Linear Algebra (part 3): Eigenvalues and Eigenvectors (by Evan Dummit, 2016, v. 2.00)

Contents

4	Eige	envalues and Eigenvectors	1
	4.1	Eigenvalues, Eigenvectors, Characteristic Polynomials	1
	4.2	Eigenspaces	4
	4.3	Additional Properties of Eigenvalues	8

4 Eigenvalues and Eigenvectors

- We have discussed quite extensively the correspondence between solving a system of homogeneous linear equations and solving the matrix equation $A\mathbf{x} = \mathbf{0}$, for A an $n \times n$ matrix and \mathbf{x} and $\mathbf{0}$ each $n \times 1$ column vectors.
- For reasons that will become more apparent soon, a more general version of this question which is also of interest is to solve the matrix equation $A\mathbf{x} = \lambda \mathbf{x}$, where λ is a scalar. (The original "homogeneous system" problem corresponds to $\lambda = 0$.)
- In the language of linear transformations, this says the following: given a linear transformation $T: V \to V$ from a vector space V to itself, on what vectors **x** does T act as multiplication by a constant λ ?

4.1 Eigenvalues, Eigenvectors, Characteristic Polynomials

- <u>Definition</u>: For A an $n \times n$ matrix, a nonzero vector **x** with $A\mathbf{x} = \lambda \mathbf{x}$ is called an <u>eigenvector</u> of A, and the corresponding scalar λ is called an <u>eigenvalue</u> of A.
 - \circ Important note: We do not consider the zero vector ${\bf 0}$ an eigenvector.
 - <u>Example</u>: If $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A with eigenvalue 5, because $A\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5\mathbf{x}.$

• <u>Example</u>: If $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, the vector $\mathbf{x} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ is an eigenvector of A with eigenvalue 1, because $A\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5\mathbf{x}$. • <u>Example</u>: If $A = \begin{bmatrix} 2 & -4 & 5 \\ 2 & -2 & 5 \\ 2 & 1 & 2 \end{bmatrix}$, the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ is an eigenvector of A with eigenvalue 4, because

$$A\mathbf{x} = \begin{bmatrix} 2 & -4 & 5 \\ 2 & -2 & 5 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 8 \end{bmatrix} = 4\mathbf{x}.$$

- Eigenvalues and eigenvectors can also be complex numbers, even if the matrix A only has real-number entries.
 - <u>Example</u>: If $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$, the vector $\mathbf{x} = \begin{bmatrix} 2+i \\ 1 \end{bmatrix}$ is an eigenvector of A with eigenvalue $i = \sqrt{-1}$, because $A\mathbf{x} = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2+i \\ 1 \end{bmatrix} = \begin{bmatrix} -1+2i \\ i \end{bmatrix} = i\mathbf{x}$.

• Example: If
$$A = \begin{bmatrix} 6 & 3 & -2 \\ -2 & 0 & 0 \\ 6 & 4 & 2 \end{bmatrix}$$
, the vector $\mathbf{x} = \begin{bmatrix} 1-i \\ 2i \\ 2 \end{bmatrix}$ is an eigenvector of A with eigenvalue $1+i$, because $A\mathbf{x} = \begin{bmatrix} 6 & 3 & -2 \\ -2 & 0 & 0 \\ 6 & 4 & -2 \end{bmatrix} \begin{bmatrix} 1-i \\ 2i \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2+2i \\ 2+2i \end{bmatrix} = (1+i)\mathbf{x}$.

