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4 Counting Principles

Our goal in this chapter is to discuss a number of varied techniques for solving various problems related to counting
and enumeration in �nite sets. We begin by introducing basic counting principles, which lead us to study per-
mutations, combinations, and binomial coe�cients. We then discuss inclusion-exclusion and methods for counting
with repetition, before discussing a useful result known as the pigeonhole principle. We close with an analysis of a
number of moderately-related counting problems that both parallel and extend our earlier examples.

4.1 Enumeration Techniques

• We begin by showing how to employ some of our results on sets and cardinality to solve various kinds of
counting problems.

4.1.1 Addition and Multiplication Principles

• Two fundamental counting principles are as follows:

◦ (�Addition Principle�) When choosing among n disjoint options labeled 1 through n, if option i has ai
possible outcomes for each 1 ≤ i ≤ n, then the total number of possible outcomes is a1 + a2 + · · ·+ an.

◦ To illustrate the addition principle, if a restaurant o�ers 5 main courses with chicken, 6 main courses
with beef, and 12 vegetarian main courses, then (presuming no course is counted twice) the total possible
number of main courses is 5 + 6 + 12 = 23.
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◦ The addition principle can be justi�ed using our results about cardinalities of unions of sets: if Ai
corresponds to the set of outcomes of option i, then the union A1 ∪A2 ∪ · · · ∪An corresponds to a single
choice of one outcome from one of the Ai. Then because all of the di�erent options are disjoint, the
number of such choices is #(A1 ∪A2 ∪ · · · ∪An) = #A1 +#A2 + · · ·+#An.

◦ (�Multiplication Principle�) When making a sequence of n independent choices, if step i has bi possible
outcomes for each 1 ≤ i ≤ n, then the total number of possible collections of choices is b1 · b2 · · · · · bn.
◦ To illustrate the multiplication principle, if a fair coin is tossed (2 possible outcomes) and then a fair
6-sided die is rolled (6 possible outcomes), the total number of possible results of �ipping a coin and then
rolling a die is 2 · 6 = 12.

◦ The multiplication principle can be justi�ed using our results about cardinalities of Cartesian products:
if Bi corresponds to the set of outcomes of choice i, then the elements of the Cartesian product B1 ×
B2 × · · · × Bn correspond to ordered n-tuples of outcomes, one for each choice. The number of such
n-tuples is #(B1 ×B2 × · · · ×Bn) = #B1 ·#B2 · · · · ·#Bn.

• By combining these principles appropriately, we can solve a variety of basic counting problems.

• Example: Determine the number of possible outcomes from rolling a 6-sided die 5 times in a row.

◦ Each individual roll has 6 possible outcomes. Thus, by the multiplication principle, the number of
possible sequences of 5 rolls is 65 = 7776 .

• Example: An ice creamery o�ers 25 di�erent �avors. Each order of ice cream may be served in either a sugar
cone, a wa�e cone, or a dish, and may have 2 or 3 scoops (which must be the same �avor). Also, any order
may come with a cherry or nuts (or neither), but not both. How many di�erent orders are possible?

◦ We tabulate all of the possible choices separately.

◦ First, we choose an ice cream �avor: there are 25 options.

◦ Then we choose a sugar cone, wa�e cone, or dish: there are 3 options.

◦ Next we choose the number of scoops: there are 2 options.

◦ Finally, we choose either a cherry, nuts, or neither: there are 3 options.

◦ By the multiplication principle, the total number of possible orders is 25 · 3 · 2 · 3 = 450 .

• Example: In the Unicode family of character encodings, each character is represented by a string of n bits,
each of which is either a 0 or 1 (where n depends on the particular implementation). If it is necessary to be
able to encode at least 150,000 di�erent characters, what is the smallest possible value of n that will su�ce?

◦ If we have a string of n bits each of which is 0 or 1, then by the multiplication principle the total number
of possible strings is 2n.

◦ Thus, we want 2n ≥ 150000. Taking logarithms, we need n ≥ log2(150000) ≈ 17.194, so the smallest

integer value of n that will work is n = 18 .

• Example: Determine the number of subsets of the set {1, 2, . . . , n}.

◦ We may characterize a subset S of {1, 2, . . . , n} by listing, for each k ∈ {1, 2, . . . , n}, whether k ∈ S or
k 6∈ S.

◦ By the multiplication principle, the number of possible ways of making this sequence of n choices is 2n .

• Example: If #A = n and #B = m, �nd the total number of functions f : A→ B.

◦ If A = {a1, a2, . . . , an}, then such a function is completely determined by the values f(a1), f(a2), ... ,
f(an).

◦ Since #B = m, there are m possible choices for each of the n values f(a1), f(a2), ... , f(an).

◦ Since all such choices are allowed, the total number of functions is therefore mn .

• Example: Find the number of positive integer divisors of 90000.
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◦ Note that 90000 = 243254, so any positive integer divisor must have the form 2a3b5c where a ∈
{0, 1, 2, 3, 4}, b ∈ {0, 1, 2}, and c ∈ {0, 1, 2, 3, 4}.
◦ On the other hand, every such integer is a divisor, and so since there are 5 choices for a, 3 for b, and 5
for c, there are 5 · 3 · 5 = 75 divisors in total.

