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1 First-Order Di�erential Equations

1.6 Autonomous Equations, Equilibria, and Stability

• Another class of equations that often arise are equations that do not explicitly include the independent
variable:

• De�nition: An autonomous equation is a �rst-order equation of the form
dy

dt
= f(y) for some function f .

◦ An equation of this form is separable, and thus solvable in theory.

◦ However, it can certainly happen that the function f(y) is su�ciently complicated that we cannot actually

perform the integration: for example, there is no easy way to solve
dy

dt
= y+sin(y) explicitly for y because

the integral
´ dy

y + sin(y)
is essentially intractable.

◦ In such cases we would still like to be able to say something about what the solutions look like: fortunately,
this is still possible.

• De�nition: An equilibrium solution, also called a steady state solution or a critical point, is a solution of the
form y(t) = c, for some constant c. (In other words, it is just a constant-valued solution.)

◦ Clearly, if y(t) is constant, then y′(t) is zero everywhere.

◦ So in order to �nd the equilibrium solutions to an autonomous equation y′ = f(y), we just need to solve
f(y) = 0.

• For equilibrium solutions, we have notions of �stability�:

◦ An equilibrium solution y = c is stable from above if, when we solve y′ = f(y) with the initial condition
y(0) = c+ε for some small but positive ε, the solution y(t) moves toward c as t increases. This statement
is equivalent to f(c+ ε) < 0.

◦ A solution y = c is stable from below if when we solve y′ = f(y) with the initial condition y(0) = c−ε for
some small but positive ε, the solution y(t) moves toward c as t increases. This statement is equivalent
to f(c− ε) > 0.
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◦ A solution y = c is unstable from above if when we solve y′ = f(y) with the initial condition y(0) = c+ ε
for some small but positive ε, the solution y(t) moves away from c as t increases. This statement is
equivalent to f(c+ ε) > 0.

◦ A solution y = c is unstable from below if when we solve y′ = f(y) with the initial condition y(0) = c− ε
for some small but positive ε, the solution y(t) moves away from c as t increases. This statement is
equivalent to f(c− ε) < 0.

• De�nition: We say an equilibrium solution is stable if it is stable from above and from below. We say it is
unstable if it unstable from above and from below. Otherwise (if it is stable from one side and unstable from
the other) we say it is semistable.

• From the equivalent conditions about the sign of f , here are the steps to follow to �nd and classify the
equilibrium states of y′ = f(y):

◦ Step 1: Find all values of c for which f(c) = 0, to �nd the equilibrium states.

◦ Step 2: Mark all the equilibrium values on a number line, and then in each interval between two critical
points, plug in a test value to f to determine whether f is positive or negative on that interval.

◦ Step 3: On each interval where f is positive, draw right-arrows, and on each interval where f is negative,
draw left-arrows.

◦ Step 4: Using the arrows, classify each critical point: if the arrows point toward it from both sides, it
is stable. If the arrows point away, it is unstable. If the arrows both point left or both point right, it is
semistable.

◦ Step 5 (optional): Draw some solution curves, either by solving the equation or by using the stability
information.

• Example: Find the equilibrium states of y′ = y and determine their stability.

◦ Step 1: We have f(y) = y, which obviously is zero only when y = 0.

◦ Step 2: We draw the line and plug in 2 test points (or just think for a second) to see that the sign
diagram looks like 	|

0
⊕.

◦ Step 3: Changing the diagram to arrows gives ← |
0
→.

◦ Step 4: So we can see from the diagram that the only equilibrium point 0 is unstable .

◦ Step 5: We can of course solve the equation to see that the solutions are of the form y(t) = C et, and
indeed, the equilibrium solution y = 0 is unstable:

• Example: Find the equilibrium states of y′ = y2(y − 1)(y − 2) and determine their stability.

◦ Step 1: We have f(y) = y2(y − 1)(y − 2), which conveniently is factored. We see it is zero when y = 0,
y = 1, and y = 2.
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◦ Step 2: We draw the line and plug in 4 test points (or just think for a second) to see that the sign
diagram looks like ⊕|

0
⊕ |

1
	 |

2
⊕.

