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1 First-Order Di�erential Equations

In this chapter we will outline the general theory of �rst-order di�erential equations (including a general existence-
uniqueness theorem) and techniques for solving some of the basic classes of �rst-order equations: separable equations
and �rst-order linear equations. We will then discuss a few applications of �rst-order equations, to population
modeling, mixing problems, Newtonian mechanics, Newton's law of cooling, and electrical circuit analysis.

1.1 Introduction and Terminology

• In general, a di�erential equation is merely an equation involving a derivative (or several derivatives) of a
function or functions.

◦ Examples: y′ + y = 0, or y′′ + 2y′ + y = 3x2, or f ′′ · f = (f ′)2, or f ′ + g′ = x3.

◦ �Most� di�erential equations are di�cult if not impossible to �nd exact solutions to, in the same way
that �most� random integrals or in�nite series are hard to evaluate exactly.

◦ In every branch of science, from physics to chemistry to biology (as well as other �elds such as engineer-
ing, economics, and demography), virtually any interesting kind of process is modeled by a di�erential
equation or a system of di�erential equations.

◦ Morally, the reason for this is that most anything interesting involves change of some kind, and the
derivative measures the rate of change. Derivatives appear in the guise of a growth rate for a population,
the velocity and acceleration of a physical object, the di�usion rates of molecules involved in a reaction,
marginal cost and marginal pro�t in economics, and hundreds of other places.

• Sometimes we will be looking for the �general solution� to a di�erential equation (i.e., every possible function
that satis�es the equation), and other times we will be looking for the one �particular solution� that satis�es
some additional conditions. We can also consider systems of equations rather than single equations: in that
case we will be seeking a collection of several functions which satisfy all the equations at once.

◦ A very common example of �additional conditions� is what is called an initial value problem (often
abbreviated �IVP�): the additional conditions are the values of the function y and its derivatives at some
initial point x = a.

• Here are some examples of single di�erential equations and systems of di�erential equations, with and without
additional conditions. (Do not expect to be able to solve any of them immediately!)
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◦ Example: Find all functions y(x) such that y′ + y = 0.

∗ Answer: The general solution is y(x) = Ce−x for any constant C.

◦ Example: Find the function y(x) such that y′′ + 2y′ + y = 3x2 and with y(0) = y′(0) = 1.

∗ Answer: The particular function requested is y(x) = 3x2 − 12x+ 18− 4xe−x − 17e−x.

∗ This is an example of an initial value problem: the additional conditions are the values of the function
y and its derivative y′ at the initial point x = 0.

◦ Example: Find all functions f(x) such that f ′′ · f = (f ′)2.

∗ Answer: The general solution is f(x) = AeBx for any constants A and B.

◦ Example: Find the functions f(x) and g(x) such that f ′ = 2f−g and g′ = f+2g, where f(0) = g(0) =
√

2.

∗ Answer: The unique solution is f(x) = 2e2x cos(x+
π

4
) and g(x) = 2e2x sin(x+

π

4
).

∗ This is another example of an initial value problem: the additional conditions are the values of the
functions f and g at the initial point x = 0.

◦ Example: Find all functions f(s, t) such that
∂f

∂s
+
∂f

∂t
= s+ t.

∗ Answer: Many solutions. Two examples are f(s, t) = st and f(s, t) =
1

2
s2 +

1

2
t2.

• Most di�erential equations (very much unlike the carefully chosen ones above) are di�cult if not impossible
to �nd exact solutions to, in the same way that �most� random integrals or in�nite series are hard to evaluate
exactly.

◦ A prototypical example is something like (f ′′)7 − 2ef
′

+ x ln(f + 2f · f ′) = sin20(x) + e−x: there is no
simple function that we can write down that will solve this equation, although it is generally possible to
�nd accurate approximate solutions using numerical techniques or by using Taylor series.

• To organize all of this, we now introduce some terminology used to classify di�erent types of di�erential
equations.

• De�nition: If a di�erential equation involves functions of only a single variable (i.e., if y is a function only of
x) then it is called an ordinary di�erential equation (or ODE).

◦ We will only talk about ODEs in these notes. But for completeness, di�erential equations involving func-
tions of several variables are called partial di�erential equations, or PDEs. (Recall that the derivatives
of functions of more than one variable are called partial derivatives, hence the name.)

◦ PDEs, obviously, arise when functions depend on more than one variable. They occur often in physics
(with functions that depend on space and time) and economics (with functions that depend on time and
other parameters).

• De�nition: An nth-order di�erential equation is an equation in which the highest derivative is the nth deriva-
tive.

◦ Example: The equations y′ + xy = 3x2 and y′ · y = 2 are �rst-order.