◦ Remark: In the same way, one may see that n = 2n23n35n5 · · · has a total of (n2 +1)(n3 +1)(n5 +1) · · ·
positive integer divisors.

• In many counting problems, we must break into several cases and tabulate possibilities separately.

• Example: At a car dealership, Brand X sells 11 di�erent models of cars each of which comes in 20 di�erent
colors, while Brand Y sells 6 di�erent models of cars each of which comes in 5 di�erent colors. How many
di�erent possible car options (including brand, model, and color) can be purchased at the dealership?

◦ If a Brand X car is purchased, there are 11 choices for the model and 20 choices for the color, so by the
multiplication principle there are 11 · 20 = 220 possible options in this case.

◦ If a Brand Y car is purchased, there are 6 choices for the model and 5 choices for the color, so by the
multiplication principle there are 6 · 5 = 30 possible options in this case.

◦ Since these two cases are disjoint, by the addition principle there are 220+30 = 250 possible car options
in total.

• In other cases, we may use �complementary counting�: count possibilities and then subtract ones that are not
allowed to occur, or that have been double-counted.

◦ More formally, we are applying the observation that if B is a subset of A, then #(A\B) = #A−#B.

• Example: A local United States telephone number has 7 digits and cannot start with 0, 1, or the three digits
555. How many such telephone numbers are possible?

◦ The �rst digit has 8 possibilities (namely, the digits 2 through 9 inclusive) and the other six digits each
have 10 possibilities. Thus, by the multiplication principle, there are 8 · 106 = 8000 000 total telephone
numbers.

◦ However, we have included the numbers starting with 555: each of these has 10 choices for each of the
last 4 digits, for a total of 104 = 10 000 telephone numbers.

◦ Subtracting the disallowed numbers yields a total of 8 000 000 − 10 000 = 7 990 000 local telephone
numbers.

◦ Remark: Another method is to count all 107 possible 7-digit numbers, and then subtract the 106 starting
with 0, the 106 starting with 1, and the 104 starting with 555.

4.1.2 Permutations and Combinations

• Certain problem types involving rearrangements of distinct objects (�permutations�), or ways to select subsets
of a particular size (�combinations�), arise frequently in counting problems.

• Example: Determine the number of permutations (i.e., ways to rearrange) the six letters ABCDEF.

◦ There are 6 letters to be arranged into 6 locations.

◦ For the �rst letter, there are 6 choices (any of ABCDEF).

◦ For the second letter, there are only 5 choices (any letter except the one we have already chosen).

◦ For the third letter, there are only 4 choices (any letter except the �rst two).

◦ Continuing in this way, we see that there are 3 choices for the fourth letter, 2 choices for the �fth letter,
and only 1 choice for the last letter.

◦ By the multiplication principle, the total number of permutations is therefore 6 · 5 · 4 · 3 · 2 · 1 = 720 .

• Example: A new company logo has four design elements, which must all be di�erent colors chosen from red,
orange, yellow, green, blue, and purple. How many di�erent logos are possible?
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◦ There are 6 possible colors. The �rst design element has 6 possible colors, the second has 5 possible
colors (any of the 6 except the one already used), the third has 4 possible colors, and the fourth has 3
possible colors.

◦ Thus, the total number of logos is 6 · 5 · 4 · 3 = 360 .

• Both of the problems above are examples of computing permutations, where we choose k distinct items from
a list of n possibilities, and where the order of our choices matters.

◦ We can give a general formula for solving problems of this type in terms of factorials.

• De�nition: If n is a positive integer, we de�ne the number n! (read �n factorial�) as n! = n · (n− 1) · · · · · 2 · 1,
the product of the positive integers from 1 to n inclusive. We also set 0! = 1.

◦ Some small values are 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, and 6! = 720.

◦ The factorial function grows very fast: to 4 signi�cant �gures, we have 10! = 3.629·106, 100! = 9.333·10157,
and 1000! = 4.024 · 102567.
◦ A useful approximation known as Stirling's formula1 says that n! ≈ nne−n

√
2πn for large n (in the sense

that the ratio between the two quantities approaches 1 as n grows). In particular, n! grows faster than
any exponential function of the form An for any positive A.

◦ The estimates from Stirling's formula are 10! ≈ 3.599 ·106, 100! ≈ 9.325 ·10157, and 1000! ≈ 4.024 ·102567,
which are quite close even for small n.

• Proposition (Permutations): The number of ways of choosing k ordered items from a list of n distinct pos-

sibilities (where the order of the k items matters) is equal to
n!

(n− k)!
= n · (n − 1) · · · · · (n − k + 1). In

particular, the number of ways of rearranging n distinct items is n!.

◦ Remark: The number of permutations of k elements chosen from a list of n is sometimes denoted P (n, k),

nPk or P
(
n
k

)
.