◦ Step 3: Changing the diagram to arrows gives → |
0
→ |

1
← |

2
→.

◦ Step 4: So we can see from the diagram that 0 is semistable , 1 is stable , and 2 is unstable .

◦ Step 5: In this case, it is possible to obtain an implicit solution by integration (via partial fraction
decomposition); however, an explicit solution does not exist. However, we can graph some solution
curves to see, indeed, our classi�cation is accurate:

1.7 Substitution Methods

• Just like with integration, sometimes we come across di�erential equations which we cannot obviously solve,
but which, if we change variables, will turn into a form we know how to solve.

• Determining what substitutions to try is a matter of practice, in much the same way as in integral calculus.
In general, there are two kinds of substitutions: �natural� ones that arise from the form of the di�erential
equation, and �formulaic� ones which are standard substitutions to use if a di�erential equation has a particular
form.

• The general procedure is the following:

◦ Step 1: Express the new variable v in terms of y and x.

◦ Step 2: Find
dv

dx
in terms of y′, y, and x using implicit di�erentiation.

◦ Step 3: Rewrite the original di�erential equation in y as a di�erential equation in v.

◦ Step 4: Solve the new equation in v. (The hope is, after making the substitution, the new equation is in
a form that can be solved with one of the other methods.)

◦ Step 5: Substitute back for y.

• Example: Solve the equation y′ = (x+ y)2.

◦ This equation is not linear, nor is it separable as written. The obstruction is that the term x+y involves
both x and y.

◦ Step 1: Let us try substituting v = x+ y.

◦ Step 2: Di�erentiating yields
dv

dx
= 1 +

dy

dx
, so y′ = v′ − 1.

◦ Step 3: The new equation is v′ − 1 = v2, or v′ = v2 + 1.
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◦ Step 4: The equation in v is separable. Separating it gives
´ dv

v2 + 1
=
´
1 dx, so that tan−1(v) = x+C,

or v = tan(x+ C).

◦ Step 5: Substituting back yields y = tan(x+ C)− x .

1.7.1 Bernoulli Equations

• De�nition: A �rst-order di�erential equation of the form y′ + P (x)y = Q(x) · yn for some integer n 6= 0, 1 is
called a Bernoulli equation.

◦ The restriction that n not be 0 or 1 is not really a restriction, because if n = 0 then the equation is
�rst-order linear, and if n = 1 then the equation is the same as y′ = (Q(x)−P (x))y, which is separable.

◦ As with �rst-order linear equations, sometimes Bernoulli equations can be �hidden� in a slightly di�erent
form.

◦ The trick for solving a Bernoulli equation is to make the substitution v = y1−n. The algebra is simpli�ed
if we �rst multiply both sides of the original equation by (1− n) · y−n, and then make the substitution.

◦ We begin with (1− n)y′ · y−n + (1− n)P (x) · y1−n = (1− n)Q(x).

◦ With v = y1−n, we have v′ = (1− n)y−n · y′.
◦ Thus, we can rewrite the original equation as v′+(1−n)P (x) ·v = (1−n)Q(x), which is now a �rst-order
linear equation in v, which we can solve using the standard technique.

• Example: Solve the equation y′ + 2xy = xy3.

◦ This equation is of Bernoulli type, with P (x) = 2x, Q(x) = x, and n = 3. Making the substitution
v = y−2 thus results in the equation v′ − 4xv = −2x.
◦ Next, we compute the integrating factor I(x) = e

´
−4x dx = e−2x

2

.

◦ Scaling by the integrating factor gives e−2x
2

v′ − 4xe−2x
2

v = −2xe−2x2

.

◦ Taking the antiderivative on both sides then yields e−2x
2

v =
1

2
e−2x

2

+ C, so that v =
1

2
+ Ce−2x

2

.

◦ Finally, solving for y gives y =

(
1

2
+ Ce−2x

2

)−1/2
.

