
Linear Algebra (part 3): Eigenvalues and Eigenvectors (by Evan Dummit, 2016, v. 2.00)
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4 Eigenvalues and Eigenvectors

• We have discussed quite extensively the correspondence between solving a system of homogeneous linear
equations and solving the matrix equation Ax = 0, for A an n × n matrix and x and 0 each n × 1 column
vectors.

• For reasons that will become more apparent soon, a more general version of this question which is also of
interest is to solve the matrix equation Ax = λx, where λ is a scalar. (The original �homogeneous system�
problem corresponds to λ = 0.)

• In the language of linear transformations, this says the following: given a linear transformation T : V → V
from a vector space V to itself, on what vectors x does T act as multiplication by a constant λ?

4.1 Eigenvalues, Eigenvectors, Characteristic Polynomials

• De�nition: For A an n × n matrix, a nonzero vector x with Ax = λx is called an eigenvector of A, and the
corresponding scalar λ is called an eigenvalue of A.

◦ Important note: We do not consider the zero vector 0 an eigenvector.

◦ Example: If A =

[
2 3
1 4

]
, the vector x =

[
1
1

]
is an eigenvector of A with eigenvalue 5, because

Ax =

[
2 3
1 4

] [
1
1

]
=

[
5
5

]
= 5x.

◦ Example: If A =

[
2 3
1 4

]
, the vector x =

[
3
−1

]
is an eigenvector of A with eigenvalue 1, because

Ax =

[
2 3
1 4

] [
3
−1

]
=

[
5
5

]
= 5x.

◦ Example: If A =

 2 −4 5
2 −2 5
2 1 2

, the vector x =

 1
2
2

 is an eigenvector of A with eigenvalue 4, because

Ax =

 2 −4 5
2 −2 5
2 1 2

 1
2
2

 =

 4
8
8

 = 4x.

• Eigenvalues and eigenvectors can also be complex numbers, even if the matrix A only has real-number entries.

◦ Example: If A =

[
2 −5
1 −2

]
, the vector x =

[
2 + i
1

]
is an eigenvector of A with eigenvalue i =

√
−1,

because Ax =

[
2 −5
1 −2

] [
2 + i
1

]
=

[
−1 + 2i

i

]
= ix.
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◦ Example: If A =

 6 3 −2
−2 0 0
6 4 2

, the vector x =

 1− i
2i
2

 is an eigenvector of A with eigenvalue 1+ i,

because Ax =

 6 3 −2
−2 0 0
6 4 −2

 1− i
2i
2

 =

 2
−2 + 2i
2 + 2i

 = (1 + i)x.

• It may at �rst seem that a given matrix may have many eigenvectors with many di�erent eigenvalues. But
in fact, any n × n matrix can only have a few eigenvalues, and there is a simple way to �nd them all using
determinants:

• Proposition (Finding Eigenvalues): If A is an n× n matrix, the real or complex number λ is an eigenvalue of
A if and only det(λI −A) = 0.

◦ Proof: Suppose λ is an eigenvalue with associated nonzero eigenvector x: this is equivalent to saying
Ax = λx.

◦ Next observe that λx = (λI)x where I is the n× n identity matrix.

◦ Therefore, we can rewrite the eigenvalue equation Ax = λx = (λI)x as (λI −A)x = 0.

◦ But from our study of homogeneous systems of linear equations, the matrix equation (λI −A)x = 0 has
a nonzero solution for x if and only if the matrix (λI − A) is not invertible, which is in turn equivalent
to saying that det(λI −A) = 0.

• When we expand the determinant det(tI −A), we will obtain a polynomial of degree n in the variable t.

• De�nition: For an n×nmatrixA, the degree-n polynomial p(t) = det(tI−A) is called the characteristic polynomial
of A, and its roots are precisely the eigenvalues of A.

◦ Some authors instead de�ne the characteristic polynomial as the determinant of the matrix A− tI rather
than tI −A. We de�ne it this way because then the coe�cient of tn will always be 1, rather than (−1)n.

• When searching for roots of polynomials of small degree, the following case of the rational root test is often
helpful.

