Contents

4 Eigenvalues and Eigenvectors 1
4.1 Eigenvalues, Eigenvectors, Characteristic Polynomials 1
4.2 Eigenspaces 4
4.3 Additional Properties of Eigenvalues 8

4 Eigenvalues and Eigenvectors

- We have discussed quite extensively the correspondence between solving a system of homogeneous linear equations and solving the matrix equation $A \mathbf{x}=\mathbf{0}$, for A an $n \times n$ matrix and \mathbf{x} and $\mathbf{0}$ each $n \times 1$ column vectors.
- For reasons that will become more apparent soon, a more general version of this question which is also of interest is to solve the matrix equation $A \mathbf{x}=\lambda \mathbf{x}$, where λ is a scalar. (The original "homogeneous system" problem corresponds to $\lambda=0$.)
- In the language of linear transformations, this says the following: given a linear transformation $T: V \rightarrow V$ from a vector space V to itself, on what vectors \mathbf{x} does T act as multiplication by a constant λ ?

4.1 Eigenvalues, Eigenvectors, Characteristic Polynomials

- Definition: For A an $n \times n$ matrix, a nonzero vector \mathbf{x} with $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvector of A, and the corresponding scalar λ is called an eigenvalue of A.
- Important note: We do not consider the zero vector $\mathbf{0}$ an eigenvector.
- Example: If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$, the vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue 5 , because $A \mathbf{x}=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5\end{array}\right]=5 \mathbf{x}$.
- Example: If $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$, the vector $\mathbf{x}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$ is an eigenvector of A with eigenvalue 1 , because $A \mathbf{x}=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]=\left[\begin{array}{l}5 \\ 5\end{array}\right]=5 \mathbf{x}$.
- Example: If $A=\left[\begin{array}{ccc}2 & -4 & 5 \\ 2 & -2 & 5 \\ 2 & 1 & 2\end{array}\right]$, the vector $\mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ is an eigenvector of A with eigenvalue 4 , because $A \mathbf{x}=\left[\begin{array}{ccc}2 & -4 & 5 \\ 2 & -2 & 5 \\ 2 & 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{l}4 \\ 8 \\ 8\end{array}\right]=4 \mathbf{x}$.
- Eigenvalues and eigenvectors can also be complex numbers, even if the matrix A only has real-number entries.
- Example: If $A=\left[\begin{array}{cc}2 & -5 \\ 1 & -2\end{array}\right]$, the vector $\mathbf{x}=\left[\begin{array}{c}2+i \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue $i=\sqrt{-1}$, because $A \mathbf{x}=\left[\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right]\left[\begin{array}{c}2+i \\ 1\end{array}\right]=\left[\begin{array}{c}-1+2 i \\ i\end{array}\right]=i \mathbf{x}$.
- Example: If $A=\left[\begin{array}{ccc}6 & 3 & -2 \\ -2 & 0 & 0 \\ 6 & 4 & 2\end{array}\right]$, the vector $\mathbf{x}=\left[\begin{array}{c}1-i \\ 2 i \\ 2\end{array}\right]$ is an eigenvector of A with eigenvalue $1+i$, because $A \mathbf{x}=\left[\begin{array}{ccc}6 & 3 & -2 \\ -2 & 0 & 0 \\ 6 & 4 & -2\end{array}\right]\left[\begin{array}{c}1-i \\ 2 i \\ 2\end{array}\right]=\left[\begin{array}{c}2 \\ -2+2 i \\ 2+2 i\end{array}\right]=(1+i) \mathbf{x}$.
- It may at first seem that a given matrix may have many eigenvectors with many different eigenvalues. But in fact, any $n \times n$ matrix can only have a few eigenvalues, and there is a simple way to find them all using determinants:
- Proposition (Finding Eigenvalues): If A is an $n \times n$ matrix, the real or complex number λ is an eigenvalue of A if and only $\operatorname{det}(\lambda I-A)=0$.
- Proof: Suppose λ is an eigenvalue with associated nonzero eigenvector \mathbf{x} : this is equivalent to saying $A \mathrm{x}=\lambda \mathrm{x}$.
- Next observe that $\lambda \mathbf{x}=(\lambda I) \mathbf{x}$ where I is the $n \times n$ identity matrix.
- Therefore, we can rewrite the eigenvalue equation $A \mathbf{x}=\lambda \mathbf{x}=(\lambda I) \mathbf{x}$ as $(\lambda I-A) \mathbf{x}=\mathbf{0}$.