• Example: Solve the equation yy′ = exy−1 − y2.

◦ The equation as written is not of Bernoulli type. However, if to both sides we add y2 and then divide by
y, we obtain the equation y′ + y = exy−2, which is now a Bernoulli equation with P (x) = 1, Q(x) = ex,
and n = −2.
◦ Making the substitution v = y3 results in the equation v′ + 3v = 3ex.

◦ The integrating factor is I(x) = e
´
3 dx = e3x, so multiplying by it yields e3xv′ + 3e3xv = 3e4x.

◦ Taking the antiderivative then gives e3xv =
3

4
e4x+C, so v =

3

4
ex+Ce−3x and then y =

(
3

4
ex + Ce−3x

)1/3

.

1.7.2 Homogeneous Equations

• De�nition: An equation of the form y′ = f
(y
x

)
for some function f is called a homogeneous �rst-order equation.

(Note that this phrase has nothing to do with the other use of the word homogeneous when referring to dif-
ferential equations.)

◦ The trick to solving an equation of this form is to make the substitution v =
y

x
, or equivalently to set

y = vx.

4



◦ Then di�erentiating y = vx shows y′ = v + xv′, hence the equation becomes v + xv′ = f(v), which is

separable once written in the form
v′

f(v)− v
=

1

x
.

• Example: Solve the di�erential equation 2x2y′ = x2 + y2.

◦ This equation is not separable nor linear, and it is not a Bernoulli equation. If we divide both sides by

2x2 then we obtain y′ =
1

2
+

1

2

(y
x

)2
, which is homogeneous.

◦ Setting v = y/x yields the equation xv′ =
1

2
v2 − v + 1

2
, and rearranging gives

2v′

(v − 1)2
=

1

x
.

◦ Then integrating yields
´ 2dv

(v − 1)2
=
´ 1

x
dx, so

−2
v − 1

= ln(x)+C. Solving for v gives v = 1− 2

ln(x) + C
,

so y = x− 2x

ln(x) + C
.

• Example: Solve the di�erential equation y′ =
x2 + y2

xy
.

◦ If we divide the numerator and denominator of the fraction by x2, we obtain y′ =
1 + (y/x)2

(y/x)
, which is

homogeneous.

◦ Setting v = y/x yields xv′ =
1 + v2

v
− v =

1

v
.

◦ Separating and integrating yields
´
v dv =

´ 1

x
dx, so that

1

2
v2 = ln(x) + C, so v =

√
2 ln(x) + C and

then y = x
√
2 ln(x) + C .

1.8 Exact First Order Equations and Integrating Factors

• Theorem (Exact Equations): For functions M(x, y) and N(x, y) with My = Nx (on some rectangle), there
exists a function F (x, y) with Fx =M and Fy = N (on that rectangle). Then the solutions to the di�erential
equation M(x, y) +N(x, y) y′ = 0 are given (implicitly) by F (x, y) = C where C is an arbitrary constant.

◦ Note that My denotes the partial derivative of M with respect to y, namely
∂M

∂y
, and similarly for the

other functions.

◦ The equation M(x, y) + N(x, y) y′ = 0 is also sometimes written M(x, y) dx + N(x, y) dy = 0. In this
form, it is more symmetric between the variables x and y. I will generally do this.

◦ Remark (for those who know vector calculus): The part of the theorem stating thatMy = Nx implies the
existence of a function F such that Fx =M and Gy = N is a theorem from vector calculus: the criterion
My = Nx is equivalent to the vector �eld 〈M,N〉 being conservative. The function F is the corresponding
�potential function�, with ∇F = 〈M,N〉. The rest of the theorem is really just an application of this
result.

◦ Remark: Note that if M = f(x) is a function only of x and N = − 1

g(y)
is a function only of y, then

our equation looks like f(x) − 1

g(y)
y′ = 0. Rearranging it gives the general form y′ = f(x) g(y) of a

separable equation. Since My = 0 = Nx in this case, we see that separable equations are a special case
of exact equations.