• Proposition: Suppose the polynomial p(t) = tn+ · · ·+b has integer coe�cients and leading coe�cient 1. Then
any rational root of p(t) must be an integer that divides b.

◦ The proposition cuts down on the amount of trial and error necessary for �nding rational roots of
polynomials, since we only need to consider integers that divide the constant term.

◦ Of course, a generic polynomial will not have a rational root, so to compute eigenvalues in practice
one generally needs to use numerical approximations. (But we will arrange the examples so that the
polynomials will factor nicely.)

• Example: Find the eigenvalues of A =

[
3 1
2 4

]
.

◦ First we compute the characteristic polynomial det(tI −A) =
∣∣∣∣ t− 3 −1
−2 t− 4

∣∣∣∣ = t2 − 7t+ 10.

◦ The eigenvalues are then the zeroes of this polynomial. Since t2 − 7t + 10 = (t − 2)(t − 5) we see that

the zeroes are t = 2 and t = 5, meaning that the eigenvalues are 2 and 5 .

• Example: Find the eigenvalues of A =

 1 4
√
3

0 3 −8
0 0 π

.

◦ Observe that det(tI − A) =

∣∣∣∣∣∣
t− 1 −4 −

√
3

0 t− 3 8
0 0 t− π

∣∣∣∣∣∣ = (t − 1)(t − 3)(t − π) since the matrix is upper-

triangular. Thus, the eigenvalues are 1, 3, π .
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• The idea from the example above works in generality:

• Proposition (Eigenvalues of Triangular Matrix): The eigenvalues of an upper-triangular matrix or of a lower-
triangular matrix are its diagonal entries.

◦ Proof: If A is an n× n upper-triangular (or lower-triangular) matrix, then so is tI −A.
◦ Then by properties of determinants, det(tI−A) is equal to the product of the diagonal entries of tI−A.
◦ Since these diagonal entries are simply t− ai,i for 1 ≤ i ≤ n, the eigenvalues are ai,i for 1 ≤ i ≤ n, which
are simply the diagonal entries of A.

• It can happen that the characteristic polynomial has a repeated root. In such cases, it is customary to note
that the associated eigenvalue has �multiplicity� and include the eigenvalue the appropriate number of extra
times when listing them.

◦ For example, if a matrix has characteristic polynomial t2(t−1)3, we would say the eigenvalues are 0 with
multiplicity 2, and 1 with multiplicity 3. We would list the eigenvalues as λ = 0, 0, 1, 1, 1.

• Example: Find the eigenvalues of A =

 1 −1 0
1 3 0
0 0 0

.

◦ By expanding along the bottom row we see det(tI − A) =

∣∣∣∣∣∣
t− 1 1 0
−1 t− 3 0
0 0 t

∣∣∣∣∣∣ = t

∣∣∣∣ t− 1 1
−1 t− 3

∣∣∣∣ =
t(t2 − 4t+ 4).

◦ Since t2− 4t+4 = (t− 2)2 we see that the characteristic polynomial has a single root t = 0 and a double
root t = 2.

◦ Thus, A has an eigenvalue 0 of multiplicity 1 and an eigenvalue 2 of multiplicity 2. As a list, the
eigenvalues are λ = 0, 2, 2 .

• Example: Find the eigenvalues of A =

 1 1 0
0 1 1
0 0 1

.
◦ By expanding along the top row,

det(tI −A) =

∣∣∣∣∣∣
t− 1 −1 0
0 t− 1 −1
0 0 t− 1

∣∣∣∣∣∣
= (t− 1)

∣∣∣∣ t− 1 −1
0 t− 1

∣∣∣∣+ 1

∣∣∣∣ 0 −1
0 t− 1

∣∣∣∣
= (t− 1)(t− 1)2 = (t− 1)3.

◦ Thus, the characteristic polynomial has a triple root t = 1.

◦ Thus, A has an eigenvalue 1 of multiplicity 3. As a list, the eigenvalues are λ = 1, 1, 1 .

• Note also that the characteristic polynomial may have non-real numbers as roots.

