characteristic equation rn + an−1r
n−1 + · · ·+ a1r + a0 = 0.

◦ Step 3: For each irreducible factor in the characteristic equation, write down the corresponding terms in
the solution:

∗ For terms (r − α)s where is a real number, include terms of the form eαx, xeαx, · · · , xs−1eαx.
∗ For terms (r2+cr+d)s with roots r = α±βi, include the terms eαx sin(βx), xeαx sin(βx), · · · , xs−1eαx sin(βx)
and eαx cos(βx), xeαx cos(βx), · · · , xs−1eαx cos(βx).

◦ Step 4: If given additional conditions on the solution, solve for the coe�cients (if necessary).

• Example: Find all functions y such that y′′ + y′ − 6 = 0.

◦ The characteristic equation is r2 + r − 6 = 0 which has roots r = 2 and r = −3.

◦ We have two distinct real roots, so our terms are e2x and e−3x. So the general solution is y = C1e
2x + C2e

−3x .

• Example: Find all functions y such that y′′ − 2y′ + 1 = 0, with y(0) = 1 and y′(0) = 2.

◦ The characteristic equation is r2 − 2r + 1 = 0 which has only the solution r = 1.

◦ There is a double root at r = 1, so our terms are ex and xex. Hence the general solution is y =
C1e

x + C2xe
x.

◦ Plugging in the two conditions gives 1 = C1 ·e0 +C2 ·0, and 2 = C1e
0 +C2

[
(0 + 1)e0

]
from which C1 = 1

and C2 = 1. Hence the particular solution requested is y = ex + xex .
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• Example: Find all real-valued functions y such that y′′ = −4y.

◦ The standard form here is y′′ + 4y = 0.

◦ The characteristic equation is r2 + 4 = 0 which has roots r = 2i and r = −2i.

◦ We have two complex-conjugate roots. Since the problem asks for real-valued functions we use the func-

tions cos(2x) and sin(2x) in place of e2ix and e−2ix to obtain the general solution y = C1 cos(2x) + C2 sin(2x) .

• Example: Find all real-valued functions y such that y(5) + 5y(4) + 10y′′′ + 10y′′ + 5y′ + y = 0.

◦ The characteristic equation is r5 + 5r4 + 10r3 + 10r2 + 5r + 1 = 0 which factors as (r + 1)5 = 0.

◦ We have a 5-fold repeated root r = −1. Thus the terms are e−x, xe−x, x2e−x, x3e−x, and x4e−x. Hence

the general solution is y = C1e
−x + C2xe

−x + C3x
2e−x + C4x

3e−x + C5x
4e−x .

• Example: Find all real-valued functions y such that y′′′ + 2y′′ + 5y′ = 26y.

◦ The standard form here is y′′′ + 2y′′ + 5y′ − 26y = 0.

◦ The characteristic equation is r3 + 2r2 + 5r − 26 = 0.

◦ To solve this cubic we can search for small rational-root solutions, which must be divisors of the constant
term −26. Trying the values ±1, ±2, ±13, ±26 reveals that r = 2 is a solution.

◦ Factoring then yields (r − 2)(r2 + 4r + 13) = 0, and by the quadratic formula we see that the roots of
the quadratic are r = −2± 3i.

◦ We have the real root 2 and two complex-conjugate roots −2±3i. Since the problem asks for real-valued
functions we use the functions e−2x cos(3x) and e−2x sin(3x) in place of e(−2+3i)x and e(−2−3i)x to get

the general solution y = C1e
2x + C2e

−2x cos(3x) + C3e
−2x sin(3x) .

• Example: Find all real-valued functions y whose fourth derivative is the same as y.

◦ This is the equation y′′′′ = y, or in standard form, y′′′′ − y = 0.

◦ The characteristic equation is r4 − 1 = 0 which factors as (r + 1)(r − 1)(r + i)(r − i) = 0.

◦ We have the four roots 1,−1, i,−i. Thus the terms are ex, e−x, cos(x), and sin(x). Hence the general

solution is y = C1e
x + C2e

−x + C3 cos(x) + C4 sin(x) .

5.3 Non-Homogeneous Linear Equations with Constant Coe�cients

• The general linear di�erential equation with constant coe�cients is of the form y(n)+an−1y
(n−1)+ · · ·+a1y′+

a0y = Q(x), where an−1, · · · , a0 are some constants and Q(x) is some function of x.

• From the general theory, all we need to do is �nd one solution to the general equation, and �nd all solutions
to the homogeneous equation. Since we know how to solve the homogeneous equation in full generality, we
just need to develop some techniques for �nding one solution to the general equation.

• There are essentially two ways of doing this.