• We can use the theorem to solve �exact equations�, where My = Nx. If the partial derivatives are not equal,
we are not necessarily out of luck � like with �rst-order linear equations, there may exist an integrating factor
I(x, y) which we can multiply the equation by, in order to make the equation exact.
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◦ Unfortunately, we don't really get much for free: trying to solve for the integrating factor is often as hard

as solving the original equation. Finding I(x, y), in general, requires solving the PDE
∂I

∂y
·M − ∂I

∂x
·N +

I · (My −Nx) = 0, which is just as tricky (if not trickier) to solve as the original equation. Only in a few
special cases are there methods for computing the integrating factor I(x, y).

◦ Case 1: Suppose we want to see if there exists an integrating factor that depends only on x (and not

on y). Then
∂I

∂y
would be zero, since I does not depend on y, and so I(x) would need to satisfy

I ′

I
=
My −Nx

N
. This can only happen if the ratio

My −Nx

N
is a function P (x) only of x (and not y);

then I(x) = e
´
P (x) dx.

∗ The form of this integrating factor should look familiar � it is the same as the one from a �rst-order
linear equation. There is a very good reason for this; namely, a �rst-order linear equation is a special
case of this form of equation.

◦ Case 2: We could also look to see if there is an integrating factor that depends only on y and not on x.

We can do the same calculation, this time using
∂I

∂x
= 0, to see that such an integrating factor exists if

the ratio
Nx −My

M
is a function Q(y) only of y (and not x); then I(y) = e

´
Q(y) dy.

◦ Remark: There is no really good reason only to consider these cases, aside from the fact that they're the
easiest. We could just as well try to look for integrating factors that are a function of the variable t = xy.
Or of v = x/y. Or of w = y + ln(x). In each case we'd end up with some other kind of condition. But
we won't think about those things � we really just care about the two kinds of integrating factors above.

• Example: Solve for y(x), if (4y2 + 2x) + (8xy)y′ = 0.

◦ There is no obvious substitution to make, and it is not separable, linear, homogeneous, or Bernoulli. So
we must check for exactness.

◦ In di�erential form the equation is (4y2 + 2x) dx+ 8xy dy = 0. Therefore, M = 4y2 + 2x and N = 8xy.

◦ Therefore we have My = 8y and Nx = 8y. Since these are equal, the equation is exact.

◦ So we want to �nd F with Fx =M and Fy = N . Taking the �anti-partial-derivative� of M with respect
to x yields F (x, y) = 4xy2 + x2 + g(y) for some function g(y). Checking then shows Fy = 8xy + g′(y) so
g′(y) = 0.

◦ Therefore, our solutions are given implicitly by 4xy2 + x2 = C .

• Example: Solve for y(x), if (2xy2 − 4y) + (3x2y − 8x)y′ = 0.

◦ There is no obvious substitution to make, and it is not separable, linear, homogeneous, or Bernoulli. So
we must check for exactness.

◦ In di�erential form the equation is (2xy2 − 4y) dx+ (3x2y − 8x) dy = 0. Therefore, M = 2xy2 − 4y and
N = 3x2y − 8x.

◦ Therefore we have My = 4xy − 4 and Nx = 6xy − 8. These are not equal, so the equation isn't exact.

◦ We look for integrating factors using the two criteria we know.

∗ First, we have
My −Nx

N
=
−2xy + 4

3x2y − 8x
is not a function of x only.

∗ Second, we have
Nx −My

M
=

2xy − 4

2xy2 − 4y
=

1

y
is a function of y only. Therefore we need to multiply

by the integrating factor I(y) = e
´
(1/y) dy = y.

◦ Our new equation is therefore (2xy3 − 4y2) + (3x2y2 − 8xy)y′ = 0.

◦ Now we want to �nd F with Fx = 2xy3−4y2 and Fy = 3x2y2−8xy. Taking the �anti-partial-derivative�
of the �rst equation gives F (x, y) = x2y3 − 4xy2 + f(y) and checking in the second equation shows
f ′(y) = 0.