◦ Example: The equation y′′ + y′ + y = 0 is second-order.

◦ Example: The equation ey = y′′′′ is fourth-order.

• De�nition: A di�erential equation is linear if it a linear function of y and its derivatives y′, y′′, y′′′, · · · : in
other words, if there are no terms like y2, or (y′)3, or y · y′, or ln(y), or ey. (An equation that is not linear is
nonlinear.)

◦ Example: The equations y′′ + y′ + y = 0, y′ + xy = 3x2, and e
√
xy′′′ = x100y − 3 tan−1(x2) are linear.

◦ Example: The equations y′ · y = 3x2, x2 + (y′)2 = 1, and y′′ = − sin(y) are nonlinear.

• Using the language above we can convert a description of a problem into a di�erential equation, or a system
of di�erential equations.
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• Example: A population of animals (unrestricted by space or resources) will grow at a rate proportional to its
size1. Translate this description into a di�erential equation and classify its type.

◦ If P (t) is the population at time t and k is a constant the growth rate, the description says that

dP

dt
= k · P .

◦ This is a homogeneous �rst-order linear di�erential equation with constant coe�cients .

◦ It's not hard to see that one population model that works is P (t) = Cek·t for any constant C, and (as
we will see) these are the only solutions. So this system is likely to see exponential population growth.

• Example: A simple pendulum consists of a weight suspended on a string, with gravity the only force acting
on the weight. Translate this description into a di�erential equation and classify its type.

◦ If θ is the angle the pendulum's string makes with a vertical line, and m is the mass of the pendulum,
then the horizontal force on the weight toward the vertical is proportional to m sin(θ) by basic geometry.

◦ By Newton's second law F = ma, and the fact that the angular acceleration is essentially the second

derivative θ′′(t), we obtain the equation m
d2θ

dt2
= −km sin(θ), or

d2θ

dt2
= −k sin(θ).

◦ This is a nonlinear second-order di�erential equation .

◦ We will remark that this equation cannot be solved exactly for the function θ(t). However, a reasonably
good approximation can be found by using the rough estimate sin(θ) ≈ θ, which turns the problem into

the linear second-order di�erential equation
d2θ

dt2
= −k · θ whose solutions are much easier to �nd.

• Example: A simple ecosystem has two species: cats and mice. The mice breed at a rate proportional to their
population, and each cat eats a �xed number of mice every year. The growth rate of the number of cats will
be proportional to the number of mice (since each cat has to catch mice to survive and reproduce). Translate
this description into a system of di�erential equations.

◦ If M(t) and K(t) are the populations of mice and cats, with k1, k2, k3 are some constants, then the

descriptions say that
dM

dt
= k1 ·M − k2 ·K, and

dK

dt
= k3 ·M .

◦ This is a system of two linear di�erential equations; we will return to study the solutions to such systems
later.

◦ The conditions here are fairly natural for a simple predator-prey system. But in general, one would
expect there to be non-linear terms too � perhaps when two cats meet, they �ght with each other and

cause injury, which would change the equation to
dK

dt
= k3 ·M − k4 ·K2.

◦ This system would get even more complicated (and more di�cult to solve!) if we wanted to consider
additional species each of which interacts in some way with the others.

1.2 Qualitative Analysis: Existence-Uniqueness Theorem, Slope Fields

• Before we discuss how to solve various classes of �rst-order di�erential equations quantitatively, we would like
to be able to say some qualitative things about solutions to general �rst-order equations.

• Our �rst goal is to decide when (in general) we can say that a �rst-order di�erential solution has an equation,
and when we can say that solution is unique.

• Theorem (First-Order Existence-Uniqueness): The initial value problem y′ = f(x, y) with y(a) = b has at least
one solution (on some interval containing a) if the function f is continuous on a rectangle containing (a, b).

The IVP has exactly one solution (on some interval containing a) if the partial derivative
∂f

∂y
is continuous

on a rectangle containing (a, b).

1Imagine each male pairing o� with a female and having a �xed number of o�spring each year.
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◦ The proof of the theorem is fairly di�cult and quite technical. The general idea is to construct a sequence
of functions (de�ned on some small interval around a), such that taking the limit of the sequence yields
a solution to the di�erential equation.

◦ The continuity of f ensures that the sequence will converge: roughly speaking, it forces functions far out
in the sequence to eventually become very close together.

◦ The continuity of the partial derivative
∂f

∂y
ensures that the solution function is unique: roughly speaking,

one can use the existence of the derivative to show that the integral of the absolute value of the di�erences
of two solutions is zero on an interval containing a (meaning that the di�erence would have to identically
zero there).