- It may at first seem that a given matrix may have many eigenvectors with many different eigenvalues. But in fact, any $n \times n$ matrix can only have a few eigenvalues, and there is a simple way to find them all using determinants:
- <u>Proposition</u> (Finding Eigenvalues): If A is an $n \times n$ matrix, the real or complex number λ is an eigenvalue of A if and only det $(\lambda I A) = 0$.
 - <u>Proof</u>: Suppose λ is an eigenvalue with associated nonzero eigenvector **x**: this is equivalent to saying $A\mathbf{x} = \lambda \mathbf{x}$.
 - Next observe that $\lambda \mathbf{x} = (\lambda I)\mathbf{x}$ where I is the $n \times n$ identity matrix.
 - Therefore, we can rewrite the eigenvalue equation $A\mathbf{x} = \lambda \mathbf{x} = (\lambda I)\mathbf{x}$ as $(\lambda I A)\mathbf{x} = \mathbf{0}$.
 - But from our study of homogeneous systems of linear equations, the matrix equation $(\lambda I A)\mathbf{x} = \mathbf{0}$ has a nonzero solution for \mathbf{x} if and only if the matrix $(\lambda I - A)$ is not invertible, which is in turn equivalent to saying that $\det(\lambda I - A) = 0$.
- When we expand the determinant det(tI A), we will obtain a polynomial of degree n in the variable t.
- <u>Definition</u>: For an $n \times n$ matrix A, the degree-n polynomial $p(t) = \det(tI A)$ is called the <u>characteristic polynomial</u> of A, and its roots are precisely the eigenvalues of A.
 - Some authors instead define the characteristic polynomial as the determinant of the matrix A tI rather than tI A. We define it this way because then the coefficient of t^n will always be 1, rather than $(-1)^n$.
- When searching for roots of polynomials of small degree, the following case of the rational root test is often helpful.
- <u>Proposition</u>: Suppose the polynomial $p(t) = t^n + \cdots + b$ has integer coefficients and leading coefficient 1. Then any rational root of p(t) must be an integer that divides b.
 - The proposition cuts down on the amount of trial and error necessary for finding rational roots of polynomials, since we only need to consider integers that divide the constant term.
 - Of course, a generic polynomial will not have a rational root, so to compute eigenvalues in practice one generally needs to use numerical approximations. (But we will arrange the examples so that the polynomials will factor nicely.)
- <u>Example</u>: Find the eigenvalues of $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$.
 - First we compute the characteristic polynomial $det(tI A) = \begin{vmatrix} t 3 & -1 \\ -2 & t 4 \end{vmatrix} = t^2 7t + 10.$
 - The eigenvalues are then the zeroes of this polynomial. Since $t^2 7t + 10 = (t 2)(t 5)$ we see that the zeroes are t = 2 and t = 5, meaning that the eigenvalues are 2 and 5.
- <u>Example</u>: Find the eigenvalues of $A = \begin{bmatrix} 1 & 4 & \sqrt{3} \\ 0 & 3 & -8 \\ 0 & 0 & \pi \end{bmatrix}$.
 - Observe that $\det(tI A) = \begin{vmatrix} t 1 & -4 & -\sqrt{3} \\ 0 & t 3 & 8 \\ 0 & 0 & t \pi \end{vmatrix} = (t 1)(t 3)(t \pi)$ since the matrix is upper-triangular. Thus, the eigenvalues are $\boxed{1, 3, \pi}$.

- The idea from the example above works in generality:
- <u>Proposition</u> (Eigenvalues of Triangular Matrix): The eigenvalues of an upper-triangular matrix or of a lower-triangular matrix are its diagonal entries.
 - <u>Proof</u>: If A is an $n \times n$ upper-triangular (or lower-triangular) matrix, then so is tI A.
 - Then by properties of determinants, $\det(tI A)$ is equal to the product of the diagonal entries of tI A.
 - Since these diagonal entries are simply $t a_{i,i}$ for $1 \le i \le n$, the eigenvalues are $a_{i,i}$ for $1 \le i \le n$, which are simply the diagonal entries of A.
- It can happen that the characteristic polynomial has a repeated root. In such cases, it is customary to note that the associated eigenvalue has "multiplicity" and include the eigenvalue the appropriate number of extra times when listing them.
 - For example, if a matrix has characteristic polynomial $t^2(t-1)^3$, we would say the eigenvalues are 0 with multiplicity 2, and 1 with multiplicity 3. We would list the eigenvalues as $\lambda = 0, 0, 1, 1, 1$.
- <u>Example</u>: Find the eigenvalues of $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

• By expanding along the bottom row we see $\det(tI - A) = \begin{vmatrix} t - 1 & 1 & 0 \\ -1 & t - 3 & 0 \\ 0 & 0 & t \end{vmatrix} = t \begin{vmatrix} t - 1 & 1 \\ -1 & t - 3 \end{vmatrix} = t \begin{vmatrix} t - 1 & 1 \\ -1 & t - 3 \end{vmatrix}$