◦ Therefore, our solutions are given implicitly by x2y3 − 4xy2 = C .
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1.9 First Order: General Procedure

• We can combine all of the techniques for solving �rst-order di�erential equations into a handy list of steps. For
the purposes of this course, if the equation cannot be simpli�ed via a substitution (an obvious substitution, or
if it is homogeneous or Bernoulli) then it is either exact, or can be made exact by multiplying by an integrating
factor. (If it's not one of those, then in this course we have no idea how to solve it.)

◦ Note: It is not really necessary to check ahead of time whether the equation is separable or a �rst-order
linear equation. Separable equations are exact, and �rst-order linear equations can be made exact after

multiplying by an integrating factor, which will be detected using the
My −Nx

N
test. I check for these

two special types at the beginning only because it's faster to solve it using the usual methods.

• Here is the general procedure to follow to solve �rst-order equations:

◦ Step 1: Write the equation in the two standard forms y′ = f(x, y) and M(x, y) + N(x, y) · y′ = 0 and
check to see if it is �rst-order linear or separable.

∗ Step 1a: If the equation is �rst-order linear � namely, of the form y′+P (x)y = Q(x) � then multiply
by the integrating factor I(x) = e

´
P (x) dx and then take the antiderivative of both sides.

∗ Step 1b: If the equation is separable � namely, of the form y′ = f(x) · g(y) � then separate the
y-terms and x-terms on opposite sides of the equation and then take the antiderivative of both sides.

◦ Step 2: Look for possible substitutions (generally, using the y′ = f(x, y) form).

∗ Step 2a: Check to see if there is any 'obvious' substitution that would simplify the equation.

∗ Step 2b: Check to see if the equation is of Bernoulli type � namely, of the form y′+P (x)y = Q(x)·yn.
If so, multiply both sides by (1 − n) · y−n and then make the substitution v = y1−n to obtain a

�rst-order linear equation
dv

dx
+ (1− n)P (x) · v = (1− n)Q(x).

∗ Step 2c: Check to see if the equation is homogeneous � namely, of the form y′ = F
(y
x

)
for some

function F . If so, make the substitution v =
y

x
to obtain a separable equation x · dv

dx
= F (v)− v.

◦ Step 3: If the equation is not of a special type, use the M(x, y)+N(x, y) · y′ = 0 form to �nd the partial
derivatives My and Nx.

◦ Step 4: If My = Nx, no integrating factor is needed. Otherwise, if My 6= Nx, look for an integrating
factor I to multiply both sides of the equation by.

∗ Step 3a: Compute
My −Nx

N
. If it is a function P (x) only of x, then the integrating factor is

I(x) = e
´
P (x) dx.

∗ Step 3b: Compute
Nx −My

M
. If it is a function Q(y) only of y, then the integrating factor is

I(y) = e
´
Q(y) dy.

∗ If neither of these methods works, you're out of luck unless you can �nd an integrating factor some
other way.

◦ Step 5: Take antiderivatives to �nd the function F (x, y) with Fx = M and Fy = N , and write the
solutions as F (x, y) = C.

1.10 First Order: General Problems and Solutions

• Part of the di�culty of seeing �rst-order di�erential equations outside of a homework set (e.g., on exams) is
that it is not always immediately obvious which method or methods will solve the problem. Thus, it is good
to practice problems without being told which method to use.
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1.10.1 Problems

• Solve the equation xy′ = y +
√
xy.

• Solve the equation y′ =
y − 2xy2

3x2y − 2x
.

• Solve the equation xy′ = y +
√
x.

• Solve the equation y′ − 1 = y2 + x3 + x3y2.

• Solve the equation y′ = −4x3y2 + y

2x4y + x
.

• Solve the equation y′ = xy3 − 6xy.

• Solve the equation y′ = −2xy + 2x

x2 + 1
.

1.10.2 Solutions

• Solve the equation xy′ = y +
√
xy.