◦ The method of undetermined coe�cients is just a fancy way of making an an educated guess about what
the form of the solution will be and then checking if it works. It will work whenever the function Q(x)
is a linear combination of terms of the form xkeαx (where k is an integer and α is a complex number):
thus, for example, we could use the method for something like Q(x) = x3e8x cos(x)− 4 sin(x) + x10 but
not something like Q(x) = tan(x).

◦ Variation of parameters is a more complicated method which uses some linear algebra and cleverness to
use the solutions of the homogeneous equation to �nd a solution to the non-homogeneous equation. It
will always work, for any function Q(x), but generally requires more setup and computation.
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5.3.1 The Method of Undetermined Coe�cients, Annihilators

• The idea behind the method of undetermined coe�cients is that we can guess what our solution should look
like (up to some coe�cients we have to solve for), if the nonhomogeneous portion Q(x) involves sums and
products of polynomials, exponentials, and trigonometric functions.

◦ Speci�cally, we try a solution y = [stu�], where the �stu�� is a sum of things similar to the terms in
Q(x).

◦ The method of undetermined coe�cients is essentially educated guessing: we guess the general form of
a particular solution based on the form of Q(x), and then plug in to check

• Here is the method of undetermined coe�cients:

◦ Step 1: Generate the ��rst guess� for the trial solution as follows:

∗ Replace all numerical coe�cients of terms in Q(x) with variable coe�cients. If there is a sine (or
cosine) term, add in the companion cosine (or sine) terms, if they are missing. Then group terms
of Q(x) into �blocks� of terms which are the same up to a power of x, and add in any missing
lower-degree terms in each �block�.

∗ Thus, if a term of the form xnerx appears inQ(x), �ll in the terms of the form erx·[A0 +A1x+ · · ·+Anx
n],

and if a term of the form xneαx sin(βx) or xneαx cos(βx) appears in Q(x), �ll in the terms of the
form eαx cos(βx) · [D0 +D1x+ · · ·+Dnx

n] + eαx sin(βx) [E0 + E1x+ · · ·+ Enx
n].

◦ Step 2: Solve the homogeneous equation, and write down the general solution.

◦ Step 3: Compare the ��rst guess� for the trial solution with the solutions to the homogeneous equation.
If any terms overlap, multiply all terms in the overlapping �block� by the appropriate power of x which
will remove the duplication.

◦ Step 4: If asked to �nd a solution to the di�erential equation, plug in the trial solution into the equation
and solve for the coe�cients.

• Here is a series of examples demonstrating the procedure for generating the trial solution:

◦ Example: y′′ − y = x.

∗ Step 1: We �ll in the missing constant term in Q(x) to get D0 +D1x.

∗ Step 2: The general homogeneous solution is A1e
x +A2e

−x.

∗ Step 3: There is no overlap, so the trial solution is D0 +D1x .

◦ Example: y′′ + y′ = x− 2.

∗ Step 1: We have D0 +D1x.

∗ Step 2: The general homogeneous solution is A+Be−x.

∗ Step 3: There is an overlap (the solution D0) so we multiply the corresponding trial solution terms

by x, to get D0x+D1x
2. Now there is no overlap, so D0x+D1x

2 is the trial solution.

◦ Example: y′′ − y = ex.

∗ Step 1: We have D0e
x.

∗ Step 2: The general homogeneous solution is Aex +Be−x.

∗ Step 3: There is an overlap (the solution D0e
x) so we multiply the trial solution term by x, to get

D0xe
x. Now there is no overlap, so D0xe

x is the trial solution.

◦ Example: y′′ − 2y′ + y = 3ex.

∗ Step 1: We have D0e
x.

∗ Step 2: The general homogeneous solution is Aex +Bxex.

∗ Step 3: There is an overlap (the solution D0e
x) so we multiply the trial solution term by x2, to get

rid of the overlap, giving us the trial solution D0x
2ex .

◦ Example: y′′ − 2y′ + y = x3ex.
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∗ Step 1: We �ll in the lower-degree terms to get D0e
x +D1xe

x +D2x
2ex +D3x

3ex.

∗ Step 2: The general homogeneous solution is A0e
x +A1xe

x.

∗ Step 3: There is an overlap (namely D0e
x +D1xe

x) so we multiply the trial solution terms by x2 to

get D0x
2ex +D1x

3ex +D2x
4ex +D3x

5ex as the trial solution.

◦ Example: y′′ + y = sin(x).

∗ Step 1: We �ll in the missing cosine term to get D0 cos(x) + E0 sin(x).

∗ Step 2: The general homogeneous solution is A cos(x) +B sin(x).

∗ Step 3: There is an overlap (all of D0 cos(x) + E0 sin(x)) so we multiply the trial solution terms by

x to get D0x cos(x) + E0x sin(x). There is now no overlap so D0x cos(x) + E0x sin(x) is the trial

solution.