◦ Proof: There are n possibilities for the �rst item, n− 1 for the second item (any possibility but the one
already chosen), n− 2 for the third item (any possibility but the two already chosen), ... , and n− k+1
possibilities for the kth item.

◦ All such selections are valid, so the total number of possibilities is n · (n − 1) · · · · · (n − k + 1) by the
multiplication principle.

◦ For the formula, notice that n·(n−1)·· · ··(n−k+1)·(n−k)! = n·(n−1)·· · ··(n−k+1)·(n−k)·· · ··1 = n!.

◦ Thus, n · (n− 1) · · · · · (n− k + 1) =
n!

(n− k)!
.

• Example: A sports league has 31 teams in total. How many ways are there to choose 16 teams that make the
playo�s, assuming that the ranking of the playo� teams matters and there are no ties?

◦ We are choosing k = 16 teams from a list of n = 31, where the order matters. From our result on

permutations, the total number of choices is
31!

15!
= 31 · 30 · · · · · 16.

• Example: If #A = n, �nd the total number of bijections f : A→ A.

◦ If A = {a1, a2, . . . , an}, a function f : A → A is completely determined by the values f(a1), f(a2), ... ,
f(an).

◦ Since f must be a bijection, these n values are necessarily the elements a1, a2, . . . , an, possibly rearranged.

1For completeness we outline a proof of Stirling's formula: the natural logarithm ln(n!) = ln(1)+ln(2)+ · · ·+ln(n) is a Riemann sum
for the integral

´ n
1 ln(x) dx, which can be evaluated via integration by parts as n ln(n)− n+ 1. Using the trapezoidal rule to estimate

the integral yields the approximation 1
2
ln(1) + ln(2) + ln(3) · · ·+ ln(n− 1) + 1

2
ln(n) ≈ n ln(n)− n+ 1. Rearranging and solving for n!

yields n! ≈ nne−nC
√
n. By a more careful analysis of the approximation error, the constant C can be computed as

√
2π, which yields

Stirling's formula.
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◦ Hence we see that the number of such bijections is the number of ways of permuting the n elements of

A, which is n! .

◦ Remark: This interpretation of permutations as bijections is one reason we take 0! = 1 (since there is
one bijection from the empty set to itself, namely the empty relation).

• In certain other types of counting problems, the order of the list of the k items we choose from the list of n
does not matter. We can also give a formula for counting in this way:

• Proposition (Combinations): The number of ways of choosing k unordered items from a list of n distinct

possibilities (where the order of the k items does not matter) is equal to
(
n
k

)
= nCk =

n!

k!(n− k)!
=

n · (n− 1) · · · · · (n− k + 1)

k · (k − 1) · · · · · 1
.

◦ Remark: The symbols
(
n
k

)
and nCk are both typically read as �n choose k�.

◦ Proof: From our calculation above, we know that the number of ways to choose k ordered items from a

list of n distinct possibilities is
n!

(n− k)!
.

◦ If instead we want to count unordered lists, we can simply observe that for any unordered list, there are
k! ways to rearrange the k elements on the list.

◦ Therefore, we have counted each unordered list k! times, so the number of unordered lists is
1

k!
· n!

(n− k)!
=

n!

k!(n− k)!
, as claimed.

• In general, expanding the products of factorials is not the most e�cient way to evaluate
(
n
k

)
.

◦ Instead, using the formula
(
n
k

)
=
n · (n− 1) · · · · · (n− k + 1)

k · (k − 1) · · · · · 1
is typically fastest.

◦ For example, computing
(
13
4

)
as

13!

4!9!
requires computing both 13! and 4!9!, and then evaluating the

quotient, which is rather cumbersome.

◦ However, it is quite easy to compute
(
13
4

)
by writing it as

(
13
4

)
=

13 · 12 · 11 · 10
4 · 3 · 2 · 1

= 13 · 11 · 5 = 715.

• Example: How many 3-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9} are there?

◦ Since subsets are not ordered, we are simply counting the number of ways to choose 3 unordered elements
from the given set of 9.

◦ From our discussion of combinations, the number of such subsets is
(
9
3

)
=

9 · 8 · 7
3 · 2 · 1

= 84 .

◦ Remark: More generally, the number of k-element subsets of {1, 2, . . . , n} is
(
n
k

)
.

• Example: At a conference with 30 mathematicians, every pair of attendees shakes hands once. How many
total handshakes occur?

◦ Since pairs of people are not ordered, we are counting the number of ways to choose 2 attendees from a

total of 30, which is
(
30
2

)
=

30 · 29
2 · 1

= 435 .

• Example: A pizza parlor o�ers 13 di�erent possible toppings on a pizza. A pizza may have from 0 up to 3
di�erent toppings. How many di�erent pizza topping combinations are possible?

◦ In general, there are
(
13
k

)
possible pizzas that have exactly k toppings.

◦ Thus, the number of pizzas with at most 3 toppings is
(
13
0

)
+
(
13
1

)
+
(
13
2

)
+
(
13
3

)
= 1+13+78+286 = 378 .