• Example: Determine the initial conditions y(a) = b for which the di�erential equation y′ = ey + xy is
guaranteed to have a solution, and where it is guaranteed to have a unique solution.

◦ All initial conditions lead to a solution, because f(x, y) = ey + xy is continuous everywhere.

◦ In fact, all initial conditions lead to a unique solution , because the partial derivative fy(x, y) = ey + x

is also continuous everywhere.

◦ It is, in fact, not possible to solve this equation explicitly using any of the techniques we will learn.
Nonetheless, the theorem guarantees that it has a unique solution!

• Example: Determine the initial conditions y(a) = b for which the di�erential equation y′ = y2/3 is guaranteed
to have a solution, and where it is guaranteed to have a unique solution.

◦ All initial conditions lead to a solution , because since f(x, y) = y2/3 is continuous everywhere.

◦ However, the partial derivative fy =
2

3
y−1/3 is not continuous near y = 0, and so the solution is

not guaranteed to be unique around (a, 0) for any a, but unique otherwise .

◦ Remark: In fact, we can even write down two di�erent solutions to the IVP y′ = y2/3 with y(0) = 0:

namely, the constant function y = 0 and the function y =
1

27
x3. (They both satisfy the equation and

take the value zero at x = 0, but are clearly not the same function.)

• Example: Determine the initial conditions y(a) = b for which the di�erential equation y′ =
√
y − x is guaran-

teed to have a solution, and where it is guaranteed to have a unique solution (where our solutions are taken
to be real-valued).

◦ In order to have a solution, we need f(x, y) =
√
y − x to be continuous in a rectangle containing (a, b).

The function is not de�ned if x > y, and it is not continuous near any point with x = y either, because
any rectangle around a point (a, a) will capture some points with x > y.

◦ Thus, the solution is guaranteed to exist only for (a, b) with b > a .

◦ The partial derivative fy(x, y) =
1

2
√
y − x

is not de�ned if x ≥ y (since in addition to taking the square

root of a negative number, we cannot divide by zero). So the solution is unique for (a, b) with b > a .

◦ Note: If we allow complex-valued solutions, then the function f(x, y) =
√
y − x is de�ned and continuous

on the entire plane, but gives non-real values when x > y. It is also possible to study di�erential equations
over the complex numbers, but our theorem only applies when the functions are real-valued.

• If we know that a given initial value problem y′ = f(x, y) with y(a) = b has a unique solution, we can use a
geometric tool called a slope �eld to get a rough picture of the solution.

◦ To draw a slope �eld for the di�erential equation y′ = f(x, y), we choose a grid of points and, at each
point (x0, y0) in the grid, we draw a short line segment having length f(x0, y0).

◦ A solution curve to y′ = f(x, y) that passes through a point (x0, y0) in the grid will by de�nition have
slope f(x0, y0) at that point, so solution curves will (roughly speaking) follow the line segments as they
move through the plane.
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• Here are some typical slope �elds with solution curves superimposed; notice how the solution curves �follow�
the segments in the slope �eld:

◦ Generally, one uses a computer when plotting slope �elds, since it is very time-consuming to produce
slope �eld plots by hand: even a 5×5 grid of points, which does not give much usable detail, will require
evaluating 25 function values and then plotting 25 separate line segments.

1.3 Separable First-Order Equations

• One type of �rst-order equations we can solve explicitly is the class of separable equations. Before giving the
formal de�nition, we will give an example.

• Example: Solve the initial value problem y′ = 2xy with y(1) = 1.

◦ We rearrange the equation as
y′

y
= 2x, and then integrate both sides:

´ y′
y
dx =

´
x dx = x2 + C1.

◦ In the left integral we can make the substitution u = y(x), with u′ = y′ dx, to obtain ln(y)+C2 = x2+C1.

◦ Moving the constants around gives ln(y) = x2 + C for some constant C.

◦ Plugging in the condition y(1) = 1 gives 0 = 12 + C, so C = −1.

◦ Thus, ln(y) = x2 − 1 , so that y = ex
2−1 .

◦ Remark: We can simplify the procedure slightly if instead we convert the statement
dy

dx
= 2xy into the

statement
dy

y
= 2x dx. We can then integrate both sides directly, to obtain the statement ln(y) = x2+C.

• As one might expect, the above procedure can be generalized to a broad class of equations:

• De�nition: A separable equation is of the form y′ = f(x) · g(y) for some functions f(x) and g(y), or an
equation equivalent to something of this form.

◦ We can rearrange such an equation and then integrate both sides, in the same way as in the example
above. We can simply the solving procedure slightly, as noted above: instead of making a substitution,
we can use di�erentials.