◦ Example: y′′ + y = x sin(x).

∗ Step 1: We �ll in the missing cosine term and then all the lower-degree terms to get D0 cos(x) +
E0 sin(x) +D1x cos(x) + E1x sin(x).

∗ Step 2: The general homogeneous solution is A cos(x) +B sin(x).

∗ Step 3: There is an overlap (all of D0 cos(x) + E0 sin(x)) so we multiply the trial solution terms

in that group by x to get D0x cos(x) + E0x sin(x) +D1x
2 cos(x) + E1x

2 sin(x) , which is the trial

solution since now there is no overlap.

◦ Example: y′′′ − y′′ = x+ xex.

∗ Step 1: We �ll in the lower-degree term for xex and the lower-degree term for x, to get A0 +A1x+
B0e

x +B1xe
x.

∗ Step 2: The general homogeneous solution is C0 + C1x+Dex.

∗ Step 3: There are overlaps in both groups of terms: A0 +A1x and B0e
x each overlap, so we multiply

the �x� group by x2 and the �ex� group by x to get rid of the overlaps. There are now no additional

overlapping terms, so the trial solution is A0x
2 +A1x

3 +B0xe
x +B1x

2ex .

◦ Example: y′′′′ + 2y′′ + y = xex + x cos(x).

∗ Step 1: We �ll in the lower-degree term for xex, then the missing sine term for x cos(x), and then
the lower-degree terms for x cos(x) and x sin(x), to get A0e

x + A1xe
x + D0 cos(x) + E0 sin(x) +

D1x cos(x) + E1x sin(x).

∗ Step 2: The general homogeneous solution is B0 cos(x) + C0 sin(x) +B1x cos(x) + C1x sin(x).

∗ Step 3: There is an overlap (namely, all of D0 cos(x) + E0 sin(x) + D1x cos(x) + D1x sin(x)) so we
multiply that group by x2 to get rid of the overlap. There are no additional overlapping terms, so

the trial solution is A0e
x +A1xe

x +D0x
2 cos(x) + E0x

2 sin(x) +D1x
3 cos(x) + E1x

3 sin(x) .

• Here is a series of examples �nding the general trial solution and then solving for the coe�cients:

◦ Example: Find a function y such that y′′ + y′ + y = x.

∗ The procedure produces our trial solution as y = D0 + D1x, because there is no overlap with the
solutions to the homogeneous equation.

∗ If y = D0+D1x then y
′ = D1 and y

′′ = 0 so plugging in yields y′′+y′+y = 0+(D1)+(D1x+D0) = x,
so that D1 = 1 and D0 = −1.

∗ So our solution is y = x− 1 .

◦ Example: Find a function y such that y′′ − y = 2ex.

∗ The procedure gives the trial solution as y = D0xe
x, since D0e

x overlaps with the solution to the
homogeneous equation.

∗ If y = D0xe
x then y′′ = D0(x+ 2)ex so plugging in yields y′′ − y = [D0(x+ 2)ex]− [D1x e

x] = 2ex.

Solving yields D0 = 1, so our solution is y = xex .

◦ Example: Find a function y such that y′′ − 2y′ + y = x+ sin(x).
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∗ The procedure gives the trial solution as y = (D0 +D1x) + (D2 cos(x) +D3 sin(x)), by �lling in the
missing constant term and cosine term, and because there is no overlap with the solutions to the
homogeneous equation.

∗ Then we have y′′ = −D2 cos(x)−D3 sin(x) and y′ = D1−D2 sin(x)+D3 cos(x) so plugging in yields

y′′−2y′+y = [−D2 cos(x)−D3 sin(x)]−2 [D1 −D2 sin(x) +D3 cos(x)]+[D0 +D1x+D2 cos(x) +D3 sin(x)]

and setting this equal to x + sin(x) then requires D0 − 2D1 = 0, D1 = 1, D2 + 2D3 − D2 = 1,

D3 − 2D2 −D3 = 0, so our solution is y = x+ 2 +
1

2
cos(x) .

◦ Example: Find all functions y such that y′′ + y = sin(x).

∗ The solutions to the homogeneous system y′′ + y = 0 are y = C1 cos(x) + C2 sin(x).

∗ Then the procedure gives the trial solution for the non-homogeneous equation as y = D0x cos(x) +
D1x sin(x), by �lling in the missing cosine term and then multiplying both by x due to the overlap
with the solutions to the homogeneous equation.

∗ We can compute (eventually) that y′′ = −D0x cos(x)− 2D0 sin(x)−D1x sin(x) + 2D1 cos(x).