• Example: Determine the number of di�erent full-house hands, consisting of 3 cards of one rank, and a pair of
cards in another rank, that can be dealt from a standard 52-card deck.
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◦ Note that there are 13 possible card ranks (A, 2-10, J, Q, K), and 4 cards of each rank (one in each of
the four suits: hearts, clubs, spades, diamonds).

◦ First, there are 13 ways to choose the rank of the 3-of-a-kind, and then there are 12 ways to choose the
rank of the pair.

◦ Once we have chosen the ranks, there are
(
4
3

)
= 4 ways to choose the three cards forming the 3-of-a-kind,

and there are
(
4
2

)
= 6 ways to choose the two cards forming the pair.

◦ Thus, in total there are 13 · 12 · 4 · 6 = 3744 possible full houses.

• Example: Determine the number of possible ways of permuting the letters in the word MISSISSIPPI.

◦ Since there are 11 letters, it might seem as if there are 11! permutations of the letters.

◦ However, not all of these permutations yield di�erent words: for example, if we swap two of the Ss, the
resulting words are the same.

◦ There are 4 Ss, 4 Is, 2 Ps, and 1 M, which we will arrange in that order.

◦ First, we place the 4 Ss: since there are 11 possible locations, there are
(
11
4

)
ways to place them (since

the 4 Ss are identical).

◦ Next we place the 4 Is: there are 7 remaining locations, so there are
(
7
4

)
ways to place them.

◦ After this, there are 3 remaining locations in which we may place the 2 Ps, yielding
(
3
2

)
choices. Finally,

there is only 1 location for the M.

◦ In total, there are
(
11
4

)
·
(
7
4

)
·
(
3
2

)
= 330 · 35 · 3 = 34650 ways of permuting the letters.

◦ Remark: Another way to perform the count is to determine the number of times each word shows up
in the 11! permutations of the letters. Since there are 4! ways of permuting the 4 Ss among themselves,
4! ways of permuting the 4 Is, and 2! ways of permuting the 2 Ps, each word shows up 4! · 4! · 2! times.

Thus, the number of di�erent words is
11!

4!4!2!
= 34650.

• Example: Determine the number of possible ways of permuting the letters in the word BOSTONIANS that
contain the word BOOS.

◦ The number of such permutations is the number of permutations of the six letters T, N, I, A, N, S and
the string BOOS (which we can think of as being a single string).

◦ There are 2 Ns, and 1 each of T, I, A, S, and BOOS to arrange.

◦ First, we place the 2 Ns: since there are 7 possible locations, there are
(
7
2

)
ways to place them. The

remaining 5 strings can be permuted arbitrarily, so there are 5! ways to arrange them.

◦ In total, there are
(
7
2

)
· 5! = 42 · 120 = 2520 ways of permuting the letters.

◦ Remark: As above, another way to perform the count is by observing that there are 7! ways to arrange
the 7 given strings, but each arrangement is counted twice because of the two Ns, so there are only
7!/2 = 2520 di�erent arrangements.

4.1.3 Binomial Coe�cients and the Binomial Theorem

• The numbers
(
n
k

)
are called binomial coe�cients because they arise as coe�cients of binomial expansions:

• Theorem (Binomial Theorem): If n is a positive integer, then for any real numbers2 x and y, (x + y)n =
n∑
k=0

(
n

k

)
xn−kyk = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 + yn.

◦ Example: For n = 4, (x+y)4 = x4+4x3y+6x2y2+4xy3+y4 =
(
4
0

)
x4+

(
4
1

)
x3y+

(
4
2

)
x2y2+

(
4
3

)
xy3+

(
4
4

)
y4.

◦ Explicitly, this result says that in the expansion of (x+ y)n, the coe�cient of xkyn−k is equal to
(
n
k

)
.

2In fact this identity holds for any x and y such that xy = yx. In particular, it also holds for complex numbers, or (more generally)
for elements of an arbitrary �eld, and also when x and y are general �indeterminate variables�.
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◦ Proof: Observe that in expanding the product (x+ y) · (x+ y) · · · · · (x+ y), we may choose an x or a y
from each of n terms. The term xkyn−k will arise from products that choose exactly k terms equal to x:
thus, from our discussion above, there are precisely

(
n
k

)
such terms.

◦ Remark: There are various other proofs of the binomial theorem: another standard approach is to use
induction on n.

• Example: Find the coe�cient of x8 in the expansion of (2x− 1)10.

◦ By the binomial theorem, we have (2x− 1)10 =

10∑
k=0

(
10

k

)
(2x)10−k(−1)k =

10∑
k=0

(
10

k

)
210−k(−1)k · x10−k.

◦ The coe�cient of x8 corresponds to the term with k = 2, so the coe�cient is

(
10

2

)
210−2(−1)2 =

10 · 9
2
· 28 · 1 = 11520 .

• The binomial theorem can also be extended to negative and non-integral exponents n, as �rst shown by
Newton.

◦ In general, if α is any real number, the �generalized� binomial expansion is

(x+ y)α =

∞∑
k=0

(
α

k

)
xn−kyk = xα + αxα−1y +

α(α− 1)

2
xα−2y2 + · · ·

where we interpret the binomial coe�cient
(
α
k

)
as the polynomial

α(α− 1) · · · (α− k + 1)

k!
.