• Here is the method for solving such equations:

◦ Step 1: Replace y′ with
dy

dx
, and then write the equation as

dy

g(y)
= f(x) dx.

◦ Step 2: Integrate both sides (inde�nitely), and place the +C on the x side.

◦ Step 3: If given, plug in the initial condition to solve for the constant C. (Otherwise, just leave it where
it is.)

◦ Step 4: Solve for y as a function of x, if required.

• Example: Solve y′ = k · y, where k is a constant.

◦ Step 1: Rewrite as
dy

y
= k dx.
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◦ Step 2: Integrate to get
´ dy
y

=
´
k dx, which gives ln(y) = kx+ C1.

◦ Step 4: Exponentiate to get y = ekx+C1 = C2 · ekx for an arbitrary constant C2.

• Example: Solve the di�erential equation y′ = ex−y.

◦ Step 1: Using the identity ex−y = ex/ey, we can rewrite the equation as ey dy = ex dx.

◦ Step 2: Integrate to get
´
ey dy =

´
ex dx, which gives ey = ex + C.

◦ Step 4: Take the natural logarithm to get y = ln(ex + C) .

• Example: Find y given that y′ = x+ xy2 and y(0) = 1.

◦ Step 1: Rewrite as
dy

1 + y2
= x dx.

◦ Step 2: Integrate to get
´ dy

1 + y2
=
´
x dx, which gives tan−1(y) =

1

2
x2 + C.

◦ Step 3: Plug in the initial condition to get tan−1(1) = C, so that C = π/4.

◦ Step 4: Taking the natural logarithm gives y = tan

(
1

2
x2 +

π

4

)
.

1.4 Linear First-Order Equations

• Another type of �rst-order equations we can solve explicitly is the class of �rst-order linear equations, which
(upon dividing by the coe�cient of y′) can be written in the general form y′ + P (x) · y = Q(x), where P (x)
and Q(x) are some functions of x.

• It would be very convenient if we could just integrate both sides to solve the equation. However, in general,
we cannot: the y′ term is easy to integrate, but the P (x) · y term is not.

• To �x this issue, we use an �integrating factor�: we multiply by a function I(x) which will turn the left-hand
side into the derivative of a single function.

◦ In other words, what we would want is for I(x) · y′ + I(x)P (x) · y to be the derivative of something nice.

◦ When written this way, this sum looks sort of like the output of the product rule. If we can �nd I(x) so

that the derivative of I(x) is I(x)P (x), then this sum will be the derivative
d

dx
[I(x) · y].

◦ To make this work, we need I(x)P (x) = I ′(x). This is a separable equation for the function I(x), and
we can see by inspection that one solution is I(x) = e

´
P (x) dx.

• Motivated by the above logic, here is the method for solving �rst-order linear equations:

◦ Step 1: Put the equation into the form y′ + P (x) · y = Q(x).

◦ Step 2: Multiply both sides by the integrating factor e
´
P (x) dx to get e

´
P (x) dxy′ + e

´
P (x) dxP (x) · y =

e
´
P (x) dxQ(x).

◦ Step 3: Observe that the left-hand side is
d

dx

[
e
´
P (x) dx · y

]
, and take the antiderivative on both sides.

(Don't forget the constant of integration C.)

◦ Step 4: If given, plug in the initial condition to solve for the constant C. (Otherwise, just leave it where
it is.)

◦ Step 5: Solve for y as a function of x.

• Example: Find y given that y′ + 2xy = x and y(0) = 1.

◦ Step 1: We have P (x) = 2x and Q(x) = x.
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◦ Step 2: Multiply both sides by e
´
P (x) dx = ex

2

to get ex
2

y′ + ex
2 · 2x · y = x · ex2

.

◦ Step 3: Taking the antiderivative on both sides yields ex
2

y =
1

2
ex

2

+ C.

◦ Step 4: Plugging in yields e0 · 1 =
1

2
e0 + C hence C =

1

2
.

◦ Step 5: Solving for y gives y =
1

2
+

1

2
e−x

2

.

• Example: Find all functions y for which xy′ = x4 − 4y.

◦ Step 1: We have y′ +
4

x
y = x3, so P (x) =

4

x
and Q(x) = x3.

◦ Step 2: Multiply both sides by e
´
P (x) dx = e4 ln(x) = x4 to get x4y′ + 4x3y = x7,

◦ Step 3: Taking the antiderivative on both sides yields x4y =
1

8
x8 + C.

◦ Step 5: Solving for y gives y =
1

8
x4 + C · x−4 .