- $t(t^2 4t + 4).$
- Since $t^2 4t + 4 = (t 2)^2$ we see that the characteristic polynomial has a single root t = 0 and a double root t = 2.
- Thus, A has an eigenvalue 0 of multiplicity 1 and an eigenvalue 2 of multiplicity 2. As a list, the eigenvalues are $\lambda = [0, 2, 2]$.
- <u>Example</u>: Find the eigenvalues of $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 - By expanding along the top row,

$$det(tI - A) = \begin{vmatrix} t - 1 & -1 & 0 \\ 0 & t - 1 & -1 \\ 0 & 0 & t - 1 \end{vmatrix}$$
$$= (t - 1) \begin{vmatrix} t - 1 & -1 \\ 0 & t - 1 \end{vmatrix} + 1 \begin{vmatrix} 0 & -1 \\ 0 & t - 1 \end{vmatrix}$$
$$= (t - 1)(t - 1)^{2} = (t - 1)^{3}.$$

- Thus, the characteristic polynomial has a triple root t = 1.
- Thus, A has an eigenvalue 1 of multiplicity 3. As a list, the eigenvalues are $\lambda = 1, 1, 1$.
- Note also that the characteristic polynomial may have non-real numbers as roots.
 - As we saw above, matrices with real entries may have non-real eigenvalues. Such non-real eigenvalues are absolutely acceptable: the only wrinkle is that the eigenvectors for these eigenvalues will also necessarily contain non-real entries.
 - \circ If A has real number entries, then because the characteristic polynomial of A is a polynomial with real coefficients, any non-real roots of the characteristic polynomial will come in complex conjugate pairs.
- <u>Example</u>: Find the eigenvalues of $A = \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$.

- First we compute the characteristic polynomial $det(tI A) = \begin{vmatrix} t 1 & -1 \\ 2 & t 3 \end{vmatrix} = t^2 4t + 5.$
- The eigenvalues are then the zeroes of this polynomial. By the quadratic formula, the roots are $\frac{4 \pm \sqrt{-4}}{2} = 2 \pm i$, so the eigenvalues are 2 + i and 2 i.
- <u>Example</u>: Find the eigenvalues of $A = \begin{bmatrix} -1 & 2 & -4 \\ 3 & -2 & 1 \\ 4 & -4 & 4 \end{bmatrix}$.
 - $\circ\,$ By expanding along the top row,

$$det(tI - A) = \begin{vmatrix} t+1 & -2 & 4 \\ -3 & t+2 & -1 \\ -4 & 4 & t-4 \end{vmatrix}$$
$$= (t+1) \begin{vmatrix} t+2 & -1 \\ 4 & t-4 \end{vmatrix} + 2 \begin{vmatrix} -3 & -1 \\ -4 & t-4 \end{vmatrix} + 4 \begin{vmatrix} -3 & t+2 \\ -4 & 4 \end{vmatrix}$$
$$= (t+1)(t^2 - 2t - 4) + 2(-3t + 8) + 4(4t - 4)$$
$$= t^3 - t^2 + 4t - 4.$$

- To find the roots, we wish to solve the cubic equation $t^3 t^2 + 4t 4 = 0$.
- By the rational root test, if the polynomial has a rational root then it must be an integer dividing -4: that is, one of ± 1 , ± 2 , ± 4 . Testing the possibilities reveals that t = 1 is a root, and then we get the factorization $(t-1)(t^2+4) = 0$.
- The roots of the quadratic are $t = \pm 2i$, so the eigenvalues are 1, 2i, -2i