- But from our study of homogeneous systems of linear equations, the matrix equation $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has a nonzero solution for \mathbf{x} if and only if the matrix $(\lambda I-A)$ is not invertible, which is in turn equivalent to saying that $\operatorname{det}(\lambda I-A)=0$.
- When we expand the determinant $\operatorname{det}(t I-A)$, we will obtain a polynomial of degree n in the variable t.
- Definition: For an $n \times n$ matrix A, the degree- n polynomial $p(t)=\operatorname{det}(t I-A)$ is called the characteristic polynomial of A, and its roots are precisely the eigenvalues of A.
- Some authors instead define the characteristic polynomial as the determinant of the matrix $A-t I$ rather than $t I-A$. We define it this way because then the coefficient of t^{n} will always be 1 , rather than $(-1)^{n}$.
- When searching for roots of polynomials of small degree, the following case of the rational root test is often helpful.
- Proposition: Suppose the polynomial $p(t)=t^{n}+\cdots+b$ has integer coefficients and leading coefficient 1. Then any rational root of $p(t)$ must be an integer that divides b.
- The proposition cuts down on the amount of trial and error necessary for finding rational roots of polynomials, since we only need to consider integers that divide the constant term.
- Of course, a generic polynomial will not have a rational root, so to compute eigenvalues in practice one generally needs to use numerical approximations. (But we will arrange the examples so that the polynomials will factor nicely.)
- Example: Find the eigenvalues of $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$.
- First we compute the characteristic polynomial $\operatorname{det}(t I-A)=\left|\begin{array}{cc}t-3 & -1 \\ -2 & t-4\end{array}\right|=t^{2}-7 t+10$.
- The eigenvalues are then the zeroes of this polynomial. Since $t^{2}-7 t+10=(t-2)(t-5)$ we see that the zeroes are $t=2$ and $t=5$, meaning that the eigenvalues are 2 and 5 .
- Example: Find the eigenvalues of $A=\left[\begin{array}{ccc}1 & 4 & \sqrt{3} \\ 0 & 3 & -8 \\ 0 & 0 & \pi\end{array}\right]$.
- Observe that $\operatorname{det}(t I-A)=\left|\begin{array}{ccc}t-1 & -4 & -\sqrt{3} \\ 0 & t-3 & 8 \\ 0 & 0 & t-\pi\end{array}\right|=(t-1)(t-3)(t-\pi)$ since the matrix is uppertriangular. Thus, the eigenvalues are $1,3, \pi$.
- The idea from the example above works in generality:
- Proposition (Eigenvalues of Triangular Matrix): The eigenvalues of an upper-triangular matrix or of a lowertriangular matrix are its diagonal entries.
- Proof: If A is an $n \times n$ upper-triangular (or lower-triangular) matrix, then so is $t I-A$.
- Then by properties of determinants, $\operatorname{det}(t I-A)$ is equal to the product of the diagonal entries of $t I-A$.
- Since these diagonal entries are simply $t-a_{i, i}$ for $1 \leq i \leq n$, the eigenvalues are $a_{i, i}$ for $1 \leq i \leq n$, which are simply the diagonal entries of A.
- It can happen that the characteristic polynomial has a repeated root. In such cases, it is customary to note that the associated eigenvalue has "multiplicity" and include the eigenvalue the appropriate number of extra times when listing them.
- For example, if a matrix has characteristic polynomial $t^{2}(t-1)^{3}$, we would say the eigenvalues are 0 with multiplicity 2 , and 1 with multiplicity 3 . We would list the eigenvalues as $\lambda=0,0,1,1,1$.
- Example: Find the eigenvalues of $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$.
- By expanding along the bottom row we see $\operatorname{det}(t I-A)=\left|\begin{array}{ccc}t-1 & 1 & 0 \\ -1 & t-3 & 0 \\ 0 & 0 & t\end{array}\right|=t\left|\begin{array}{cc}t-1 & 1 \\ -1 & t-3\end{array}\right|=$ $t\left(t^{2}-4 t+4\right)$.
- Since $t^{2}-4 t+4=(t-2)^{2}$ we see that the characteristic polynomial has a single root $t=0$ and a double root $t=2$.
- Thus, A has an eigenvalue 0 of multiplicity 1 and an eigenvalue 2 of multiplicity 2 . As a list, the eigenvalues are $\lambda=0,2,2$.
- Example: Find the eigenvalues of $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$.
- By expanding along the top row,