• Example: Find y given that y′ · cot(x) = y + 2 cos(x) and y(0) = −1

2
.

◦ Step 1: We have y′ − y tan(x) = 2 sin(x), with P (x) = − tan(x) and Q(x) = 2 sin(x).

◦ Step 2: Multiply both sides by e
´
P (x) dx = eln(cos(x)) = cos(x) to get y′ ·cos(x)−y ·sin(x) = 2 sin(x) cos(x).

◦ Step 3: Taking the antiderivative on both sides yields [y · cos(x)] = −1

2
cos(2x) + C.

◦ Step 4: Plugging in yields −1

2
= −1

2
· 1 + C hence C = 0.

◦ Step 5: Solving for y gives y = − cos(2x)

2 cos(x)
.

1.5 Applications of First-Order Equations

• In this section we discuss a few common applications of �rst-order di�erential equations: speci�cally, to
population modeling, mixing problems, Newtonian mechanics, Newton's law of cooling, and electrical circuit
analysis.

1.5.1 Population Modeling

• A basic population model is to have the growth rate of the population be proportional to the size of the
population.

• Example: Solve the di�erential equation P ′ = kP where k is a positive constant.

◦ This is a separable equation, which we can rewrite as
dP

P
= k dt.

◦ Integrating both sides yields ln(P ) = kt+ C1, and exponentiating gives P (t) = C2e
kt .

◦ If we want to satisfy the initial condition P (0) = P0, we simply have C2 = P0 so the solution is

P (t) = P0e
kt .

• The above population model is rather unrealistic because once the population is su�ciently large, the indi-
viduals will begin competing for resources.

◦ In general, the number of �competitions� would grow at a rate proportional to P 2, since that is the
approximate number of pairs of individuals that will be competing with one another.
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◦ So a better population model has the form P ′ = aP − bP 2 for some constants a and b. For various
reasons, it is more useful to write this equation in the form P ′ = kP (M −P ) where M = a/b and k = b.

• Example: Solve the di�erential equation P ′ = kP (M − P ), where k and M are positive constants.

◦ This equation is separable, and we can rewrite it as
M dP

P (M − P )
= kM dt.

◦ Integrating both sides yields
´ M

P (M − P )
dP =

´
kM dt.

∗ To evaluate the P -integral, we use partial fraction decomposition:
M

P (M − P )
=

1

P
+

1

M − P
.

∗ The result is ln(P )− ln(M − P ) = kMt+ C1.

◦ We can combine the logarithms to obtain ln

(
P

M − P

)
= kMt + C1, and then exponentiate to get

P

M − P
= C2e

kMt.

◦ Solving for P yields, �nally, P (t) =
M

1 + C2e−kMt
.

◦ If we want to satisfy the initial condition P (0) = P0, then plugging in shows C =
M

P0
− 1, and then the

solution can be rewritten in the form P (t) =
MP0

P0 + (M − P0)e−kMt
.

• The di�erential equation P ′ = kP (M − P ) that we just analyzed is called the logistic equation, and is an
example of an autonomous equation, which is a �rst-order equation of the form y′ = f(y) for some function
f . (It is called �autonomous� because the independent variable does not appear anywhere.)

◦ Any autonomous equation is separable and thus solvable in principle: however, it can happen that the
resulting integral is too di�cult to evaluate exactly.

◦ We can get some idea of the solutions by looking for equilibrium solutions (also called steady state solutions
or critical points): they are the solutions of the form y(t) = c, for some constant c.

◦ The autonomous equation y′ = f(y) will have an equilibrium solution precisely when f(y) = 0.

◦ For the logistic equation P ′ = kP (M − P ), we can easily see that P = 0 and P = M are the only
equilibrium solutions.

◦ From the expression P ′ = kP (M − P ), we see that if 0 < P < M then P ′ > 0, and that P > M then
P ′ < 0. In other words, any positive starting population P will have P (t) tending to move toward the
value M as t increases.

◦ This can also be seen from the explicit formula: as t → ∞ we can easily compute that P (t) → M
provided that P0 > 0.

1.5.2 Mixing Problems

• There are a number of common examples that can all be classi�ed as �mixing problems� whose setup is as
follows:

◦ We have some reservoir (pool, lake, ocean, planet, room) of liquid (water, gas) which has some substance
(pollution, salt) dissolved in it.

◦ The reservoir starts at an initial volume V0 and there is an initial amount of substance y0 in the reservoir.

◦ We have some amount of liquid In(t) �owing in with a given concentration k(t) of the substance, and
some other amount of liquid Out(t) �owing out.