4.2 Eigenspaces

- Using the characteristic polynomial, we can find all the eigenvalues of a matrix A without actually determining the associated eigenvectors. However, we often also want to find the eigenvectors associated to each eigenvalue.
- We might hope that there is a straightforward way to describe all the eigenvectors, and (conveniently) there is: the set of all eigenvectors with a particular eigenvalue λ has a vector space structure.
- <u>Proposition</u>: For a fixed value of λ , the set S_{λ} whose elements are the eigenvectors \mathbf{x} with $A\mathbf{x} = \lambda \mathbf{x}$, together with the zero vector, is a subspace of $V = \mathbb{R}^n$ (thought of as $n \times 1$ column vectors). This set S_{λ} is called the <u>eigenspace</u> associated to the eigenvalue λ , or the λ -eigenspace.
 - <u>Proof</u>: Notice that because we explicitly included the zero vector, S_{λ} is simply the set of all vectors such that $A\mathbf{v} = \lambda \mathbf{v}$. Now we simply check the subspace criterion:
 - \circ [S1]: S_{λ} contains the zero vector.
 - [S2]: S_{λ} is closed under addition, because if $A\mathbf{x}_1 = \lambda \mathbf{x}_1$ and $A\mathbf{x}_2 = \lambda \mathbf{x}_2$, then $A(\mathbf{x}_1 + \mathbf{x}_2) = \lambda(\mathbf{x}_1 + \mathbf{x}_2)$.
 - [S3]: S_{λ} is closed under scalar multiplication, because if $A\mathbf{x} = \lambda \mathbf{x}$, then for any scalar β , $A(\beta \mathbf{x}) = \beta(A\mathbf{x}) = \beta(\lambda \mathbf{x}) = \lambda(\beta \mathbf{x})$.
- <u>Example</u>: Find the 1-eigenspaces, and their dimensions, for $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
 - For the 1-eigenspace of A, we want to find all vectors with $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$.
 - Clearly, all vectors satisfy this equation, so the 1-eigenspace of A is the set of all vectors $\begin{bmatrix} a \\ b \end{bmatrix}$, and has dimension 2.

- For the 1-eigenspace of *B*, we want to find all vectors with $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$, or equivalently,
 - $\left[\begin{array}{c}a+b\\b\end{array}\right] = \left[\begin{array}{c}a\\b\end{array}\right].$
- The vectors satisfying the equation are those with b = 0, so the 1-eigenspace of B is the set of vectors of the form $\begin{bmatrix} a \\ 0 \end{bmatrix}$, and has dimension 1.
- Notice that the characteristic polynomial of each matrix is $(t-1)^2$, since both matrices are uppertriangular, and they both have a single eigenvalue $\lambda = 1$ of multiplicity 2. Nonetheless, the matrices do not have the same eigenvectors, and the dimensions of their 1-eigenspaces are different.
- Now, since the λ -eigenspace is a vector space, if we want to describe all eigenvectors for a given eigenvalue λ , we can simply find a basis for the λ -eigenspace.
 - For each eigenvalue λ , our goal is to solve for all vectors \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$.
 - Equivalently, we wish to find the vectors \mathbf{x} satisfying the matrix equation $(\lambda I A)\mathbf{x} = \mathbf{0}$, which (per our analysis of systems of linear equations) can be done by row-reducing the matrix $\lambda I A$. We have also described the procedure for extracting a basis for the solution set.
 - The resulting solution vectors \mathbf{x} form the eigenspace associated to λ , and the nonzero vectors in the space are the eigenvectors corresponding to λ .
- To find all the eigenvalues and eigenvectors of a matrix A, follow these steps:
 - <u>Step 1</u>: Write down the matrix tI A and compute its determinant (using any method) to obtain the characteristic polynomial p(t).
 - Step 2: Set p(t) equal to zero and solve. The roots are precisely the eigenvalues λ of A.
 - <u>Step 3</u>: For each eigenvalue λ , solve for all vectors \mathbf{x} satisfying $A\mathbf{x} = \lambda \mathbf{x}$: this is the set of solutions to $(\lambda I A)\mathbf{x} = \mathbf{0}$, which is equivalent to the nullspace of $\lambda I A$ and may be computed by row-reduction.
- <u>Example</u>: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$.
 - We have $tI A = \begin{bmatrix} t 2 & -2 \\ -3 & t 1 \end{bmatrix}$, so $p(t) = \det(tI A) = (t 2)(t 1) (-2)(-3) = t^2 3t 4$.
 - Since $p(t) = t^2 3t 4 = (t 4)(t + 1)$, the eigenvalues are $\lambda = -1, 4$.

• For $\lambda = -1$, we want to find the nullspace of $\begin{bmatrix} -1-2 & -2 \\ -3 & -1-1 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ -3 & -2 \end{bmatrix}$. By row-reducing we find the row-echelon form is $\begin{bmatrix} -3 & -2 \\ 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and is spanned by $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$.

• For $\lambda = 4$, we want to find the nullspace of $\begin{bmatrix} 4-2 & -2 \\ -3 & 4-1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -3 & 3 \end{bmatrix}$. By row-reducing we find the row-echelon form is $\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and is spanned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

• <u>Example</u>: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 3 \\ -1 & 0 & 3 \end{bmatrix}$.