◦ Step 1: The two standard forms are y′ =
y

x
+

√
y

x
and (−y − √xy) + xy′ = 0. The equation is not

separable or �rst-order linear.

◦ Step 2: We go down the list and recognize that y′ =
y

x
+

√
y

x
is a homogeneous equation.

◦ Setting v = y/x (with y = vx and y′ = xv′ + v) yields xv′ =
√
v.

◦ This equation is separable: we have
´ dv√

v
=
´ 1

x
dx hence 2v1/2 = ln(x) + C, so v =

(
ln(x)

2
+ C

)2

.

◦ Solving for y gives y = x

(
ln(x)

2
+ C

)2

.

◦ Note: The equation is also of Bernoulli type, and could be solved that way too. Of course, it will give
the same answer.

• Solve the equation y′ =
y − 2xy2

3x2y − 2x
.

◦ Step 1+2: The other standard form is (2xy2 − y) + (3x2y − 2x) y′ = 0. The equation is not separable or
linear, nor is it homogeneous or Bernoulli.

◦ Step 3: We have M = 2xy2 − y and N = 3x2y − 2x so My = 4xy − 1 and Nx = 6xy − 2.

◦ Step 4: We need to look for an integrating factor, because My 6= Nx. We have
My −Nx

N
=
−2xy + 1

3x2y − 2x
,

which is not a function of x alone. Next we try
Nx −My

M
=

2xy − 1

2xy2 − y
=

1

y
, so the integrating factor is

I(y) = e

´ 1
y

dy

= y.

◦ Step 5: The new equation is (2xy3 − y2) + (3x2y2 − 2xy) y′ = 0. Taking the �anti-partial� of the new
M with respect to x gives F (x, y) = x2y3 − xy2 + f(y), and checking shows that f ′(y) = 0. Hence the

solutions are x2y3 − xy2 = C .

• Solve the equation xy′ = y +
√
x.

◦ Step 1: The two standard forms are y′ =
y

x
+

1√
x
and (−y −

√
x) + xy′ = 0. The equation is �rst-order

linear.

8



◦ Rewrite in the usual �rst-order linear form y′ − (x−1)y = x−1/2.

◦ We have the integrating factor I(x) = e
´
−x−1 dx = e− ln(x) = eln(x

−1) = x−1.

◦ Thus the new equation is x−1y′ − x−2y = x−3/2.

◦ Taking the antiderivative on both sides yields x−1y = −1

2
x−1/2 + C, so y = −1

2
x1/2 + Cx .

• Solve the equation y′ − 1 = y2 + x3 + x3y2.

◦ Step 1: Adding 1 and then factoring the right-hand side gives y′ = (y2 + 1)(x3 + 1). This equation is
separable.

◦ Separating it gives
y′

y2 + 1
= x3 + 1.

◦ Integrating yields
´ dy

y2 + 1
=
´
(x3+1) dx, so tan−1(y) =

x4

4
+
x2

2
+C. Then y = tan

(
x4

4
+
x2

2
+ C

)
.

• Solve the equation y′ = − (4x3y2 + y)

(2x4y + x)
.

◦ Step 1+2: The other standard form is (4x3y2 + y) + (2x4y + x) y′ = 0. The equation is not separable or
linear, nor is it homogeneous or Bernoulli.

◦ Step 3: We have M = 4x3y2 + y and N = 2x4y + x so My = 8x3y + 1 and Nx = 8x3y + 1.

◦ Step 4: No integrating factor is needed since My = Nx.

◦ Step 5: Taking the �anti-partial� of M with respect to x gives F (x, y) = x4y + xy + f(y), and checking

shows that f ′(y) = 0. Hence the solutions are x4y2 + xy = C .

• Solve the equation y′ = xy3 − 6xy.

◦ Step 1: The equation is of Bernoulli type when written as y′ + 6xy = xy3.

◦ Multiply both sides by −2y−3 to get −2y−3y′ − 12

x
y−2 = −2x.