∗ Plugging in yields y′′+y = (−D0x cos(x)− 2D0 sin(x)−D1x sin(x) + 2D1 cos(x))+(D0x sin(x) +D1x cos(x)),

and so setting this equal to sin(x), we obtain D0 = 0 and D1 = −1

2
.

∗ Therefore the set of solutions is y = −1

2
x cos(x) + C1 cos(x) + C2 sin(x) , for constants C1 and C2.

• The formal idea behind the method of undetermined coe�cients is that nonhomogeneous terms given by
powers of x times exponentials, sines, or cosines are all sent to zero (�annihilated�) by some polynomial in the
di�erential operator D.

◦ Recall that the di�erential operator D is the linear transformation that maps a function to its derivative:
thus, for example, D(x2) = 2x and D(ex) = ex.

◦ If we apply that polynomial in D which sends Q(x) to zero to both sides of the original equation, we
will end up with a homogeneous equation whose characteristic polynomial is the product of the original
characteristic polynomial and the characteristic polynomial for Q(x).

◦ We can then solve this homogeneous equation using our earlier techniques to write down its general
solution. However, only some of the solution functions will satisfy the original equation: we then need
to plug in to determine the ones that work.

◦ This procedure is sometimes called the �method of annihilators�, although it is really the same thing as
the method of undetermined coe�cients.

• Example: Find the general solution to y′′ − y = x2 using the method of annihilators.

◦ If we di�erentiate both sides 3 times (i.e., apply the di�erential operator D3 to both sides), in order
to get rid of the x2 term on the right-hand side then we get y(5) − y(3) = 0, which has characteristic
polynomial r5 − r3 = (r2 − 1) · (r3).

◦ Observe that this polynomial is the product of the characteristic polynomial r2−1 of the original equation
and the polynomial r3 corresponding to D3.

◦ Now y(5)−y(3) = 0 is homogeneous, so we can write down the general solution to obtain y = C1 +C2x+
C3x

2 + C4e
x + C5e

−x.

◦ Now we plug in: y′′ = 2C3 +C4e
x+C5e

−x so y′′−y = −C3x
2−C2x+(2C3−C1). Setting the coe�cients

equal gives C3 = −1, C2 = 0, C1 = −2, so the general solution is y = −x2 − 2 + C4e
−x + C5e

x .

• Example: Find the form of a solution to y′′ + y = x+ sin(x) using the method of annihilators.

◦ This is the same as the equation (D2 + 1) · y = x+ sin(x).

◦ We want to apply the operator D2 to get rid of the x term, and the operator D2 + 1 to get rid of the
sin(x) term.
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◦ The new di�erential equation, after we are done, is (D2 + 1)(D2)(D2 + 1) · y = 0.

◦ The characteristic polynomial is (r2 + 1)2r2, which has a double root at each of r = 0 and ±i.

◦ The general solution to the equation is thus y = C1 sin(x) + C2x sin(x) + C3 cos(x) + C4x cos(x) + C5 + C6x .

5.3.2 Variation of Parameters

• The method of undetermined coe�cients does not work for all possible nonhomogeneous linear di�erential
equations with constant coe�cients: it only works when the nonhomogeneous term Q(x) is a sum of products
of polynomials, exponentials, sines, and cosines.

◦ It cannot, for example, solve the di�erential equation y′′ + y = sec(x).

• There is a more robust method known as variation of parameters which can solve any nonhomogeneous linear
di�erential equation provided the solutions to the homogeneous equation are known. Here is the derivation
of the method:

◦ Suppose y1, · · · , yn are the n linearly independent solutions to the homogeneous equation y(n)+Pn(x) y(n−1)+
· · ·+ P2(x) y′ + P1(x) y = 0.

◦ We will look for functions v1, · · · , vn making yp = v1 · y1 + v2 · y2 + · · · + vn · yn a solution to the
nonhomogeneous equation y(n) + Pn(x) y(n−1) + · · ·+ P2(x) y′ + P1(x) y = Q(x).

◦ We do this by requiring v′1, v
′
2, · · · , v′n to satisfy the system of equations

v′1 · y1 + v′2 · y2 + · · ·+ v′n · yn = 0

v′1 · y′1 + v′2 · y′2 + · · ·+ v′n · y′n = 0

...
...

...

v′1 · y
(n−2)
1 + v′2 · y

(n−2)
2 + · · ·+ v′n · y(n−2)n = 0

v′1 · y
(n−1)
1 + v′2 · y

(n−1)
2 + · · ·+ v′n · y(n−1)n = Q(x).

◦ We choose these relations so that the kth derivative y
(k)
p is equal to v1 · y(k)1 + v2 · y(k)2 + · · ·+ vn · y(k)n for

0 ≤ k ≤ n−1, and so that y
(n)
p = Q(x)+v1 ·y(n)1 +v2 ·y(n)2 + · · ·+vn ·y(n)n . (It is straightforward to verify

these statements by di�erentiating the de�ning expressing for yp the appropriate number of times.)