• First, we have
$$tI - A = \begin{bmatrix} t - 1 & 0 & -1 \\ 1 & t - 1 & -3 \\ 1 & 0 & t - 3 \end{bmatrix}$$
, so $p(t) = (t - 1) \cdot \begin{vmatrix} t - 1 & -3 \\ 0 & t - 3 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 1 & t - 1 \\ 1 & 0 \end{vmatrix} = (t - 1)^2(t - 3) + (t - 1).$

• Since
$$p(t) = (t-1) \cdot [(t-1)(t-3) + 1] = (t-1)(t-2)^2$$
, the eigenvalues are $\boxed{\lambda = 1, 2, 2}$.
• For $\lambda = 1$ we want to find the nullspace of $\begin{bmatrix} 1-1 & 0 & -1 \\ 1 & 1-1 & -3 \\ 1 & 0 & 1-3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & -3 \\ 1 & 0 & -3 \end{bmatrix}$. This matrix's reduced row-echelon form is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and spanned by $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.
• For $\lambda = 2$ we want to find the nullspace of $\begin{bmatrix} 2-1 & 0 & -1 \\ 1 & 2-1 & -3 \\ 1 & 0 & 2-3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & -3 \\ 1 & 0 & -1 \end{bmatrix}$. This matrix's reduced row-echelon form is $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and spanned by $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.
• Example: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$.
• We have $tI - A = \begin{bmatrix} t & 0 & 0 \\ -1 & t & 1 \\ 0 & -1 & t \end{bmatrix}$, so $p(t) = det(tI - A) = t \cdot \begin{vmatrix} t & 1 \\ -1 & t \end{vmatrix} = t \cdot (t^2 + 1)$.
• Since $p(t) = t \cdot (t^2 + 1)$, the eigenvalues are $\boxed{\lambda = 0, i, -i}$.
• For $\lambda = 0$ we want to find the nullspace of $\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$. This matrix's reduced row-echelon form is $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and spanned by $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.
• For $\lambda = 0$ we want to find the nullspace of $\begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$. This matrix's reduced row-echelon form is $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and spanned by $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.
• For $\lambda = i$ we want to find the nullspace of $\begin{bmatrix} -i & 0 & 0 \\ -1 & -i & 1 \\ 0 & -1 & i \end{bmatrix}$. This matrix's reduced row-echelon form is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -i \\ 0 & 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and spanned by $\begin{bmatrix} 0 \\ i \\ 1 \end{bmatrix}$.
• For $\lambda = -i$ we want to find the nullspace of $\begin{bmatrix} -i & 0 & 0 \\ -1 & -i & 1 \\ 0 & -1 & -i \end{bmatrix}$. This matrix's reduced row-echelon form is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so the nullspace is 1-dimensional and spanned by $\begin{bmatrix} 0 \\ i \\ 1 \end{bmatrix}$.

- Notice that in the example above, with a real matrix having complex-conjugate eigenvalues, the associated eigenvectors were also complex conjugates. This is no accident:
- <u>Proposition</u> (Conjugate Eigenvalues): If A is a real matrix and \mathbf{v} is an eigenvector with a complex eigenvalue λ , then the complex conjugate $\overline{\mathbf{v}}$ is an eigenvector with eigenvalue $\overline{\lambda}$. In particular, a basis for the $\overline{\lambda}$ -eigenspace is given by the set of complex conjugates of a basis for the λ -eigenspace.
 - <u>Proof</u>: The first statement follows from the observation that the complex conjugate of a product or sum is the appropriate product or sum of complex conjugates, so if A and B are any matrices of compatible sizes for multiplication, we have $\overline{A \cdot B} = \overline{A} \cdot \overline{B}$.