◦ This expansion is valid whenever α, x, y are real numbers with |x| > |y|. When α is a nonnegative integer,
it reduces to the usual binomial theorem we stated above, but for other α, the expansion is an in�nite
series (the requirement |x| > |y| is necessary to ensure that the series converges for arbitrary α).

• Binomial coe�cients show up in many di�erent places and possess quite a large number of algebraic identities.

◦ Many identities involving binomial coe�cients can be established via direct manipulation of the binomial
coe�cients as quotients of factorials, or using algebraic statements like the binomial theorem.

◦ However, many of these identities can also be proven very easily using bijections: the basic idea is to show
that both expressions are counting the same quantity. Proofs of this nature, while sometimes di�cult to
come up with, can often shed more light on the underlying reason for the existence of the identity than
a more direct algebraic proof.

• Proposition (Binomial Coe�cient Identities): If n and k are integers with n positive and 0 ≤ k ≤ n, the
following are true:

1. Re�ection Identity:

(
n

k

)
=

(
n

n− k

)
.

◦ Proof 1: We have

(
n

k

)
=

n!

k!(n− k)!
=

n!

(n− k)! · [(n− (n− k)]!
=

(
n

n− k

)
.

◦ Proof 2: Observe that

(
n

k

)
is the number of ways of choosing a subset S of {1, 2, . . . , n} having k

elements.

◦ Since any subset is uniquely determined by its complement Sc inside {1, 2, . . . , n}, the number of ways
of choosing a set S with k elements is the same as the number of ways of choosing its complement
Sc, which has n− k elements.

◦ This means

(
n

k

)
=

(
n

n− k

)
, as claimed.

2. Step Identity:

(
n

k

)
=
n

k
·
(
n− 1

k − 1

)
=
n− k + 1

k
·
(

n

k − 1

)
.
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◦ Proof: We have

(
n

k

)
=

n!

k!(n− k)!
=

n

k
· (n− 1)!

(k − 1)!(n− k)!
=

n

k
·
(
n− 1

k − 1

)
. The other expression

follows in the same way.

3. Recurrence Relation:

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

◦ Proof 1: From the step identity we have

(
n− 1

k

)
+

(
n− 1

k − 1

)
=
n− k
n
·
(
n

k

)
+
k

n
·
(
n

k

)
=

(
n

k

)
.

◦ Proof 2: Consider selecting a subset of k elements from {1, 2, . . . , n}.

◦ If the set contains 1, then there are

(
n− 1

k − 1

)
ways to select the remaining k − 1 elements from

{2, . . . , n}, while if the set does not contain 1, then there are

(
n− 1

k

)
ways to select the k elements

from {2, . . . , n}.
◦ Since these two possibilities are disjoint, the total number of ways of selecting a subset of k elements

from {1, 2, . . . , n} is equal to the sum of these two quantities, whence

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

4. Sum Identity:

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
=

n∑
j=0

(
n

j

)
= 2n.

◦ Proof 1: Set x = y = 1 in the binomial theorem: this yields 2n = (1 + 1)n =

n∑
j=0

(
n

j

)
as required.

◦ Proof 2: Consider selecting a subset of {1, 2, . . . , n}. There are
(
n

j

)
such subsets having j elements,

and so summing over all possible j shows that the total number of subsets of {1, 2, . . . , n} is
(
n

0

)
+(

n

1

)
+

(
n

2

)
+ · · · +

(
n

n

)
. But as we saw before, the total number of subsets is also 2n, so these

quantities are equal.

5. Alternating Sum Identity:

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)
=

n∑
j=0

(−1)j
(
n

j

)
= 0.

◦ Proof 1: Set x = 1 and y = −1 in the binomial theorem: this yields 0n = (1− 1)n =

n∑
j=0

(−1)j
(
n

j

)
as required.

◦ Proof 2: Observe that the sum

(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · counts the total number of subsets of

{1, 2, . . . , n} having an even number of elements, while

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ · · · counts the total

number of subsets of {1, 2, . . . , n} having an odd number of elements.

◦ Now pair each subset of {1, 2, . . . , n} with the subset obtained by adding or removing 1 from it (as
appropriate). Each subset is paired with another subset having either 1 more or 1 fewer element, and
so each pair contains one subset with an even number of elements and an odd number of elements.

◦ Hence the total number of subsets with an even number of elements is equal to the total number of

subsets with an odd number of elements, so

(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ · · · .

Rearranging then yields the identity.

6. �Hockey-Stick� Identity: For any n ≥ k,
(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
n

k

)
=

n∑
j=k

(
j

k

)
=

(
n+ 1

k + 1

)
.

◦ Proof 1: Fix k and use induction on n. The base case n = k is trivial, since the identity reads(
k + 1

k + 1

)
=

(
k

k

)
, which is true since both expressions are equal to 1.
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◦ For the inductive step, suppose that

(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
n

k

)
=

(
n+ 1

k + 1

)
. Then we have

(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
n

k

)
+

(
n+ 1

k

)
=

[(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
n

k

)]
+

(
n+ 1

k

)
=

(
n+ 1

k + 1

)
+

(
n+ 1

k

)
=

(
n+ 2

k + 1

)
by the recurrence relation (3) and the inductive hypothesis. This establishes the inductive step, so
the result holds for all n ≥ k by induction.