$$
\begin{aligned}
\operatorname{det}(t I-A) & =\left|\begin{array}{ccc}
t-1 & -1 & 0 \\
0 & t-1 & -1 \\
0 & 0 & t-1
\end{array}\right| \\
& =(t-1)\left|\begin{array}{cc}
t-1 & -1 \\
0 & t-1
\end{array}\right|+1\left|\begin{array}{cc}
0 & -1 \\
0 & t-1
\end{array}\right| \\
& =(t-1)(t-1)^{2}=(t-1)^{3}
\end{aligned}
$$

- Thus, the characteristic polynomial has a triple root $t=1$.
- Thus, A has an eigenvalue 1 of multiplicity 3 . As a list, the eigenvalues are $\lambda=1,1,1$.
- Note also that the characteristic polynomial may have non-real numbers as roots.
- As we saw above, matrices with real entries may have non-real eigenvalues. Such non-real eigenvalues are absolutely acceptable: the only wrinkle is that the eigenvectors for these eigenvalues will also necessarily contain non-real entries.
- If A has real number entries, then because the characteristic polynomial of A is a polynomial with real coefficients, any non-real roots of the characteristic polynomial will come in complex conjugate pairs.
- Example: Find the eigenvalues of $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 3\end{array}\right]$.
- First we compute the characteristic polynomial $\operatorname{det}(t I-A)=\left|\begin{array}{cc}t-1 & -1 \\ 2 & t-3\end{array}\right|=t^{2}-4 t+5$.
- The eigenvalues are then the zeroes of this polynomial. By the quadratic formula, the roots are $\frac{4 \pm \sqrt{-4}}{2}=2 \pm i$, so the eigenvalues are $2+i$ and $2-i$.
- Example: Find the eigenvalues of $A=\left[\begin{array}{ccc}-1 & 2 & -4 \\ 3 & -2 & 1 \\ 4 & -4 & 4\end{array}\right]$.
- By expanding along the top row,

$$
\begin{aligned}
\operatorname{det}(t I-A) & =\left|\begin{array}{ccc}
t+1 & -2 & 4 \\
-3 & t+2 & -1 \\
-4 & 4 & t-4
\end{array}\right| \\
& =(t+1)\left|\begin{array}{cc}
t+2 & -1 \\
4 & t-4
\end{array}\right|+2\left|\begin{array}{cc}
-3 & -1 \\
-4 & t-4
\end{array}\right|+4\left|\begin{array}{cc}
-3 & t+2 \\
-4 & 4
\end{array}\right| \\
& =(t+1)\left(t^{2}-2 t-4\right)+2(-3 t+8)+4(4 t-4) \\
& =t^{3}-t^{2}+4 t-4
\end{aligned}
$$

- To find the roots, we wish to solve the cubic equation $t^{3}-t^{2}+4 t-4=0$.
- By the rational root test, if the polynomial has a rational root then it must be an integer dividing -4 : that is, one of $\pm 1, \pm 2, \pm 4$. Testing the possibilities reveals that $t=1$ is a root, and then we get the factorization $(t-1)\left(t^{2}+4\right)=0$.
- The roots of the quadratic are $t= \pm 2 i$, so the eigenvalues are $1,2 i,-2 i$.