◦ We can then do some algebra to see that y
(n)
p + Pn(x) y

(n−1)
p + · · ·+ P2(x) y′p + P1(x) yp = Q(x). (When

we add everything up we will get terms of the form vi(y
(n)
i + Pn(x) y

(n−1)
i + · · · + P2(x) y′i + P1(x) yi)

which are zero because yi is a solution to the homogeneous equation.)

◦ So all we need to do is solve the system of n linear equations for v′1, . . . , v
′
n above: we can either do

this directly using row-reduction, or we can use Cramer's rule to see that v′i =
Wi(x)

W (x)
where W is the

Wronskian of the functions y1, y2, · · · , yn and Wi is the same Wronskian determinant except with the

ith column replaced with the column vector


0
...
0

Q(x)

.
◦ We can then integrate to �nd each vi and thus obtain the solution to the system.

• Here is the general procedure for using variation of parameters to solve a nonhomogeneous equation y
(n)
p +

Pn(x) y
(n−1)
p + · · ·+ P2(x) y′p + P1(x) yp = Q(x):

◦ Step 1: Solve the corresponding homogeneous equation y(n) +Pn(x) y(n−1) + · · ·+P2(x) y′+P1(x) y = 0
and �nd n (linearly independent) solutions y1, · · · , yn.
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◦ Step 2: Find functions v1, · · · , vn making yp = v1·y1+v2·y2+· · ·+vn·yn a solution to the original equation:

the desired functions satisfy v′i =
Wi(x)

W (x)
, where W is the Wronskian of the functions y1, y2, · · · , yn and

Wi is the same Wronskian determinant except with the ith column replaced with


0
...
0

Q(x)

.
◦ Step 3: Write down the particular solution to the nonhomogeneous equation, yp = v1 · y1 + v2 · y2 + · · ·+ vn · yn .

◦ Step 4: If asked, add the particular solution to the general solution to the homogeneous equation, to �nd

all solutions of the nonhomogeneous equation. This will yield y = yp + C1y1 + · · ·+ Cnyn . Plug in any

extra conditions given to solve for coe�cients.

• Example: Find all functions y for which y′′ + y = sec(x) using variation of parameters.

◦ The homogeneous equation is y′′+y = 0 which has two independent solutions y1 = cos(x) and y2 = sin(x).

◦ Since Q(x) = sec(x), we can now compute the necessary determinants: W =

∣∣∣∣ cos(x) sin(x)
− sin(x) cos(x)

∣∣∣∣ = 1,

W1 =

∣∣∣∣ 0 sin(x)
sec(x) cos(x)

∣∣∣∣ = − sin(x) · sec(x), and W2 =

∣∣∣∣ cos(x) 0
− sin(x) sec(x)

∣∣∣∣ = cos(x) · sec(x) = 1.

◦ Plugging in to the formulas gives v′1 =
W1

W
= − sin(x)·sec(x) = − tan(x) and v′2 =

W2

W
= cos(x)·sec(x) =

1.

◦ Integrating the relations yields v1 = ln(cos(x)) and v2 = x, so we obtain the particular solution yp =
ln(cos(x)) · cos(x) + x · sin(x).

◦ The general solution is therefore y = [ln(cos(x)) · cos(x) + x · sin(x)] + C1 sin(x) + C2 cos(x) .

• Example: Find all functions y for which y′′′ − y′′ + y′ − y = ex using variation of parameters.

◦ The homogeneous equation is y′′′− y′′+ y′− y = 0 which has characteristic polynomial r3− r2 + r− 1 =
(r−1)(r2+1), so we can take the three independent solutions of the homogeneous equation as y1 = cos(x),
y2 = sin(x), and y3 = ex.

◦ Since Q(x) = ex, we can now compute the determinants W =

∣∣∣∣∣∣
cos(x) sin(x) ex

− sin(x) cos(x) ex

− cos(x) − sin(x) ex

∣∣∣∣∣∣ = 2ex, W1 =∣∣∣∣∣∣
0 sin(x) ex

0 cos(x) ex

ex − sin(x) ex

∣∣∣∣∣∣ = e2x(sin(x) − cos(x)), W2 =

∣∣∣∣∣∣
cos(x) 0 ex

− sin(x) 0 ex

− cos(x) ex ex

∣∣∣∣∣∣ = −e2x(cos(x) + sin(x)), and

�nally W3 =

∣∣∣∣∣∣
cos(x) sin(x) 0
− sin(x) cos(x) 0
− cos(x) − sin(x) ex

∣∣∣∣∣∣ = ex.