◦ We assume that the substance is uniformly and perfectly mixed in the reservoir, and are asked to �nd
the amount y(t) of the substance that remains in the reservoir after time t.
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◦ Of course, the amount of liquid �owing in or out may be constants (i.e., not depend on time), and
similarly the concentration of the liquid �owing in could also be a constant.

• The only di�culty in solving the general mixing problem is that it requires a bit of careful bookkeeping to
convert between concentrations and total amounts:

◦ Let V (t) be the total volume of the reservoir and y(t) be the total amount of substance in the reservoir,
with initial volume V0 and initial amount y0. Also let In(t) be the volume �owing in, with concentration
k(t) of the substance, and Out(t) be the volume �owing out.

◦ The net change in the volume at time t is In(t)−Out(t), so V ′(t) = In(t)−Out(t).

◦ Since the concentration of substance moving into the reservoir is k(t) and the total volume of liquid
moving into the reservoir is In(t), the total amount of substance moving in is k(t) · In(t).

◦ Similarly, the concentration of substance in the reservoir is
y(t)

V (t)
, so since the volume of liquid moving

out of the reservoir is Out(t), the total amount of substance moving out is
y(t)

V (t)
·Out(t).

◦ Thus, the net change in the amount of substance at time t is k(t) · In(t) − y(t)

V (t)
· Out(t), so y′(t) =

k(t) · In(t)− y(t)

V (t)
·Out(t).

◦ So we obtain two equations: V ′(t) = In(t)−Out(t) and y′(t) = k(t) · In(t)− y(t)

V (t)
·Out(t).

◦ Solving these equations is then straightforward: we can simply integrate to �nd V (t) explicitly, and then

we can rewrite the other equation as y′ +
Out(t)

V (t)
· y = k(t) · In(t), which is �rst-order linear.

• Example: A small room with a volume of 1000 liters contains air containing 40% oxygen. The air is �ltered
at a rate of 10 liters per second and returned to the room with a concentration of 10% oxygen. Assuming the
air is uniformly mixed, determine the amount of time necessary before the air in the room drops to a 20%
oxygen concentration.

◦ We have In(t) = Out(t) = 10L/s and V (t) = 1000L, since it is stated that the air pumped out is
immediately returned. We also have k(t) = 0.1, and y0 = (1000L)(0.4) = 400L.

◦ Then from our analysis of the general case, we have y′(t) +
10L/s

1000L
· y = (0.1) · (10L/s), which can be

rewritten as y′(t) +
1 s−1

100
y(t) = 1L/s.

◦ We obtain the di�erential equation y′(t) +
1

100
y(t) = 1, in liters per second.

◦ The integrating factor is I = e
´
(1/100) dt = et/100, so scaling gives the equation et/100y′(t)+

1

100
et/100y(t) =

et/100.

◦ Integrating both sides yields et/100y(t) = 100et/100 + C.

◦ Plugging in the initial condition y(0) = 400 gives 1 · 400 = 100 + C so C = 300.

◦ Thus, we obtain et/100y(t) = 100et/100 + 300, so y(t) = 100 + 300e−t/100.

◦ The concentration is then
y(t)

V (t)
=

1

10
+

3

10
e−t/100. This quantity is equal to 20% = 0.2 when

3

10
e−t/100 =

1

10
, so that et/100 = 3, whence t = 100 ln(3) s ≈ 110s .

• Example: A large tank contains 600 liters of a 0.01kg/L salt solution. A 0.2kg/L salt solution is pumped into
the tank at a rate of 10 liters per second and, simultaneously, the tank is drained at a rate of 5 liters per
second. Determine the concentration of the salt solution in the tank as a function of time.

◦ We have In(t) = 10L/s, Out(t) = 5L/s, V0 = 600L, k(t) = 0.2kg/L, and y0 = 0.01kg/L · 600L = 6kg.
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◦ From our analysis of the general case, we have V ′(t) = 5L/s and V0 = 600L, so V (t) = (600 + 5t)L.

◦ Furthermore, we have y′(t) +
5L/s

(600 + 5t)L
y(t) = (0.2kg/L)(10L/s), which can be rewritten as y′(t) +

1 s−1

120 + t
y(t) = 2 kg/s.

◦ We obtain the di�erential equation y′(t) +
1

120 + t
y(t) = 2, in kilograms per second.

◦ The integrating factor is I = e
´
1/(120+t) dt = eln(120+t) = 120 + t, so we obtain (120 + t)y′(t) + y(t) =

240 + 2t.

◦ Integrating both sides yields (120 + t)y(t) = 240t+ t2 + C.

◦ Plugging in the initial condition y(0) = 6 gives 120 · 6 = C so C = 720.