- Thus, if $A\mathbf{v} = \lambda \mathbf{v}$, taking complex conjugates gives $\overline{A}\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}}$, and since $\overline{A} = A$ because A is a real matrix, we see $A\overline{\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}}$: thus, $\overline{\mathbf{v}}$ is an eigenvector with eigenvalue $\overline{\lambda}$.
- The second statement follows from the first, since complex conjugation does not affect linear independence or dimension.
- <u>Example</u>: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A = \begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}$.
 - We have $tI A = \begin{bmatrix} t 3 & 1 \\ -2 & t 5 \end{bmatrix}$, so $p(t) = \det(tI A) = (t 3)(t 5) (-2)(1) = t^2 8t + 17$.
 - Using the quadratic equation yields that the eigenvalues are $\lambda = 4 \pm i$
 - For $\lambda = 4 + i$, we want to find the nullspace of $\begin{bmatrix} t-3 & 1 \\ -2 & t-5 \end{bmatrix} = \begin{bmatrix} 1+i & 1 \\ -2 & -1+i \end{bmatrix}$. Row-reducing this matrix yields $\begin{bmatrix} 1+i & 1 \\ -2 & -1+i \end{bmatrix} \xrightarrow{R_2+(1-i)R_1} \begin{bmatrix} 1+i & 1 \\ 0 & 0 \end{bmatrix}$

from which we can see that the eigenspace is 1-dimensional and spanned by $\begin{bmatrix} 1\\ -1-i \end{bmatrix}$

• For $\lambda = 4 - i$ we can simply take the conjugate of the calculation we made for $\lambda = 4 + i$: thus, the (4 - i)-eigenspace is also 1-dimensional and spanned by $\begin{bmatrix} 1 \\ -1+i \end{bmatrix}$.

• <u>Example</u>: Find all eigenvalues, and a basis for each eigenspace, for the matrix $A = \begin{bmatrix} 5 & -4 & -6 \\ 2 & 1 & -2 \\ 2 & -3 & -3 \end{bmatrix}$.

 $\circ \text{ We have } tI - A = \begin{bmatrix} t - 5 & 4 & 6 \\ -2 & t - 1 & 2 \\ -2 & 3 & t + 3 \end{bmatrix}, \text{ so } \det(tI - A) = (t - 5)(t^2 + 2t - 9) - 4(-2t - 2) + 6(2t - 8) = t^3 - 3t^2 + t + 5.$

• Searching for small rational roots produces the root t = -1, and factoring yields $t^3 - 3t^2 + t + 5 = (t+1)(t^2 - 4t + 5)$. The roots of the quadratic are $2 \pm i$, so $\lambda = -1, 2 + i, 2 - i$.

 $\circ \text{ For } \lambda = -1 \text{ we want to find the nullspace of } \begin{bmatrix} \lambda - 5 & 4 & 6 \\ -2 & \lambda - 1 & 2 \\ -2 & 3 & \lambda + 3 \end{bmatrix} = \begin{bmatrix} -6 & 4 & 6 \\ -2 & -2 & 2 \\ -2 & 3 & 2 \end{bmatrix}. \text{ This matrix's reduced row-echelon form is } \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ so the nullspace is 1-dimensional and spanned by } \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$

• For $\lambda = 2 + i$ we want to find the nullspace of $\begin{bmatrix} \lambda - 5 & 4 & 6 \\ -2 & \lambda - 1 & 2 \\ -2 & 3 & \lambda + 3 \end{bmatrix} = \begin{bmatrix} -3 + i & 4 & 6 \\ -2 & 1 + i & 2 \\ -2 & 3 & 5 + i \end{bmatrix}$.

Row-reducing this matrix yields

$$\begin{bmatrix} -3+i & 4 & 6\\ -2 & 1+i & 2\\ -2 & 3 & 5+i \end{bmatrix} \xrightarrow{\frac{-1+i}{2}R_2} \begin{bmatrix} -3+i & 4 & 6\\ 1-i & -1 & -1+i\\ -2 & 3 & 5+i \end{bmatrix} \frac{R_1+(2+i)R_2}{R_3+(1+i)R_2} \begin{bmatrix} 0 & 2-i & 3+i\\ 1-i & -1 & -1+i\\ 0 & 2-i & 3+i \end{bmatrix}$$

$$\xrightarrow{R_1-R_3} \begin{bmatrix} 0 & 2-i & 3+i\\ 1-i & -1 & -1+i\\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{2+i}{5}R_1} \begin{bmatrix} 0 & 1 & 1+i\\ 1-i & -1 & -1+i\\ 0 & 0 & 0 \end{bmatrix} \frac{R_2+R_1}{R_2+R_1} \begin{bmatrix} 0 & 1 & 1+i\\ 1-i & 0 & 2i\\ 0 & 0 & 0 \end{bmatrix}$$

$$\xrightarrow{\frac{1+i}{2}R_2} \begin{bmatrix} 0 & 1 & 1+i\\ 1 & 0 & -1+i\\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1\leftrightarrow R_2} \begin{bmatrix} 1 & 0 & -1+i\\ 0 & 1 & 1+i\\ 0 & 0 & 0 \end{bmatrix}$$

from which we see that the nullspace is 1-dimensional and spanned by

• For $\lambda = 2 - i$ we can simply take the conjugate of the calculation we made for $\lambda = 2 + i$: thus, the