◦ Plugging in to the formulas gives v′1 =
1

2
ex(sin(x)− cos(x)), v′2 = −1

2
ex(cos(x) + sin(x)), and v′3 =

1

2
.

◦ Integrating yields v1 = −1

2
ex cos(x), v2 = −1

2
ex sin(x), and v3 =

1

2
x, so we obtain the particular solution

yp = −1

2
ex cos2(x)− 1

2
ex sin2(x) +

1

2
xex = −1

2
ex +

1

2
xex.

◦ The general solution is therefore y =
1

2
xex + C1 cos(x) + C2 sin(x) + C3e

x . (Note that we absorbed the

−1

2
ex term from the particular solution into C3e

x.)

◦ Note that we could also have used the method of undetermined coe�cients for this problem: it will, of
course, give the same answer.
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5.4 Applications of Second-Order Equations

• In this section, we will discuss applications of second-order di�erential equations to physics.

◦ In kinematics, the key ingredient is Newton's second law, which states that F = ma, where F is the total
sum of forces acting on an object whose mass is m and whose acceleration is a.

◦ By writing down all the forces acting on an object and relating them to the object's position and velocity,
we obtain a di�erential equation whose solution will characterize the object's motion.

◦ If the forces involved in the problem depend on an object's position, then the resulting di�erential
equation is second-order, since acceleration is the second derivative of position.

• The prototypical examples of this type are problems involving a spring, because Hooke's law dictates that the
restoring force of the spring is proportional to the displacement from equilibrium.

◦ Speci�cally, if a spring's displacement from equilibrium is x, then the restoring force is given by Fspring =
−kx for a constant k known as the �spring constant� (for that particular spring). The units of k are force
per distance.

◦ The basic setup of a typical spring problem is as follows: an object of mass m kg is attached to one end
of a spring with spring constant k N/m whose other end is �xed. The mass is displaced some distance dm
from the equilibrium position, and we wish to �nd the object's position x(t) as a function of time.

◦ We also assume that the object is sliding along a surface with constant damping coe�cient µ, meaning
that it applies a damping force Ffriction = −µv where v = x′ is the velocity of the object.

◦ Finally, we also include the possibility that a motor or other device imparts some additional nonconstant
force F = Q(t) (possibly varying with time) to the object.

◦ By Newton's second law, we therefore obtain the constant-coe�cient second-order linear di�erential
equationmx′′ = −kx−µx′+Q(t) for x, which we can rewrite in the more standard formmx′′+µx′+kx =
Q(t).

• In circuit analysis, the key ingredient is Kirchho�'s second law, which states that the total sum of the voltage
drops around any closed circuit is zero. In order to use this law, one needs to be given the values of voltage
drops across circuit components.

◦ Recall that q(t) denotes electrical charge measured in coulombs (C), and i(t) = dq/dt denotes electrical
current measured in amperes (A).

◦ A resistor will resist the �ow of charge through it in direct proportion to the current. Speci�cally, by
Ohm's law, the voltage drop across a resistor is ∆VR = Ri where R is the resistance in ohms (Ω).

◦ A capacitor will store charge and resist the passage of current in direct proportion to the amount of

electrical charge. The voltage drop across a capacitor is ∆VC =
1

C
q where C is the capacitance of the

capacitor in farads (F).

◦ An inductor will resist a change in the electrical current in direct proportion to the rate of change of the

current. The voltage drop across an inductor is ∆VL = L
di

dt
, where L is the inductance of the inductor

in henrys (H).

◦ A voltage source (such as a battery creating a direct current, or an alternator creating an alternating
current) will produce an electromotive force. The voltage drop across the source is equal to ∆VE = −E(t)
for some function E(t) in volts (V).

◦ Thus, in a simple RLC circuit, containing a resistor, capacitor, inductor, and a voltage source connected

in series in a circle, applying Kirchho�'s law immediately yields the relation L
di

dt
+Ri+

1

C
q = E(t).

◦ If we write everything in terms of q, we get a constant-coe�cient second-order linear di�erential equation

for q, namely L
d2q

dt2
+R

dq

dt
+

1

C
q = E(t).

• We therefore see that, for both of these problems, the resulting di�erential equation is a constant-coe�cient
second-order linear di�erential equation for the quantity we are interested in (either the position x or the
charge q), and so the two problems are, in fact, essentially equivalent.

• We will now focus only on studying spring problems, since their behavior is easier to visualize intuitively.
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5.4.1 Mechanical Oscillations

• Let us �rst treat the case of a spring-mass system with no damping:

• Example: An object of mass m kg is attached to a spring of spring constant k N/m whose other end is �xed.
The object is displaced a distance dm from the equilibrium position of the spring and is let go with velocity
v0 m/s towards equilibrium at time t = 0. If the object is restricted to sliding horizontally on a frictionless
surface, �nd its position as a function of time.