◦ Making the substitution v = y−2 with v′ = −2y−3y′ then yields the linear equation v′ − 12

x
v = −2x.

◦ The integrating factor is e
´
−(12/x) dx = e−12 ln(x) = x−12.

◦ The new equation is x−12v′ − 12x−13v = −2x−11.

◦ Taking the antiderivative on both sides yields x−12v =
1

5
x−10+C, so v =

1

5
x2+Cx12 and y =

(
1

5
x2 + Cx12

)−1/2
.

• Solve the equation y′ = −2xy + 2x

x2 + 1
.

(method #1)

◦ Step 1: The equation is separable, since after factoring we see that y′ = − 2x

x2 + 1
(y + 1).

◦ Separating and integrating gives
´ dy

y + 1
= −
´ 2x

x2 + 1
dx, so that ln(y + 1) = − ln(x2 + 1) + C.

◦ Exponentiating yields y + 1 = e− ln(x2+1)+C =
C

x2 + 1
, so y =

C

x2 + 1
− 1 .

(method #2)

◦ Step 1: The other standard form is (2xy + 2x) + (x2 + 1)y′ = 0.

◦ Step 3: We have M = 2xy + 2x and N = x2 + 1 so My = 2x and Nx = 2x.
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◦ Step 4: We have My = Nx, so the equation is exact.

◦ Step 5: Taking the �anti-partial� of M with respect to x gives F (x, y) = x2y + x2 + f(y), and checking

shows that f ′(y) = 1 so f(y) = y. Hence the solutions are x2y + x2 + y = C .

◦ Note of course that we can solve for y explicitly, and we obtain exactly the same expression as in the
other solution.

1.11 Euler's Method

• There are many �rst-order initial value problems y′ = f(x, y), y(a) = y0 which we cannot solve explicitly.
However, we would often like to be able to �nd an approximate solution on some interval [a, b].

• One method we can use to �nd an approximate solution is Euler's Method, named after the Swiss mathemati-
cian Leonhard Euler (pronounced �oiler�).

◦ The general idea behind Euler's Method, which should bring back memories of basic calculus, is to break
up the interval [a, b] into many small pieces, and then to use a linear approximation to the function y(x)
on each interval to trace a rough solution to the equation.

• Here is the method, more formally:

◦ Step 1: Choose the number of subintervals n, and let h =
b− a
n

be the width of the subintervals.

◦ Step 2: De�ne the x-values x0 = a, x1 = x0 + h, x2 = x1 + h, ... , xn = xn−1 + h = b.

◦ Step 3: Take y0 to be the given initial value. Then compute, iteratively, the values y1 = y0+h ·f(x0, y0),
y2 = y1 + h · f(x1, y1), ... , yn = yn−1 + f(xn−1, yn−1). It is easiest to organize this information in a
table.

◦ Step 4 (optional): Plot the points (x0, y0), (x1, y1), . . . , (xn, yn) and connect them with a smooth curve.

• Example: Use Euler's Method to �nd an approximate solution on the interval [1, 2] to the di�erential equation
y′ = ln(x+ y) with y(1) = 1.

◦ Step 1: Let's take 10 subintervals. Then h = 0.1.

◦ Steps 2+3: We organize our information in the table below. We �ll out the �rst row with the x-values.
Then we �ll in the empty columns one at a time: to start the next column, we add the y-value and the
h · f(x, y) value to get the next y-value.

x 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

y 1 1.0693 1.1467 1.2320 1.3249 1.4251 1.5324 1.6466 1.7674 1.8946 2.0280

f(x, y) 0.693 0.774 0.853 0.929 1.002 1.073 1.1418 1.208 1.272 1.334 -

h · f(x, y) 0.0693 0.0774 0.0853 0.0929 0.1002 0.1073 0.1142 0.1208 0.1272 0.1334 -

◦ Step 4: Finally, we can plot the points, and (for comparison) the actual solution curve obtained using a
computer. As can be seen from the graph, the approximation is very good:

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this
material without my express permission.
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