4.2 Eigenspaces

- Using the characteristic polynomial, we can find all the eigenvalues of a matrix A without actually determining the associated eigenvectors. However, we often also want to find the eigenvectors associated to each eigenvalue.
- We might hope that there is a straightforward way to describe all the eigenvectors, and (conveniently) there is: the set of all eigenvectors with a particular eigenvalue λ has a vector space structure.
- Proposition: For a fixed value of λ, the set S_{λ} whose elements are the eigenvectors \mathbf{x} with $A \mathbf{x}=\lambda \mathbf{x}$, together with the zero vector, is a subspace of $V=\mathbb{R}^{n}$ (thought of as $n \times 1$ column vectors). This set S_{λ} is called the eigenspace associated to the eigenvalue λ, or the $\underline{\lambda \text {-eigenspace. }}$
- Proof: Notice that because we explicitly included the zero vector, S_{λ} is simply the set of all vectors such that $A \mathbf{v}=\lambda \mathbf{v}$. Now we simply check the subspace criterion:
- [S1]: S_{λ} contains the zero vector.
- [S2]: S_{λ} is closed under addition, because if $A \mathbf{x}_{1}=\lambda \mathbf{x}_{1}$ and $A \mathbf{x}_{2}=\lambda \mathbf{x}_{2}$, then $A\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\lambda\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)$.
- [S3]: S_{λ} is closed under scalar multiplication, because if $A \mathbf{x}=\lambda \mathbf{x}$, then for any scalar $\beta, A(\beta \mathbf{x})=$ $\beta(A \mathbf{x})=\beta(\lambda \mathbf{x})=\lambda(\beta \mathbf{x})$.
- Example: Find the 1-eigenspaces, and their dimensions, for $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
- For the 1-eigenspace of A, we want to find all vectors with $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$.
- Clearly, all vectors satisfy this equation, so the 1-eigenspace of A is the set of all vectors $\left[\begin{array}{l}a \\ b\end{array}\right]$, and has dimension 2.
- For the 1-eigenspace of B, we want to find all vectors with $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$, or equivalently, $\left[\begin{array}{c}a+b \\ b\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right]$.
- The vectors satisfying the equation are those with $b=0$, so the 1-eigenspace of B is the set of vectors of the form $\left[\begin{array}{l}a \\ 0\end{array}\right]$, and has dimension 1.
- Notice that the characteristic polynomial of each matrix is $(t-1)^{2}$, since both matrices are uppertriangular, and they both have a single eigenvalue $\lambda=1$ of multiplicity 2 . Nonetheless, the matrices do not have the same eigenvectors, and the dimensions of their 1-eigenspaces are different.
- Now, since the λ-eigenspace is a vector space, if we want to describe all eigenvectors for a given eigenvalue λ, we can simply find a basis for the λ-eigenspace.
- For each eigenvalue λ, our goal is to solve for all vectors \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$.
- Equivalently, we wish to find the vectors \mathbf{x} satisfying the matrix equation $(\lambda I-A) \mathbf{x}=\mathbf{0}$, which (per our analysis of systems of linear equations) can be done by row-reducing the matrix $\lambda I-A$. We have also described the procedure for extracting a basis for the solution set.
- The resulting solution vectors \mathbf{x} form the eigenspace associated to λ, and the nonzero vectors in the space are the eigenvectors corresponding to λ.
- To find all the eigenvalues and eigenvectors of a matrix A, follow these steps:
- Step 1: Write down the matrix $t I-A$ and compute its determinant (using any method) to obtain the characteristic polynomial $p(t)$.
- Step 2: Set $p(t)$ equal to zero and solve. The roots are precisely the eigenvalues λ of A.
- Step 3: For each eigenvalue λ, solve for all vectors \mathbf{x} satisfying $A \mathbf{x}=\lambda \mathbf{x}$: this is the set of solutions to $(\lambda I-A) \mathbf{x}=\mathbf{0}$, which is equivalent to the nullspace of $\lambda I-A$ and may be computed by row-reduction.
- Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A=\left[\begin{array}{ll}2 & 2 \\ 3 & 1\end{array}\right]$.
- We have $t I-A=\left[\begin{array}{cc}t-2 & -2 \\ -3 & t-1\end{array}\right]$, so $p(t)=\operatorname{det}(t I-A)=(t-2)(t-1)-(-2)(-3)=t^{2}-3 t-4$.
- Since $p(t)=t^{2}-3 t-4=(t-4)(t+1)$, the eigenvalues are $\lambda=-1,4$.
- For $\lambda=-1$, we want to find the nullspace of $\left[\begin{array}{cc}-1-2 & -2 \\ -3 & -1-1\end{array}\right]=\left[\begin{array}{cc}-3 & -2 \\ -3 & -2\end{array}\right]$. By row-reducing we find the row-echelon form is $\left[\begin{array}{cc}-3 & -2 \\ 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and is spanned by $\left[\begin{array}{c}-2 \\ 3\end{array}\right]$.