◦ As we saw above, matrices with real entries may have non-real eigenvalues. Such non-real eigenvalues are
absolutely acceptable: the only wrinkle is that the eigenvectors for these eigenvalues will also necessarily
contain non-real entries.

◦ If A has real number entries, then because the characteristic polynomial of A is a polynomial with real
coe�cients, any non-real roots of the characteristic polynomial will come in complex conjugate pairs.

• Example: Find the eigenvalues of A =

[
1 1
−2 3

]
.
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◦ First we compute the characteristic polynomial det(tI −A) =
∣∣∣∣ t− 1 −1

2 t− 3

∣∣∣∣ = t2 − 4t+ 5.

◦ The eigenvalues are then the zeroes of this polynomial. By the quadratic formula, the roots are
4±
√
−4

2
= 2± i, so the eigenvalues are 2 + i and 2− i .

• Example: Find the eigenvalues of A =

 −1 2 −4
3 −2 1
4 −4 4

.
◦ By expanding along the top row,

det(tI −A) =

∣∣∣∣∣∣
t+ 1 −2 4
−3 t+ 2 −1
−4 4 t− 4

∣∣∣∣∣∣
= (t+ 1)

∣∣∣∣ t+ 2 −1
4 t− 4

∣∣∣∣+ 2

∣∣∣∣ −3 −1
−4 t− 4

∣∣∣∣+ 4

∣∣∣∣ −3 t+ 2
−4 4

∣∣∣∣
= (t+ 1)(t2 − 2t− 4) + 2(−3t+ 8) + 4(4t− 4)

= t3 − t2 + 4t− 4.

◦ To �nd the roots, we wish to solve the cubic equation t3 − t2 + 4t− 4 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −4:
that is, one of ±1, ±2, ±4. Testing the possibilities reveals that t = 1 is a root, and then we get the
factorization (t− 1)(t2 + 4) = 0.

◦ The roots of the quadratic are t = ±2i, so the eigenvalues are 1, 2i, −2i .

4.2 Eigenspaces

• Using the characteristic polynomial, we can �nd all the eigenvalues of a matrix A without actually determining
the associated eigenvectors. However, we often also want to �nd the eigenvectors associated to each eigenvalue.

• We might hope that there is a straightforward way to describe all the eigenvectors, and (conveniently) there
is: the set of all eigenvectors with a particular eigenvalue λ has a vector space structure.

• Proposition: For a �xed value of λ, the set Sλ whose elements are the eigenvectors x with Ax = λx, together
with the zero vector, is a subspace of V = Rn (thought of as n× 1 column vectors). This set Sλ is called the
eigenspace associated to the eigenvalue λ, or the λ-eigenspace.

◦ Proof: Notice that because we explicitly included the zero vector, Sλ is simply the set of all vectors such
that Av = λv. Now we simply check the subspace criterion:

◦ [S1]: Sλ contains the zero vector.

◦ [S2]: Sλ is closed under addition, because if Ax1 = λx1 and Ax2 = λx2, then A(x1 + x2) = λ(x1 + x2).

◦ [S3]: Sλ is closed under scalar multiplication, because if Ax = λx, then for any scalar β, A(βx) =
β(Ax) = β(λx) = λ(βx).

• Example: Find the 1-eigenspaces, and their dimensions, for A =

[
1 0
0 1

]
and B =

[
1 1
0 1

]
.

◦ For the 1-eigenspace of A, we want to �nd all vectors with

[
1 0
0 1

] [
a
b

]
=

[
a
b

]
.

◦ Clearly, all vectors satisfy this equation, so the 1-eigenspace of A is the set of all vectors

[
a
b

]
, and

has dimension 2.
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◦ For the 1-eigenspace of B, we want to �nd all vectors with

[
1 1
0 1

] [
a
b

]
=

[
a
b

]
, or equivalently,[

a+ b
b

]
=

[
a
b

]
.

◦ The vectors satisfying the equation are those with b = 0, so the 1-eigenspace of B is the set of vectors of

the form

[
a
0

]
, and has dimension 1.