◦ Since there is no damping, from our analysis above the di�erential equation is mx′′ + kx = 0, where x
denotes the object's position relative to equilibrium.

◦ We also have the initial conditions x(0) = d and x′(0) = −v0: since positive displacement is in the
direction opposite equilibrium, the fact that the initial velocity is toward equilibrium indicates that x′(0)
is negative.

◦ We can then rewrite the di�erential equation in standard form x′′ +
k

m
x = 0.

◦ The characteristic equation is then r2 +
k

m
= 0 with roots r = ±

√
k

m
i, so the general solution is

x = C1 cos(ωt) + C2 sin(ωt) , where ω =

√
k

m
.

◦ The initial conditions give d = x(0) = C1 and −v0 = x′(0) = ωC2, so C1 = d and C2 = −v0/ω. Thus,

the solution we want is x = d · cos(ωt)− v0
ω
· sin(ωt) where ω =

√
k

m
.

◦ Note that the solution we have obtained makes sense in the context of this problem, since on a frictionless
surface we should expect that the object's motion would be purely oscillatory: it should just bounce back
and forth along the spring forever since there is nothing to slow its motion.

◦ We can even see that the form of the solution agrees with our intuition: the fact that the frequency

ω =

√
k

m
increases with bigger spring constant but decreases with bigger mass makes sense, as a stronger

spring (with larger k) should pull back harder on the object and cause it to oscillate more quickly, while
a heavier object should resist the spring's force and oscillate more slowly.

• Now let us examine the more general case of a mass attached to a spring sliding on a surface with friction,
but no external driving force:

• Example: An object of mass m kg is attached to a spring of spring constant k N/m whose other end is �xed.
The object is displaced from equilibrium and then released. If the object is restricted to sliding horizontally
on surface with damping coe�cient µ, describe its position qualitatively as a function of time.

◦ If the position is x(t), our earlier analysis with Newton's second law yields the di�erential equation
mx′′ + µx′ + kx = 0.

◦ The characteristic equation is then mr2 + µr + k = 0, whose roots are r = − µ

2m
±
√
µ2 − 4mk

2m
.

◦ Depending on the sign of the quantity µ2− 4mk under the square root, the values of r will take di�erent
forms and give di�erent types of solutions.

◦ Overdamped Case: If µ2 − 4mk > 0, the quadratic has two real roots (both negative) and we end
up with general solutions that are the sum of two exponentially-decaying functions: speci�cally, x =

C1e
−r1t + C2e

−r2t where r1 =
µ

2m
+

√
µ2 − 4mk

2m
and r2 =

µ

2m
−
√
µ2 − 4mk

2m
(note that r1 and r2 are

both positive). Physically, as we can see from the condition µ2 − 4mk > 0, this means we have �too
much� damping, since we can see from the form of the solution function that the position of the object
will just slide back towards its equilibrium at x = 0 without oscillating at all. This is known as the
�overdamped� case.
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◦ Critically Damped Case: If µ2 − 4mk = 0, the quadratic has a double root, and so the general solutions
have the form (C1 + C2t)e

−rt for a positive real number r, which when graphed is a slightly-slower-
decaying exponential function that still does not oscillate, but could possibly cross the position x = 0
once depending on the values of C1 and C2. This is known as the �critically damped� case.

◦ Underdamped Case: If µ2 − 4mk < 0 and µ > 0, the quadratic has two complex-conjugate roots and

we end up with general solutions of the form e−αt [C1 cos(ωt) + C2 sin(ωt)], where α =
µ

2m
and ω =√

4mk − µ2

2m
. When graphed, this is a sine curve times an exponentially-decaying function. Physically,

the position of the object will still tend toward x = 0, but the sine and cosine terms will ensure that it
continues oscillating: this means that there is some damping but not enough to eliminate the oscillations
entirely. This is known as the �underdamped� case.

◦ Undamped Case: If µ = 0, we saw earlier that the solutions are of the form y = C1 cos(ωt) + C2 sin(ωt)
where ω2 = k/m. Since there is no damping, this is referred to as the �undamped� case.

• If we have particular numbers we can write down the solutions more explicitly.

• Example: A 1-kilogram mass is attached to one end of a spring with spring constant 5N/m whose other end
is �xed. The mass is displaced 2 meters and then released from rest. If the object is restricted to sliding
horizontally on surface with damping coe�cient µ = 2, �nd the mass's position at time t seconds.

◦ From our analysis, we obtain the di�erential equation x′′ + 2x′ + 5x = 0, with initial condition x(0) = 2
meters and x′(0) = 0.

◦ The characteristic equation is r2 + 2r + 5 = 0, whose roots are r = −1± 2i.