- For $\lambda=4$, we want to find the nullspace of $\left[\begin{array}{cc}4-2 & -2 \\ -3 & 4-1\end{array}\right]=\left[\begin{array}{cc}2 & -2 \\ -3 & 3\end{array}\right]$. By row-reducing we find the row-echelon form is $\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and is spanned by $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
- Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 3 \\ -1 & 0 & 3\end{array}\right]$.
- First, we have $t I-A=\left[\begin{array}{ccc}t-1 & 0 & -1 \\ 1 & t-1 & -3 \\ 1 & 0 & t-3\end{array}\right]$, so $p(t)=(t-1) \cdot\left|\begin{array}{cc}t-1 & -3 \\ 0 & t-3\end{array}\right|+(-1) \cdot\left|\begin{array}{cc}1 & t-1 \\ 1 & 0\end{array}\right|=$ $(t-1)^{2}(t-3)+(t-1)$.
- Since $p(t)=(t-1) \cdot[(t-1)(t-3)+1]=(t-1)(t-2)^{2}$, the eigenvalues are $\lambda=1,2,2$.
- For $\lambda=1$ we want to find the nullspace of $\left[\begin{array}{ccc}1-1 & 0 & -1 \\ 1 & 1-1 & -3 \\ 1 & 0 & 1-3\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & -1 \\ 1 & 0 & -3 \\ 1 & 0 & -3\end{array}\right]$. This matrix's reduced row-echelon form is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and spanned by $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
- For $\lambda=2$ we want to find the nullspace of $\left[\begin{array}{ccc}2-1 & 0 & -1 \\ 1 & 2-1 & -3 \\ 1 & 0 & 2-3\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & -3 \\ 1 & 0 & -1\end{array}\right]$. This matrix's reduced row-echelon form is $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and spanned by $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
- Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$.
- We have $t I-A=\left[\begin{array}{ccc}t & 0 & 0 \\ -1 & t & 1 \\ 0 & -1 & t\end{array}\right]$, so $p(t)=\operatorname{det}(t I-A)=t \cdot\left|\begin{array}{cc}t & 1 \\ -1 & t\end{array}\right|=t \cdot\left(t^{2}+1\right)$.
- Since $p(t)=t \cdot\left(t^{2}+1\right)$, the eigenvalues are $\lambda=0, i,-i$.
- For $\lambda=0$ we want to find the nullspace of $\left[\begin{array}{ccc}0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$. This matrix's reduced row-echelon form is $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and spanned by $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
- For $\lambda=i$ we want to find the nullspace of $\left[\begin{array}{ccc}i & 0 & 0 \\ -1 & i & 1 \\ 0 & -1 & i\end{array}\right]$. This matrix's reduced row-echelon form is $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -i \\ 0 & 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and spanned by $\left[\begin{array}{c}0 \\ i \\ 1\end{array}\right]$.
- For $\lambda=-i$ we want to find the nullspace of $\left[\begin{array}{ccc}-i & 0 & 0 \\ -1 & -i & 1 \\ 0 & -1 & -i\end{array}\right]$. This matrix's reduced row-echelon form is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & i \\ 0 & 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and spanned by $\left[\begin{array}{c}0 \\ -i \\ 1\end{array}\right]$.
- Notice that in the example above, with a real matrix having complex-conjugate eigenvalues, the associated eigenvectors were also complex conjugates. This is no accident:
- Proposition (Conjugate Eigenvalues): If A is a real matrix and \mathbf{v} is an eigenvector with a complex eigenvalue λ, then the complex conjugate $\overline{\mathbf{v}}$ is an eigenvector with eigenvalue $\bar{\lambda}$. In particular, a basis for the $\bar{\lambda}$-eigenspace is given by the set of complex conjugates of a basis for the λ-eigenspace.
- Proof: The first statement follows from the observation that the complex conjugate of a product or sum is the appropriate product or sum of complex conjugates, so if A and B are any matrices of compatible sizes for multiplication, we have $\overline{A \cdot B}=\bar{A} \cdot \bar{B}$.
- Thus, if $A \mathbf{v}=\lambda \mathbf{v}$, taking complex conjugates gives $\bar{A} \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$, and since $\bar{A}=A$ because A is a real matrix, we see $A \overline{\mathbf{v}}=\bar{\lambda} \overline{\mathbf{v}}$: thus, $\overline{\mathbf{v}}$ is an eigenvector with eigenvalue $\bar{\lambda}$.
- The second statement follows from the first, since complex conjugation does not affect linear independence or dimension.
- Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A=\left[\begin{array}{cc}3 & -1 \\ 2 & 5\end{array}\right]$.
- We have $t I-A=\left[\begin{array}{cc}t-3 & 1 \\ -2 & t-5\end{array}\right]$, so $p(t)=\operatorname{det}(t I-A)=(t-3)(t-5)-(-2)(1)=t^{2}-8 t+17$.
- Using the quadratic equation yields that the eigenvalues are $\lambda=4 \pm i$.
- For $\lambda=4+i$, we want to find the nullspace of $\left[\begin{array}{cc}t-3 & 1 \\ -2 & t-5\end{array}\right]=\left[\begin{array}{cc}1+i & 1 \\ -2 & -1+i\end{array}\right]$. Row-reducing this matrix yields