◦ Notice that the characteristic polynomial of each matrix is (t − 1)2, since both matrices are upper-
triangular, and they both have a single eigenvalue λ = 1 of multiplicity 2. Nonetheless, the matrices do
not have the same eigenvectors, and the dimensions of their 1-eigenspaces are di�erent.

• Now, since the λ-eigenspace is a vector space, if we want to describe all eigenvectors for a given eigenvalue λ,
we can simply �nd a basis for the λ-eigenspace.

◦ For each eigenvalue λ, our goal is to solve for all vectors x satisfying Ax = λx.

◦ Equivalently, we wish to �nd the vectors x satisfying the matrix equation (λI −A)x = 0, which (per our
analysis of systems of linear equations) can be done by row-reducing the matrix λI − A. We have also
described the procedure for extracting a basis for the solution set.

◦ The resulting solution vectors x form the eigenspace associated to λ, and the nonzero vectors in the
space are the eigenvectors corresponding to λ.

• To �nd all the eigenvalues and eigenvectors of a matrix A, follow these steps:

◦ Step 1: Write down the matrix tI − A and compute its determinant (using any method) to obtain the
characteristic polynomial p(t).

◦ Step 2: Set p(t) equal to zero and solve. The roots are precisely the eigenvalues λ of A.

◦ Step 3: For each eigenvalue λ, solve for all vectors x satisfying Ax = λx: this is the set of solutions to
(λI −A)x = 0, which is equivalent to the nullspace of λI −A and may be computed by row-reduction.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
2 2
3 1

]
.

◦ We have tI −A =

[
t− 2 −2
−3 t− 1

]
, so p(t) = det(tI −A) = (t− 2)(t− 1)− (−2)(−3) = t2 − 3t− 4.

◦ Since p(t) = t2 − 3t− 4 = (t− 4)(t+ 1), the eigenvalues are λ = −1, 4 .

◦ For λ = −1, we want to �nd the nullspace of

[
−1− 2 −2
−3 −1− 1

]
=

[
−3 −2
−3 −2

]
. By row-reducing we

�nd the row-echelon form is

[
−3 −2
0 0

]
, so the nullspace is 1-dimensional and is spanned by

[
−2
3

]
.

◦ For λ = 4, we want to �nd the nullspace of

[
4− 2 −2
−3 4− 1

]
=

[
2 −2
−3 3

]
. By row-reducing we �nd

the row-echelon form is

[
1 −1
0 0

]
, so the nullspace is 1-dimensional and is spanned by

[
1
1

]
.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 1 0 1
−1 1 3
−1 0 3

.

◦ First, we have tI−A =

 t− 1 0 −1
1 t− 1 −3
1 0 t− 3

, so p(t) = (t−1) ·
∣∣∣∣ t− 1 −3

0 t− 3

∣∣∣∣+(−1) ·
∣∣∣∣ 1 t− 1
1 0

∣∣∣∣ =
(t− 1)2(t− 3) + (t− 1).
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◦ Since p(t) = (t− 1) · [(t− 1)(t− 3) + 1] = (t− 1)(t− 2)2, the eigenvalues are λ = 1, 2, 2 .

◦ For λ = 1 we want to �nd the nullspace of

 1− 1 0 −1
1 1− 1 −3
1 0 1− 3

 =

 0 0 −1
1 0 −3
1 0 −3

. This matrix's

reduced row-echelon form is

 1 0 0
0 0 1
0 0 0

, so the nullspace is 1-dimensional and spanned by

 0
1
0

 .
◦ For λ = 2 we want to �nd the nullspace of

 2− 1 0 −1
1 2− 1 −3
1 0 2− 3

 =

 1 0 −1
1 1 −3
1 0 −1

. This matrix's

reduced row-echelon form is

 1 0 −1
0 1 −2
0 0 0

, so the nullspace is 1-dimensional and spanned by

 1
2
1

 .

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 0 0 0
1 0 −1
0 1 0

.

◦ We have tI −A =

 t 0 0
−1 t 1
0 −1 t

, so p(t) = det(tI −A) = t ·
∣∣∣∣ t 1
−1 t

∣∣∣∣ = t · (t2 + 1).