(2-i)-eigenspace is also 1-dimensional and spanned by

$\mathbf{y} \begin{bmatrix} 1+i\\-1+i\\1 \end{bmatrix}.$

-1 - i

4.3 Additional Properties of Eigenvalues

- We will now mention a few useful theoretical results about eigenvalues, eigenvectors, and eigenspaces.
- <u>Theorem</u> (Eigenvalue Multiplicity): If λ is an eigenvalue of the matrix A which appears exactly k times as a root of the characteristic polynomial, then the dimension of the eigenspace corresponding to λ is at least 1 and at most k.
 - <u>Remark</u>: The number of times that λ appears as a root of the characteristic polynomial is sometimes called the "algebraic multiplicity" of λ , and the dimension of the eigenspace corresponding to λ is sometimes called the "geometric multiplicity" of λ . In this language, the theorem above says that the geometric multiplicity is less than or equal to the algebraic multiplicity.
 - <u>Example</u>: If the characteristic polynomial of a matrix is $(t-1)^3(t-3)^2$, then the eigenspace for $\lambda = 1$ is at most 3-dimensional, and the eigenspace for $\lambda = 3$ is at most 2-dimensional.
 - <u>Proof</u>: The statement that the eigenspace has dimension at least 1 is immediate, because (by assumption) λ is a root of the characteristic polynomial and therefore has at least one nonzero eigenvector associated to it.
 - For the other statement, observe that the dimension of the λ -eigenspace is the dimension of the solution space of the homogeneous system $(\lambda I A) \cdot \mathbf{x} = \mathbf{0}$. (Equivalently, it is the dimension of the nullspace of the matrix $\lambda I A$.)
 - If λ appears k times as a root of the characteristic polynomial, then when we put the matrix $\lambda I A$ into its reduced row-echelon form B, we claim that B must have at most k rows of all zeroes.
 - Otherwise, the matrix B (and hence $\lambda I A$ too, since the nullity and rank of a matrix are not changed by row operations) would have 0 as an eigenvalue more than k times, because B is in echelon form and therefore upper-triangular.
 - But the number of rows of all zeroes in a square matrix in reduced row-echelon form is the same as the number of nonpivotal columns, which is the number of free variables, which is the dimension of the solution space.
 - \circ So, putting all the statements together, we see that the dimension of the eigenspace is at most k.
- <u>Theorem</u> (Independent Eigenvectors): If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are eigenvectors of A associated to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent.
 - <u>Proof</u>: Suppose we had a nontrivial dependence relation between $\mathbf{v}_1, \ldots, \mathbf{v}_n$, say $a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n = \mathbf{0}$. (Note that at least two coefficients have to be nonzero, because none of $\mathbf{v}_1, \ldots, \mathbf{v}_n$ is the zero vector.)
 - Multiply both sides by the matrix A: this gives $A \cdot (a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n) = A \cdot \mathbf{0} = \mathbf{0}$.
 - Now since $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are eigenvectors this says $a_1(\lambda_1 \mathbf{v}_1) + \cdots + a_n(\lambda_n \mathbf{v}_n) = \mathbf{0}$.
 - But now if we scale the original equation by λ_1 and subtract (to eliminate \mathbf{v}_1), we obtain $a_2(\lambda_2 \lambda_1)\mathbf{v}_2 + a_3(\lambda_3 \lambda_1)\mathbf{v}_3 + \cdots + a_n(\lambda_n \lambda_1)\mathbf{v}_n = \mathbf{0}$.
 - Since by assumption all of the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ were different, this dependence is still nontrivial, since each of $\lambda_j \lambda_1$ is nonzero, and at least one of a_2, \cdots, a_n is nonzero.
 - But now we can repeat the process to eliminate each of $\mathbf{v}_2, \mathbf{v}_3, \ldots, \mathbf{v}_{n-1}$ in turn. Eventually we are left with the equation $b\mathbf{v}_n = \mathbf{0}$ for some nonzero b. But this is impossible, because it would say that $\mathbf{v}_n = \mathbf{0}$, contradicting our definition saying that the zero vector is not an eigenvector.