$$
\left[\begin{array}{cc}
1+i & 1 \\
-2 & -1+i
\end{array}\right] \xrightarrow{R_{2}+(1-i) R_{1}}\left[\begin{array}{cc}
1+i & 1 \\
0 & 0
\end{array}\right]
$$

from which we can see that the eigenspace is 1-dimensional and spanned by $\left[\begin{array}{c}1 \\ -1-i\end{array}\right]$

- For $\lambda=4-i$ we can simply take the conjugate of the calculation we made for $\lambda=4+i$: thus, the $(4-i)$-eigenspace is also 1 -dimensional and spanned by $\left[\begin{array}{c}1 \\ -1+i\end{array}\right]$.
- Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A=\left[\begin{array}{ccc}5 & -4 & -6 \\ 2 & 1 & -2 \\ 2 & -3 & -3\end{array}\right]$.
- We have $t I-A=\left[\begin{array}{ccc}t-5 & 4 & 6 \\ -2 & t-1 & 2 \\ -2 & 3 & t+3\end{array}\right]$, so $\operatorname{det}(t I-A)=(t-5)\left(t^{2}+2 t-9\right)-4(-2 t-2)+6(2 t-8)=$ $t^{3}-3 t^{2}+t+5$
- Searching for small rational roots produces the root $t=-1$, and factoring yields $t^{3}-3 t^{2}+t+5=$ $(t+1)\left(t^{2}-4 t+5\right)$. The roots of the quadratic are $2 \pm i$, so $\lambda=-1,2+i, 2-i$.
- For $\lambda=-1$ we want to find the nullspace of $\left[\begin{array}{ccc}\lambda-5 & 4 & 6 \\ -2 & \lambda-1 & 2 \\ -2 & 3 & \lambda+3\end{array}\right]=\left[\begin{array}{ccc}-6 & 4 & 6 \\ -2 & -2 & 2 \\ -2 & 3 & 2\end{array}\right]$. This matrix's reduced row-echelon form is $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$, so the nullspace is 1-dimensional and spanned by $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
- For $\lambda=2+i$ we want to find the nullspace of $\left[\begin{array}{ccc}\lambda-5 & 4 & 6 \\ -2 & \lambda-1 & 2 \\ -2 & 3 & \lambda+3\end{array}\right]=\left[\begin{array}{ccc}-3+i & 4 & 6 \\ -2 & 1+i & 2 \\ -2 & 3 & 5+i\end{array}\right]$. Row-reducing this matrix yields

$$
\begin{array}{cc}
{\left[\begin{array}{ccc}
-3+i & 4 & 6 \\
-2 & 1+i & 2 \\
-2 & 3 & 5+i
\end{array}\right] \xrightarrow{\frac{-1+i}{2} R_{2}}\left[\begin{array}{ccc}
-3+i & 4 & 6 \\
1-i & -1 & -1+i \\
-2 & 3 & 5+i
\end{array}\right] \xrightarrow[R_{3}+(1+i) R_{2}]{R_{1}+(2+i) R_{2}}\left[\begin{array}{ccc}
0 & 2-i & 3+i \\
1-i & -1 & -1+i \\
0 & 2-i & 3+i
\end{array}\right]} \\
\xrightarrow{R_{1}-R_{3}}\left[\begin{array}{ccc}
0 & 2-i & 3+i \\
1-i & -1 & -1+i \\
0 & 0 & 0
\end{array}\right] \xrightarrow{\stackrel{2+i}{5} R_{1}}\left[\begin{array}{ccc}
0 & 1 & 1+i \\
1-i & -1 & -1+i \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}+R_{1}}\left[\begin{array}{ccc}
0 & 1 & 1+i \\
1-i & 0 & 2 i \\
0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{\frac{1+i}{2} R_{2}}\left[\begin{array}{ccc}
0 & 1 & 1+i \\
1 & 0 & -1+i \\
0 & 0 & 0
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc}
1 & 0 & -1+i \\
0 & 1 & 1+i \\
0 & 0 & 0
\end{array}\right]
\end{array}
$$

from which we see that the nullspace is 1-dimensional and spanned by $\left[\begin{array}{c}1-i \\ -1-i \\ 1\end{array}\right]$.