◦ Thus, the general solution of the equation is x(t) = C1e
−t cos(2t) + C2e

−t sin(2t).

◦ Some arithmetic then gives x(0) = C1 and x′(0) = 2C2 − C1, so the initial conditions give C1 = 2 and
C2 = 1.

◦ Thus, the position at time t is x(t) = 2e−t cos(2t) + e−t sin(2t) .

5.4.2 Resonance and Forcing

• We can also study what happens in a spring-mass problem when we introduce an external driving force. It is
possible to write down the general solution to the equation mx′′ + µx′ + kx = A cos(αt+ ϕ) for an arbitrary
sinusoidal driving force A cos(αt + ϕ), but it is somewhat painful to analyze the solutions in full generality.
We will instead treat a few basic examples that give the general �avor of things:

• Example: An object of mass m is attached to a spring of spring constant k whose other end is �xed, and is
sliding on a frictionless surface at a frequency ω =

√
k/m. Examine what happens to the object's motion if

an external driving force Q(t) = A cos(ωt) is applied which oscillates at the same frequency ω.

◦ By our analysis above, the di�erential equation is m · x′′ + k · x = Q(t), where ω =
√
k/m.

◦ If we divide through by m and put in k = m · ω2 we get the simpler equation x′′ + ω2x =
A

m
cos(ωt).

◦ Now we use the method of undetermined coe�cients to �nd a solution to this di�erential equation.

◦ We would like to try something of the form x = D1 cos(ωt) +D2 sin(ωt), but this will not work because
functions of that form are already solutions to the homogeneous equation x′′ + ω2x = 0.

◦ Instead the method instructs that the appropriate solution will be of the form x = D1t · cos(ωt) +
D2t · sin(ωt). We can use a trigonometric formula (the sum-to-product formula) to rewrite this as

x = Dt · cos(ωt+ φ) , where φ is an appropriate �phase shift�. (We can solve for the coe�cients in terms

of A,m,ω but it will not be so useful.)

◦ We can see from this formula that as t grows, so does the �amplitude� Dt: in other words, as time goes
on, the object will continue oscillating with frequency ω around its equilibrium point, but the swings
back and forth will get larger and larger.
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• The phenomenon in the example above is called resonance: applying a driving force to a system at its natural
oscillation frequency will create a resonant e�ect that increases the amplitude in an unbounded manner.

◦ One can observe this phenomenon by sitting in a rocking chair or by swinging an object back and forth:
some experimentation will quickly reveal that the most e�ective way to rock the chair or swing the object
is to push back and forth at the same frequency at which the object is already moving.

• Example: Repeat the above analysis with an external force Q(t) = A cos(ω1t) oscillating at a frequency
ω1 6= ω.

◦ In this case (using the same argument as above) we have x′′ + ω2x =
A

m
cos(ω1t).

◦ The trial solution (again by undetermined coe�cients) is x(t) = B cos(ω1t), where B =
A/m

ω2 − ω2
1

.

◦ Thus the overall general solution is x =
A/m

ω2 − ω2
1

cos(ω1t) + C1 cos(ωt) + C2 sin(ωt) for some constants

C1 and C2 that depend on the initial conditions.

◦ As we can see, if ω1 and ω are far apart (i.e., the driving force is oscillating at a very di�erent frequency
from the frequency of the original system) then B will be small, and so the overall change B cos(ω1t)
that the driving force adds will be relatively small.

◦ However, if ω1 and ω are very close to one another (i.e., the driving force is oscillating at a frequency
close to that of the original system) then B will be large, and so the driving force will cause the system
to oscillate with a much bigger amplitude.

◦ As ω1 approaches ω, the amplitude B =
A/m

ω2 − ω2
1

will go to ∞, which agrees with the behavior seen in

the previous example where ω1 actually equals ω.

• Understanding how resonance arises (and how to minimize it!) is a very, very important application of
di�erential equations to structural engineering.

◦ A poor understanding of resonance is something which has caused a number of structural disasters:
ultimately, resonance caused the Broughton bridge to fall down in 1831, the Tacoma Narrows bridge to
collapse in 1940, Partnair Flight 394 to crash in 1989, and Seoul's Techno-Mart mall to be evacuated
in 2011. The particular culprits in those respective disasters were soldiers marching in lockstep, wind
vibrations, improperly calibrated aircraft parts, and an enthusiastic exercise class.

◦ As illustrated in the examples above, resonance arises when an external force acts on a system at (or
very close to) one of the system's �natural resonance frequencies�.

◦ Of course, resonance is not always bad. The idea of using the physical construction of an object to
magnify a small oscillation into a large one is the principle behind the construction of most musical
instruments, and is often also cited as the reason many people like to sing in the shower.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this
material without my express permission.
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