◦ Since p(t) = t · (t2 + 1), the eigenvalues are λ = 0, i, −i .

◦ For λ = 0 we want to �nd the nullspace of

 0 0 0
−1 0 1
0 −1 0

. This matrix's reduced row-echelon form is

 1 0 −1
0 1 0
0 0 0

, so the nullspace is 1-dimensional and spanned by

 1
0
1

 .
◦ For λ = i we want to �nd the nullspace of

 i 0 0
−1 i 1
0 −1 i

. This matrix's reduced row-echelon form is

 1 0 0
0 1 −i
0 0 0

, so the nullspace is 1-dimensional and spanned by

 0
i
1

 .
◦ For λ = −i we want to �nd the nullspace of

 −i 0 0
−1 −i 1
0 −1 −i

. This matrix's reduced row-echelon form

is

 1 0 0
0 1 i
0 0 0

, so the nullspace is 1-dimensional and spanned by

 0
−i
1

 .
• Notice that in the example above, with a real matrix having complex-conjugate eigenvalues, the associated
eigenvectors were also complex conjugates. This is no accident:

• Proposition (Conjugate Eigenvalues): If A is a real matrix and v is an eigenvector with a complex eigenvalue
λ, then the complex conjugate v is an eigenvector with eigenvalue λ. In particular, a basis for the λ-eigenspace
is given by the set of complex conjugates of a basis for the λ-eigenspace.

◦ Proof: The �rst statement follows from the observation that the complex conjugate of a product or sum
is the appropriate product or sum of complex conjugates, so if A and B are any matrices of compatible
sizes for multiplication, we have A ·B = A · B.
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◦ Thus, if Av = λv, taking complex conjugates gives Av = λv, and since A = A because A is a real
matrix, we see Av = λv: thus, v is an eigenvector with eigenvalue λ.

◦ The second statement follows from the �rst, since complex conjugation does not a�ect linear independence
or dimension.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

[
3 −1
2 5

]
.

◦ We have tI −A =

[
t− 3 1
−2 t− 5

]
, so p(t) = det(tI −A) = (t− 3)(t− 5)− (−2)(1) = t2 − 8t+ 17.

◦ Using the quadratic equation yields that the eigenvalues are λ = 4± i .

◦ For λ = 4+ i, we want to �nd the nullspace of

[
t− 3 1
−2 t− 5

]
=

[
1 + i 1
−2 −1 + i

]
. Row-reducing this

matrix yields [
1 + i 1
−2 −1 + i

]
R2+(1−i)R1−−−−−−−−→

[
1 + i 1
0 0

]

from which we can see that the eigenspace is 1-dimensional and spanned by

[
1

−1− i

]
.

◦ For λ = 4 − i we can simply take the conjugate of the calculation we made for λ = 4 + i: thus, the

(4− i)-eigenspace is also 1-dimensional and spanned by

[
1

−1 + i

]
.

• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix A =

 5 −4 −6
2 1 −2
2 −3 −3

.
◦ We have tI−A =

 t− 5 4 6
−2 t− 1 2
−2 3 t+ 3

, so det(tI−A) = (t−5)(t2+2t−9)−4(−2t−2)+6(2t−8) =

t3 − 3t2 + t+ 5.

◦ Searching for small rational roots produces the root t = −1, and factoring yields t3 − 3t2 + t + 5 =

(t+ 1)(t2 − 4t+ 5). The roots of the quadratic are 2± i, so λ = −1, 2 + i, 2− i .