- For $\lambda=2-i$ we can simply take the conjugate of the calculation we made for $\lambda=2+i$: thus, the $(2-i)$-eigenspace is also 1-dimensional and spanned by | $\left[\begin{array}{c}1+i \\ -1+i \\ 1\end{array}\right]$ |
| :---: |

4.3 Additional Properties of Eigenvalues

- We will now mention a few useful theoretical results about eigenvalues, eigenvectors, and eigenspaces.
- Theorem (Eigenvalue Multiplicity): If λ is an eigenvalue of the matrix A which appears exactly k times as a root of the characteristic polynomial, then the dimension of the eigenspace corresponding to λ is at least 1 and at most k.
- Remark: The number of times that λ appears as a root of the characteristic polynomial is sometimes called the "algebraic multiplicity" of λ, and the dimension of the eigenspace corresponding to λ is sometimes called the "geometric multiplicity" of λ. In this language, the theorem above says that the geometric multiplicity is less than or equal to the algebraic multiplicity.
- Example: If the characteristic polynomial of a matrix is $(t-1)^{3}(t-3)^{2}$, then the eigenspace for $\lambda=1$ is at most 3 -dimensional, and the eigenspace for $\lambda=3$ is at most 2 -dimensional.
- Proof: The statement that the eigenspace has dimension at least 1 is immediate, because (by assumption) λ is a root of the characteristic polynomial and therefore has at least one nonzero eigenvector associated to it.
- For the other statement, observe that the dimension of the λ-eigenspace is the dimension of the solution space of the homogeneous system $(\lambda I-A) \cdot \mathbf{x}=\mathbf{0}$. (Equivalently, it is the dimension of the nullspace of the matrix $\lambda I-A$.)
- If λ appears k times as a root of the characteristic polynomial, then when we put the matrix $\lambda I-A$ into its reduced row-echelon form B, we claim that B must have at most k rows of all zeroes.
- Otherwise, the matrix B (and hence $\lambda I-A$ too, since the nullity and rank of a matrix are not changed by row operations) would have 0 as an eigenvalue more than k times, because B is in echelon form and therefore upper-triangular.
- But the number of rows of all zeroes in a square matrix in reduced row-echelon form is the same as the number of nonpivotal columns, which is the number of free variables, which is the dimension of the solution space.
- So, putting all the statements together, we see that the dimension of the eigenspace is at most k.
- Theorem (Independent Eigenvectors): If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of A associated to distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent.
- Proof: Suppose we had a nontrivial dependence relation between $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, say $a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}=\mathbf{0}$. (Note that at least two coefficients have to be nonzero, because none of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is the zero vector.)
- Multiply both sides by the matrix A : this gives $A \cdot\left(a_{1} \mathbf{v}_{1}+\cdots+a_{n} \mathbf{v}_{n}\right)=A \cdot \mathbf{0}=\mathbf{0}$.
- Now since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are eigenvectors this says $a_{1}\left(\lambda_{1} \mathbf{v}_{1}\right)+\cdots+a_{n}\left(\lambda_{n} \mathbf{v}_{n}\right)=\mathbf{0}$.
- But now if we scale the original equation by λ_{1} and subtract (to eliminate \mathbf{v}_{1}), we obtain $a_{2}\left(\lambda_{2}-\lambda_{1}\right) \mathbf{v}_{2}+$ $a_{3}\left(\lambda_{3}-\lambda_{1}\right) \mathbf{v}_{3}+\cdots+a_{n}\left(\lambda_{n}-\lambda_{1}\right) \mathbf{v}_{n}=\mathbf{0}$.
- Since by assumption all of the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ were different, this dependence is still nontrivial, since each of $\lambda_{j}-\lambda_{1}$ is nonzero, and at least one of a_{2}, \cdots, a_{n} is nonzero.
- But now we can repeat the process to eliminate each of $\mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n-1}$ in turn. Eventually we are left with the equation $b \mathbf{v}_{n}=\mathbf{0}$ for some nonzero b. But this is impossible, because it would say that $\mathbf{v}_{n}=\mathbf{0}$, contradicting our definition saying that the zero vector is not an eigenvector.
- So there cannot be a nontrivial dependence relation, meaning that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent.
- Corollary: If A is an $n \times n$ matrix with n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, and $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are (any) eigenvectors associated to those respective eigenvalues, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ form a basis for \mathbb{R}^{n}.
- This result follows from the previous theorem: it guarantees that the n vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent, so they must be a basis of the n-dimensional vector space \mathbb{R}^{n}.
- Theorem (Eigenvalues, Trace, and Determinant): The product of the eigenvalues of A is the determinant of A, and the sum of the eigenvalues of A equals the trace of A.
- Recall that the trace of a matrix is defined to be the sum of its diagonal entries.
- Proof: Let $p(t)$ be the characteristic polynomial of A.
- If we expand out the product $p(t)=\left(t-\lambda_{1}\right) \cdot\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)$, we see that the constant term is equal to $(-1)^{n} \lambda_{1} \lambda_{2} \cdots \lambda_{n}$.
- But the constant term is also just $p(0)$, and since $p(t)=\operatorname{det}(t I-A)$ we have $p(0)=\operatorname{det}(-A)=$ $(-1)^{n} \operatorname{det}(A):$ thus, $\lambda_{1} \lambda_{2} \cdots \lambda_{n}=\operatorname{det}(A)$.
- Furthermore, upon expanding out the product $p(t)=\left(t-\lambda_{1}\right) \cdot\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)$, we see that the coefficient of t^{n-1} is equal to $-\left(\lambda_{1}+\cdots+\lambda_{n}\right)$.
- If we expand out the determinant $\operatorname{det}(t I-A)$ to find the coefficient of t^{n-1}, we can show (with a little bit of effort) that the coefficient is the negative of the sum of the diagonal entries of A.
- Thus, setting the two expressions equal shows that the sum of the eigenvalues equals the trace of A.
- Example: Find the eigenvalues of the matrix $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ -2 & -1 & -2 \\ 2 & 2 & -3\end{array}\right]$, and verify the formulas for trace and determinant in terms of the eigenvalues.
- By expanding along the top row, we can compute