◦ Thus, (120 + t)y(t) = 240t+ t2 + 720, so y(t) =
t2 + 240t+ 720

t+ 120
, and then the concentration at time t is

y(t)

V (t)
=

t2 + 240t+ 720

(t+ 120)(600 + 5t)
kg/L .

◦ The concentration can be simpli�ed to the expression 0.2− 2736

(t+ 120)2
kg/L after some arithmetic. In

particular, we can see that as t→∞ the concentration approaches 0.2kg/L. (This makes intuitive sense
since as t→∞, most of the solution in the tank will have originated from the 0.2kg/L solution that was
pumped in.)

1.5.3 Applications of Di�erential Equations in Physics

• Much of classical physics can be essentially reduced to the analysis of various di�erential equations.

• In kinematics, which is the branch of classical physics involving the study of motion and forces in a Newtonian
(i.e., nonrelativistic) universe, the key ingredient is Newton's second law, which states that F = ma, where
F is the total sum of forces acting on an object whose mass is m and whose acceleration is a.

◦ By writing down all the forces acting on an object and relating them to the object's position and velocity,
one obtains a di�erential equation whose solution will characterize the object's motion.

◦ Typically the resulting di�erential equation is second-order (since acceleration is the second derivative
of position) but in some cases it is possible to solve the equation using the techniques we have developed
for �rst-order equations.

• Example: A ball of mass m kg is dropped in a vacuum from an initial height h meters and initial velocity
v0m/s upward, and the force exerted by gravity is mg newtons (downward). Find the position of the ball t
seconds after it is dropped.

◦ If x(t) is the particle's position then its velocity is v(t) = x′(t) and its acceleration is a(t) = v′(t) = x′′(t).

◦ The only force acting on the ball is the force of gravity, so from Newton's second law we see that
−mgN = (m kg) a(t), from which we see that a(t) = −gm/s2.
◦ We therefore have a (very easy) initial value problem v′(t) = −g m/s2 with v(0) = v0m/s: to solve it, we
simply integrate and plug in the initial value to see that v(t) = (−gt+ v0)m/s.

◦ This yields another initial value problem for the position: x′(t) = (−gt+ v0)m/s with x(0) = x0. Again,

integrating and plugging in the initial value yields the solution x(t) =

(
−1

2
gt2 + v0t+ x0

)
m .

• Example: A ball of mass m kg is dropped in atmosphere from an initial height h meters and initial velocity
v0m/s upward, and the force exerted by gravity is again mg newtons (downward). The force of air resistance
is proportional to the velocity: speci�cally, it is equal to k v newtons (opposite the direction of motion) where
v is the velocity. Find the position and velocity of the ball t seconds after it is dropped.
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◦ Note that the velocity of the ball is negative, since it is moving downward. The force of air resistance is
oriented upward since it is opposite the direction of motion.

◦ So from Newton's second law we see that−mgN−kvN = (m kg) a(t), from which a(t) =

(
−g − k

m
v

)
m/s2.

◦ Once again we have an initial value problem: v′(t) = −g − k

m
v, with v(0) = v0. This equation is

�rst-order linear, and putting it in standard form yields v′ +
k

m
v = −g.

◦ The integrating factor is I = e
´
(k/m) dt = e(k/m)t.

◦ Scaling by it gives e(k/m)tv′+
k

m
e(k/m)tv = −ge(k/m)t, and then integrating both sides yields e(k/m)tv =

−gm
k
e(k/m)t + C so that v = −gm

k
+ C e−(k/m)t.

◦ Plugging in the initial condition v(0) = v0 yields v0 = −gm
k

+ C, whence C = v0 +
gm

k
.

◦ So our solution is v = −gm
k

+
(
v0 +

gm

k

)
e−(k/m)t .

◦ For the position we can now simply integrate and plug in the initial condition. After some simpli�cation

one obtains the result x = h− gm

k
t− m

k

(
v0 +

gm

k

) [
1− e(−k/m)t

]
.

◦ It is a bit di�cult to analyze the behavior of this quantity directly: for example, even with speci�c values
for all the parameters, it is not generally possible to solve exactly for when the ball will hit the ground.

◦ However, we can certainly make a few qualitative observations: �rst, notice that as t→∞, the velocity

approaches the value −gm
k
: this quantity is called the �terminal velocity� of an object falling in air

resistance.

∗ In fact, one can compute the terminal velocity without using the solution to the di�erential equation:
when an object is falling at terminal velocity, the force of gravity is exactly balanced by the air
resistance.

∗ This occurs precisely when −mg − kv = 0: that is, when v = −gm
k
.