◦ Proof 2: Consider selecting a subset of k + 1 elements from {1, 2, . . . , n, n+ 1}.

◦ If the largest element is j+1, for any k ≤ j ≤ n, then there will be
(
j

k

)
ways to choose the remaining

k elements from {1, 2, . . . , j − 1}.
◦ Since these possibilities are disjoint (the set has a unique largest element), the total number of ways

of selecting the subset is

(
k

k

)
+

(
k + 1

k

)
+ · · ·+

(
n

k

)
, which is therefore equal to

(
n+ 1

k + 1

)
.

• Owing to the recurrence relation

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
for the binomial coe�cients, we can list them

in an array called Pascal's triangle, the �rst few rows of which are shown below:

Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

Row 5: 1 5 10 10 5 1

◦ The array is generated as follows: for each n ≥ 0, the binomial coe�cients

(
n

k

)
with 0 ≤ k ≤ n are

listed.

◦ The outer �diagonals� consist of 1s, and every other entry in row n + 1 is equal to the sum of the two
entries in the row above it (one above and to the left, the other above and to the right).

◦ There are many patterns in Pascal's triangle, many of which follow from the identities we have proven
above. For example, the sum of the entries in the nth row is 2n, which is equivalent to the sum identity
(4). (Try to identify why the identity (6) is called the �hockey-stick identity�!)

4.1.4 Inclusion-Exclusion

• We now discuss a counting technique that will allow us to solve problems involving a number of overlapping
categories.

◦ Recall that we have shown that for any �nite sets A and B, we have the intersection-union formula
#(A ∪B) = #A+#B −#(A ∩B).

◦ We can extend this formula to three sets by noting that A∪B ∪C = A∪ (B ∪C): then by de Morgan's
laws and the intersection-union formula, we have

#(A ∪B ∪ C) = #A+#(B ∪ C)−#[A ∩ (B ∪ C)]
= #A+ [#B +#C −#(B ∩ C)]−#[(A ∩B) ∪ (A ∩ C)]
= #A+#B +#C −#(B ∩ C)−#[(A ∩B) + #(A ∩ C)−#(A ∩B ∩A ∩ C)]
= #A+#B +#C −#(A ∩B)−#(A ∩ C)−#(B ∩ C) + #(A ∩B ∩ C).

9



◦ In other words, the cardinality of A ∪ B ∪ C is the sum of the cardinalities of A, B, and C, minus the
sum of the cardinalities of the three pairwise intersections A∩B, A∩C, and B ∩C, plus the cardinality
of the overall intersection A ∩B ∩ C.
◦ We can view this formula as giving successive �corrections� to the count of the elements of A ∪ B ∪ C
until every part of the union is counted exactly once: the terms #A + #B + #C count every element
in A ∪ B ∪ C. But then each element in any two A,B,C is counted twice, so we subtract out each of
those counts. But now each element in A ∩B ∩C is counted a total of 3− 3 = 0 times, so we must add
#(A ∩B ∩ C) to obtain the correct count.

◦ We may extend this result to an arbitrary �nite collection of sets, although describing the actual formula
itself turns out to be somewhat complicated:

• Theorem (Inclusion-Exclusion): Suppose A1, A2, . . . , An are any �nite sets. Then

#

[
n⋃
i=1

Ai

]
=

n∑
i=1

#Ai −
∑

1≤i<j≤n

#(Ai ∩Aj) +
∑

1≤i<j<k≤n

#(Ai ∩Aj ∩Ak)−+ · · ·+ (−1)n−1#(A1 ∩A2 · · · · ∩An)

=

n∑
k=1

(−1)k+1

 ∑
1≤i1<i2<···<ik≤n

#(Ai1 ∩Ai2 ∩ · · · ∩Aik)


=

∑
S⊆{1,2,...,n}, S 6=∅

(−1)#S+1#

⋂
j∈S

Aj

 .
◦ In words, the cardinality of the union

⋃n
i=1Ai is obtained by summing the cardinalities of the sets Ai,

subtracting the sum of the cardinalities of the pairwise intersections Ai ∩ Aj , adding the sum of the
cardinalities of the threefold intersections Ai ∩Aj ∩Ak, and continuing (with signs alternating) until the
overall intersection A1 ∩ · · · ∩An is obtained.

◦ Proof: We induct on n. The base case n = 1 is trivial.

◦ For the inductive step, suppose that the formula holds for any intersection of n sets, and consider any
�nite sets A1, A2, . . . , An, An+1.