$$
\begin{aligned}
\operatorname{det}(t I-A) & =(t-2)\left|\begin{array}{cc}
t+1 & 2 \\
-2 & t+3
\end{array}\right|-(-1)\left|\begin{array}{cc}
2 & 2 \\
-2 & t+3
\end{array}\right|+(-1)\left|\begin{array}{cc}
2 & t+1 \\
-2 & -2
\end{array}\right| \\
& =(t-2)\left(t^{2}+4 t+7\right)+(2 t+10)-(2 t-2)=t^{3}+2 t^{2}-t-2
\end{aligned}
$$

- To find the eigenvalues, we wish to solve the cubic equation $t^{3}+2 t^{2}-t-2=0$.
- By the rational root test, if the polynomial has a rational root then it must be an integer dividing -2 : that is, one of $\pm 1, \pm 2$. Testing the possibilities reveals that $t=1, t=-1$, and $t=-2$ are each roots, from which we obtain the factorization $(t-1)(t+1)(t+2)=0$.
- Thus, the eigenvalues are $t=-2,-1,1$.
- We see that $\operatorname{tr}(A)=2+(-1)+(-3)=-2$, while the sum of the eigenvalues is $(-2)+(-1)+1=-2$. They are indeed equal.
- For the determinant, we compute

$$
\begin{aligned}
\operatorname{det}(A) & =2\left|\begin{array}{cc}
-1 & -2 \\
2 & -3
\end{array}\right|-1\left|\begin{array}{cc}
-2 & -2 \\
2 & -3
\end{array}\right|+1\left|\begin{array}{cc}
-2 & -1 \\
2 & 2
\end{array}\right| \\
& =2(7)-1(10)+1(-2)=2
\end{aligned}
$$

The product of the eigenvalues is $(-2)(-1)(1)=2$, so the result holds as claimed.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this material without my express permission.