◦ Second, observe that if g = 0 (i.e., there is no gravity, and the only force is from air resistance), the

position of the object approaches the value h−mv0
k

as t→∞: in other words, the object will only move

the �nite distance
mv0
k

away from its starting position.

• Another common problem in physics is studying the properties of heat and energy transfer.

• As a simple example, Newton's law of cooling states that, under thermal conduction, the rate of heat transfer
between a body and its environment is proportional to the di�erence in temperature between the body and
the environment.

◦ If T is the temperature of the object, k is the proportionality coe�cient (with units of inverse time),

and Tenv is the temperature of the environment, then Newton's law of cooling can be written as
dT

dt
=

−k(T − Tenv).

◦ If the temperature of the environment is constant, then the resulting di�erential equation is both separable

and �rst-order linear. Using either method yields the solution T (t) = Tenv + (T0 − Tenv)e−kt , where T0
is the initial temperature of the object.

◦ We can see that, for any starting temperature, the di�erence T − Tenv will follow an exponential decay,
meaning that temperature of the object will approach the temperature of the environment exponentially
fast.

• Example: A boiling pot of water (100 Celsius) is placed outside in below-freezing weather (−20 Celsius) and
it takes 1 hour for the temperature to drop to 40 Celsius. What will be the temperature of the water after
another 1 hour outside? Another 2 hours?
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◦ We could set up the problem and use the formula above to compute the rate constant and eventually
obtain the formula T (t) = −20 + 120 · e−t ln(2), where t is measured in hours.

◦ However, it is not necessary to do this much work: we can instead observe that after 1 hour, the initial
temperature di�erence of 120 degrees has dropped to 60 degrees, representing a 50% decrease.

◦ After each additional hour, the exponential decay dictates that the temperature di�erence will decrease
by the same proportion: so after 1 hour, the di�erence will drop to 30 degrees, and after 2 hours, the
di�erence will be 15 degrees.

◦ So after 1 hour, the temperature of the water is 10◦C , and after 2 hours the temperature is −5◦C .

• A third problem in physics is to study the properties of electrical circuits involving various di�erent types of
components.

• In circuit analysis, the key ingredient is Kirchho�'s second law, which states that the total sum of the voltage
drops around any closed circuit is zero. In order to use this law, one needs to be given the values of voltage
drops across circuit components.

◦ Recall that q(t) denotes electrical charge measured in coulombs (C), and i(t) = dq/dt denotes electrical
current measured in amperes (A).

◦ A resistor will resist the �ow of charge through it in direct proportion to the current. Speci�cally, by
Ohm's law, the voltage drop across a resistor is ∆VR = Ri where R is the resistance in ohms (Ω).

◦ A capacitor will store charge and resist the passage of current in direct proportion to the amount of

electrical charge. The voltage drop across a capacitor is ∆VC =
1

C
q where C is the capacitance of the

capacitor in farads (F).

◦ An inductor will resist a change in the electrical current in direct proportion to the rate of change of the

current. The voltage drop across an inductor is ∆VL = L
di

dt
, where L is the inductance of the inductor

in henrys (H).

◦ A voltage source (such as a battery creating a direct current, or an alternator creating an alternating
current) will produce an electromotive force. The voltage drop across the source is equal to ∆VE = −E(t)
for some function E(t) in volts (V).

• In a simple RLC circuit, containing a resistor, capacitor, inductor, and a voltage source connected in series

in a circle, applying Kirchho�'s law immediately yields the relation L
di

dt
+Ri+

1

C
q = E(t).

◦ If we write everything in terms of q, we get a second-order linear di�erential equation for q, namely

L
d2q

dt2
+R

dq

dt
+

1

C
q = E(t).

◦ At present we cannot give the general solution to a second-order linear equation, but in the special
cases of an RL circuit or an RC circuit, the equation becomes a �rst-order linear equation in i or in q
(respectively) that we can solve using the techniques we have developed.

• Example: A battery giving a constant voltage of E(t) = 40V is connected in series to a resistor of resistance
20Ω and an inductor of inductance 1H. If the initial current in the circuit is i(0) = 3A, �nd the current after
t seconds.

◦ From the analysis above, we obtain the equation
di

dt
+ 20i = 40, with both sides measured in volts.

◦ This is a �rst-order linear equation with integrating factor I = e
´
20 dt = e20t, so scaling by it yields

e20t
di

dt
+ 20e20ti = 40e20t.

◦ Integrating both sides gives e20ti = 2e20t + C, so that i = 2 + C e−20t. Plugging in the initial condition

yields 3 = 2 + C from which C = 1, so i(t) = 2 + e−20t .

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2016. You may not reproduce or distribute this
material without my express permission.
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