◦ If we write A1 ∪ · · · ∪An ∪An+1 = [A1 ∪ · · · ∪An]∪An+1 then by the intersection-union formula we see

#[A1 ∪ · · · ∪An ∪An+1] = #[A1 ∪ · · · ∪An] + #An+1 −#[An+1 ∩ (A1 ∪ · · · ∪An)]

so it su�ces to �nd the cardinalities of A1 ∪ · · · ∪An and An+1 ∩ (A1 ∪ · · · ∪An).
◦ For the latter, by de Morgan's laws we have (A1 ∪A2 ∪ · · · ∪An)∩An+1 = (A1 ∩An+1)∪ (A2 ∩An+1)∪
· · · ∪ (An ∩An+1).

◦ Let Bi = Ai ∩ An+1, we note that if S ⊆ {1, 2, . . . , n} is any nonempty collection of indices, then it
follows immediately from the properties of intersections that ∩j∈SBj = [∩j∈SAj ] ∩An+1.

◦ Then applying the induction hypothesis to A1 ∪ · · · ∪An and B1 ∪ · · · ∪Bn, we see

#

[
n⋃
i=1

Ai

]
= #[A1 ∪ · · · ∪An] + #An+1 −#[B1 ∪ · · · ∪Bn]

=

n∑
i=1

#Ai −
∑

1≤i<j≤n

#(Ai ∩Aj) +
∑

1≤i<j<k≤n

#(Ai ∩Aj ∩Ak)− · · ·+ (−1)n−1#(A1 ∩A2 · · · · ∩An)

+#An+1

−
n∑
i=1

#(Ai ∩An+1) +
∑

1≤i<j≤n

#(Ai ∩Aj ∩An+1)− · · ·+ (−1)n#(A1 ∩A2 · · · · ∩An ∩An+1)

=

n+1∑
i=1

#Ai −
∑

1≤i<j≤n+1

#(Ai ∩Aj) + · · ·+ (−1)n#(A1 ∩A2 · · · · ∩An+1)

which is the desired formula.
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• Although the actual formula for using inclusion-exclusion is quite cumbersome to write explicitly, it is much
simpler to use in practice: we need only �nd the cardinalities of all of the (nontrivial) intersections among the
sets Ai and sum them with appropriate signs.

• Example: Find the number of positive integers n, 1 ≤ n ≤ 2019, that are divisible by 2 or 3.

◦ We use inclusion-exclusion on the integers in the range 1 ≤ n ≤ 2019, with A1 the multiples of 2 and A2

the multiples of 3. Then A1 ∩ A2 is the set of integers that are multiples of both 2 and 3, which is to
say, integers divisible by 6.

◦ Then #A1 = 1009 since the elements of A1 are {2, 4, 6, . . . , 2018}, of which there are 2018/2 = 1009.

◦ Likewise, #A2 = 673 since the elements of A2 are {3, 6, 9, . . . , 2019}, of which there are 2019/3 = 673.

◦ Also, #(A1 ∩A2) = since the elements of A2 are {6, 12, 18, . . . , 2016}, of which there are 2016/6 = 336.

◦ Thus by inclusion-exclusion we see #(A1∪A2) = #A1+#A2−#(A1∩A2) = 1009+673−336 = 1346 .

• In the example above, we can �nd the cardinalities of the sets without listing the elements directly by using
the greatest integer function (also called the �oor function) bxc, which is de�ned as the greatest integer ≤ x.

◦ Explicitly: in the set {1, 2, . . . , n} there will be exactly b nmc elements that are divisible by m, namely,
{m, 2m, . . . , b nmcm}.

• Example: Find the number of positive integers n, 1 ≤ n ≤ 2019, that are divisible by 2 or 3 or 7.

◦ We use inclusion-exclusion on the integers in the range 1 ≤ n ≤ 2019, with A1 the multiples of 2, A2 the
multiples of 3, and A3 the multiples of 7.

◦ Then A1 ∩ A2 is the multiples of 6, A1 ∩ A3 is the multiples of 14, A2 ∩ A3 is the multiples of 21, and
A1 ∩A2 ∩A3 is the multiples of 42.

◦ Then from the discussion above and the inclusion-exclusion formula, we obtain a total count of b 20192 c+
b 20193 c+ b

2019
7 c−b

2019
6 c−b

2019
14 c−b

2019
21 c+ b

2019
42 c, which equals 1009+673+288−336+144−96+48 =

1442 .

• Example: Find the number of seven-digit strings that contain at least �ve consecutive equal digits.

◦ Let A1 be the strings of the form aaaaa · ·, let A2 be the strings of the form ·aaaaa·, and let A3 be the
strings of the form · · aaaaa.
◦ Then the desired strings are the ones in A1∪A2∪A3, whose cardinality we may calculate using inclusion-
exclusion.

◦ We have #A1 = #A2 = #A3 = 10 · 102 since a and each unspeci�ed digit may take any value.

◦ For the intersections, A1 ∩ A2 consists of strings of the form aaaaaa·, A2 ∩ A3 consists of strings of the
form ·aaaaaa, and A1 ∩A3 and A1 ∩A2 ∩A3 both consist of strings of the form aaaaaaa.

◦ Thus #(A1 ∩A2) = #(A2 ∩A3) = 10 · 10 and #(A1 ∩A3) = #(A1 ∩A2 ∩A3) = 10.