◦ For λ = −1 we want to �nd the nullspace of

 λ− 5 4 6
−2 λ− 1 2
−2 3 λ+ 3

 =

 −6 4 6
−2 −2 2
−2 3 2

. This matrix's

reduced row-echelon form is

 1 0 −1
0 1 0
0 0 0

, so the nullspace is 1-dimensional and spanned by

 1
0
1

 .
◦ For λ = 2 + i we want to �nd the nullspace of

 λ− 5 4 6
−2 λ− 1 2
−2 3 λ+ 3

 =

 −3 + i 4 6
−2 1 + i 2
−2 3 5 + i

.
Row-reducing this matrix yields −3 + i 4 6

−2 1 + i 2
−2 3 5 + i

 −1+i
2 R2−−−−−→

 −3 + i 4 6
1− i −1 −1 + i
−2 3 5 + i

 R1+(2+i)R2−−−−−−−−→
R3+(1+i)R2

 0 2− i 3 + i
1− i −1 −1 + i
0 2− i 3 + i


R1−R3−−−−−→

 0 2− i 3 + i
1− i −1 −1 + i
0 0 0

 2+i
5 R1−−−−→

 0 1 1 + i
1− i −1 −1 + i
0 0 0

 R2+R1−−−−−→

 0 1 1 + i
1− i 0 2i
0 0 0


1+i
2 R2−−−−→

 0 1 1 + i
1 0 −1 + i
0 0 0

 R1↔R2−−−−−→

 1 0 −1 + i
0 1 1 + i
0 0 0
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from which we see that the nullspace is 1-dimensional and spanned by

 1− i
−1− i

1

 .
◦ For λ = 2 − i we can simply take the conjugate of the calculation we made for λ = 2 + i: thus, the

(2− i)-eigenspace is also 1-dimensional and spanned by

 1 + i
−1 + i

1

 .

4.3 Additional Properties of Eigenvalues

• We will now mention a few useful theoretical results about eigenvalues, eigenvectors, and eigenspaces.

• Theorem (Eigenvalue Multiplicity): If λ is an eigenvalue of the matrix A which appears exactly k times as a
root of the characteristic polynomial, then the dimension of the eigenspace corresponding to λ is at least 1
and at most k.

◦ Remark: The number of times that λ appears as a root of the characteristic polynomial is sometimes called
the �algebraic multiplicity� of λ, and the dimension of the eigenspace corresponding to λ is sometimes
called the �geometric multiplicity� of λ. In this language, the theorem above says that the geometric
multiplicity is less than or equal to the algebraic multiplicity.

◦ Example: If the characteristic polynomial of a matrix is (t − 1)3(t − 3)2, then the eigenspace for λ = 1
is at most 3-dimensional, and the eigenspace for λ = 3 is at most 2-dimensional.

◦ Proof: The statement that the eigenspace has dimension at least 1 is immediate, because (by assumption)
λ is a root of the characteristic polynomial and therefore has at least one nonzero eigenvector associated
to it.

◦ For the other statement, observe that the dimension of the λ-eigenspace is the dimension of the solution
space of the homogeneous system (λI −A) · x = 0. (Equivalently, it is the dimension of the nullspace of
the matrix λI −A.)
◦ If λ appears k times as a root of the characteristic polynomial, then when we put the matrix λI −A into
its reduced row-echelon form B, we claim that B must have at most k rows of all zeroes.

◦ Otherwise, the matrix B (and hence λI −A too, since the nullity and rank of a matrix are not changed
by row operations) would have 0 as an eigenvalue more than k times, because B is in echelon form and
therefore upper-triangular.

◦ But the number of rows of all zeroes in a square matrix in reduced row-echelon form is the same as
the number of nonpivotal columns, which is the number of free variables, which is the dimension of the
solution space.

◦ So, putting all the statements together, we see that the dimension of the eigenspace is at most k.

• Theorem (Independent Eigenvectors): If v1,v2, . . . ,vn are eigenvectors of A associated to distinct eigenvalues
λ1, λ2, . . . , λn, then v1,v2, . . . ,vn are linearly independent.

◦ Proof: Suppose we had a nontrivial dependence relation between v1, . . . ,vn, say a1v1 + · · ·+ anvn = 0.
(Note that at least two coe�cients have to be nonzero, because none of v1, . . . ,vn is the zero vector.)

◦ Multiply both sides by the matrix A: this gives A · (a1v1 + · · ·+ anvn) = A · 0 = 0.

◦ Now since v1, . . . ,vn are eigenvectors this says a1(λ1v1) + · · ·+ an(λnvn) = 0.

◦ But now if we scale the original equation by λ1 and subtract (to eliminate v1), we obtain a2(λ2−λ1)v2+
a3(λ3 − λ1)v3 + · · ·+ an(λn − λ1)vn = 0.