- So there cannot be a nontrivial dependence relation, meaning that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent.
- <u>Corollary</u>: If A is an $n \times n$ matrix with n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are (any) eigenvectors associated to those respective eigenvalues, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ form a basis for \mathbb{R}^n .
 - This result follows from the previous theorem: it guarantees that the *n* vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent, so they must be a basis of the *n*-dimensional vector space \mathbb{R}^n .
- <u>Theorem</u> (Eigenvalues, Trace, and Determinant): The product of the eigenvalues of A is the determinant of A, and the sum of the eigenvalues of A equals the trace of A.
 - Recall that the trace of a matrix is defined to be the sum of its diagonal entries.
 - <u>Proof</u>: Let p(t) be the characteristic polynomial of A.
 - If we expand out the product $p(t) = (t \lambda_1) \cdot (t \lambda_2) \cdots (t \lambda_n)$, we see that the constant term is equal to $(-1)^n \lambda_1 \lambda_2 \cdots \lambda_n$.
 - But the constant term is also just p(0), and since $p(t) = \det(tI A)$ we have $p(0) = \det(-A) = (-1)^n \det(A)$: thus, $\lambda_1 \lambda_2 \cdots \lambda_n = \det(A)$.
 - Furthermore, upon expanding out the product $p(t) = (t \lambda_1) \cdot (t \lambda_2) \cdots (t \lambda_n)$, we see that the coefficient of t^{n-1} is equal to $-(\lambda_1 + \cdots + \lambda_n)$.
 - If we expand out the determinant det(tI A) to find the coefficient of t^{n-1} , we can show (with a little bit of effort) that the coefficient is the negative of the sum of the diagonal entries of A.
 - \circ Thus, setting the two expressions equal shows that the sum of the eigenvalues equals the trace of A.

Example: Find the eigenvalues of the matrix
$$A = \begin{bmatrix} 2 & 1 & 1 \\ -2 & -1 & -2 \\ 2 & 2 & -3 \end{bmatrix}$$
, and verify the formulas for trace and determinant in terms of the eigenvalues.

• By expanding along the top row, we can compute

$$det(tI - A) = (t - 2) \begin{vmatrix} t + 1 & 2 \\ -2 & t + 3 \end{vmatrix} - (-1) \begin{vmatrix} 2 & 2 \\ -2 & t + 3 \end{vmatrix} + (-1) \begin{vmatrix} 2 & t + 1 \\ -2 & -2 \end{vmatrix} \\ = (t - 2)(t^2 + 4t + 7) + (2t + 10) - (2t - 2) = t^3 + 2t^2 - t - 2.$$

- To find the eigenvalues, we wish to solve the cubic equation $t^3 + 2t^2 t 2 = 0$.
- By the rational root test, if the polynomial has a rational root then it must be an integer dividing -2: that is, one of ± 1 , ± 2 . Testing the possibilities reveals that t = 1, t = -1, and t = -2 are each roots, from which we obtain the factorization (t - 1)(t + 1)(t + 2) = 0.
- Thus, the eigenvalues are t = -2, -1, 1.
- We see that tr(A) = 2 + (-1) + (-3) = -2, while the sum of the eigenvalues is (-2) + (-1) + 1 = -2. They are indeed equal.
- For the determinant, we compute

$$det(A) = 2 \begin{vmatrix} -1 & -2 \\ 2 & -3 \end{vmatrix} - 1 \begin{vmatrix} -2 & -2 \\ 2 & -3 \end{vmatrix} + 1 \begin{vmatrix} -2 & -1 \\ 2 & -3 \end{vmatrix}$$
$$= 2(7) - 1(10) + 1(-2) = 2.$$

The product of the eigenvalues is (-2)(-1)(1) = 2, so the result holds as claimed.

Well, you're at the end of my handout. Hope it was helpful.

Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this material without my express permission.