◦ Since by assumption all of the eigenvalues λ1, λ2, . . . , λn were di�erent, this dependence is still nontrivial,
since each of λj − λ1 is nonzero, and at least one of a2, · · · , an is nonzero.

◦ But now we can repeat the process to eliminate each of v2, v3, . . . , vn−1 in turn. Eventually we are left
with the equation bvn = 0 for some nonzero b. But this is impossible, because it would say that vn = 0,
contradicting our de�nition saying that the zero vector is not an eigenvector.
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◦ So there cannot be a nontrivial dependence relation, meaning that v1, . . . ,vn are linearly independent.

• Corollary: If A is an n × n matrix with n distinct eigenvalues λ1, λ2, . . . , λn, and v1,v2, . . . ,vn are (any)
eigenvectors associated to those respective eigenvalues, then v1,v2, . . . ,vn form a basis for Rn.

◦ This result follows from the previous theorem: it guarantees that the n vectors v1,v2, . . . ,vn are linearly
independent, so they must be a basis of the n-dimensional vector space Rn.

• Theorem (Eigenvalues, Trace, and Determinant): The product of the eigenvalues of A is the determinant of
A, and the sum of the eigenvalues of A equals the trace of A.

◦ Recall that the trace of a matrix is de�ned to be the sum of its diagonal entries.

◦ Proof: Let p(t) be the characteristic polynomial of A.

◦ If we expand out the product p(t) = (t− λ1) · (t− λ2) · · · (t− λn), we see that the constant term is equal
to (−1)nλ1λ2 · · ·λn.
◦ But the constant term is also just p(0), and since p(t) = det(tI − A) we have p(0) = det(−A) =
(−1)n det(A): thus, λ1λ2 · · ·λn = det(A).

◦ Furthermore, upon expanding out the product p(t) = (t − λ1) · (t − λ2) · · · (t − λn), we see that the
coe�cient of tn−1 is equal to −(λ1 + · · ·+ λn).

◦ If we expand out the determinant det(tI − A) to �nd the coe�cient of tn−1, we can show (with a little
bit of e�ort) that the coe�cient is the negative of the sum of the diagonal entries of A.

◦ Thus, setting the two expressions equal shows that the sum of the eigenvalues equals the trace of A.

• Example: Find the eigenvalues of the matrix A =

 2 1 1
−2 −1 −2
2 2 −3

, and verify the formulas for trace and

determinant in terms of the eigenvalues.

◦ By expanding along the top row, we can compute

det(tI −A) = (t− 2)

∣∣∣∣ t+ 1 2
−2 t+ 3

∣∣∣∣− (−1)
∣∣∣∣ 2 2
−2 t+ 3

∣∣∣∣+ (−1)
∣∣∣∣ 2 t+ 1
−2 −2

∣∣∣∣
= (t− 2)(t2 + 4t+ 7) + (2t+ 10)− (2t− 2) = t3 + 2t2 − t− 2.

◦ To �nd the eigenvalues, we wish to solve the cubic equation t3 + 2t2 − t− 2 = 0.

◦ By the rational root test, if the polynomial has a rational root then it must be an integer dividing −2:
that is, one of ±1, ±2. Testing the possibilities reveals that t = 1, t = −1, and t = −2 are each roots,
from which we obtain the factorization (t− 1)(t+ 1)(t+ 2) = 0.

◦ Thus, the eigenvalues are t = −2,−1, 1.
◦ We see that tr(A) = 2 + (−1) + (−3) = −2, while the sum of the eigenvalues is (−2) + (−1) + 1 = −2.
They are indeed equal.

◦ For the determinant, we compute

det(A) = 2

∣∣∣∣ −1 −2
2 −3

∣∣∣∣− 1

∣∣∣∣ −2 −2
2 −3

∣∣∣∣+ 1

∣∣∣∣ −2 −1
2 2

∣∣∣∣
= 2(7)− 1(10) + 1(−2) = 2.

The product of the eigenvalues is (−2)(−1)(1) = 2, so the result holds as claimed.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this
material without my express permission.

9