◦ So by inclusion-exclusion there are 3(10 ·102)−2(10 ·10)−10+10 = 2800 seven-digit strings containing
at least �ve consecutive equal digits.

• In cases where all of the k-fold intersections have the same cardinality (which often occurs when there is some
symmetry among the sets) we can give a more compact inclusion-exclusion formula.

◦ Explicitly, since there are

(
n

k

)
k-fold intersections and they all have the same cardinality as A1 ∩ A2 ∩

· · · ∩Ak, the inclusion-exclusion formula reduces to

#

[
n⋃
i=1

Ai

]
=

n∑
k=1

(−1)k+1

(
n

k

)
#(A1 ∩A2 ∩ · · · ∩Ak).

• Example: Find the number of n-digit strings that contain at least one zero digit.

11



◦ Let Ai be the strings where the ith digit is not zero. Then the desired strings are the ones in A1 ∪A2 ∪
· · · ∪An, whose cardinality we may calculate using inclusion-exclusion.

◦ For any (nonempty) subset S ⊆ {1, 2, . . . , n} of indices, the strings in the intersection
⋂
j∈S Aj are simply

the strings where the jth digit is zero for each j ∈ S, and the other digits may be any value.

◦ Then we can see that #
⋂
j∈S Aj is equal to 10n−#S , since there is 1 digit choice for each j ∈ S and 10

digit choices for each j 6∈ S.
◦ Since all of the k-fold intersections have the same cardinality 10n−k, by inclusion-exclusion the total

number of desired strings is

n∑
k=1

(−1)k+1

(
n

k

)
10n−k .

◦ We can simplify this sum using the binomial theorem: we know that

n∑
k=0

(−1)k
(
n

k

)
10n−k = (10− 1)n =

9n. The sum above has an extra factor of −1 and is missing the term for k = 0, so its value is 10n − 9n .

◦ Remark: Of course, there is a much easier way to �nd that the total number of strings is 10n−9n, which
is to observe that the complement consists of strings with all nonzero digits, of which there are clearly
9n by the multiplication principle.

4.1.5 Counting With Repetition

• We have previously discussed the problem of counting the number of unordered collections of k distinct
elements chosen from a set of n. Now we examine the very similar problem of counting the number of
unordered collections of k not-necessarily-distinct elements chosen from a set of n.

◦ In other words, we are asking for the total number of di�erent unordered lists of k numbers chosen with
replacement from {1, 2, 3, . . . , n}.
◦ For example, if n = 2, then we are asking for the number of ways to select k numbers from {1, 2}. It is
easy to see that there are k+1 possible choices: we may choose i 1s and then k− i 2s, for any 0 ≤ i ≤ k.
◦ If n = 3, we are selecting k numbers from {1, 2, 3}. If we select j 3s, for any 0 ≤ j ≤ k, then this leaves
k − j selections from {1, 2}, and there are k − j + 1 ways to make these selections.

◦ Then the total number of selections is
∑k
j=0(k − j + 1) =

(k + 1)(k + 2)

2
=
(
k+2
2

)
as can be seen by an

easy induction or an application of the hockey-stick identity.

◦ We can give a similar argument to reduce the case for n = 4 to a sum over the cases for n = 3. We are
selecting k numbers from {1, 2, 3, 4}, so if we select j 4s, then this leaves k − j selections from {1, 2, 3}.
By the above analysis, there are

(
k−j+2

2

)
ways to make these choices, so the total for n = 4 is thus∑k

j=0

(
k−j+2

2

)
=
(
k+2
2

)
+
(
k+1
2

)
+ · · ·+

(
2
2

)
=
(
k+3
3

)
, again by the hockey-stick identity.

◦ We may continue this pattern (and prove it using induction) to see that the total number of di�erent
unordered lists of k numbers chosen with replacement from {1, 2, 3, . . . , n} is equal to

(
n+k−1
n−1

)
.

• The inductive argument we gave above is quite natural, but there is a much cleaner way to obtain this formula
directly using bijections, which we now describe:

• Theorem (�Stars and Bars�): The unordered lists of k numbers chosen with replacement from {1, 2, 3, . . . , n}
are in bijection with arrangements of k stars and n− 1 bars in a line, and therefore the number of such lists is(
n+ k − 1

n− 1

)
. The bijection is obtained by viewing the bars as separators that divide the line into n regions,

with the number of stars in region i corresponding to the number of times i appears in the list.

◦ We can illustrate the bijection with n = 3 and k = 4: the arrangement ? ? | ? |? corresponds to the list
(1, 1, 2, 3), the arrangement |??|?? corresponds to the list (2, 2, 3, 3), the arrangement ???||? corresponds
to the list (1, 1, 1, 3), and the arrangement ? ? ? ? || corresponds to the list (1, 1, 1, 1).

◦ Proof: The proof is essentially trivial, since it is clear that the map described is a well-de�ned bijection:
every arrangement corresponds to a unique list, and every list corresponds to a unique arrangement.
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• We will remark that an unordered list is often called a multiset, and may be thought of as a set that allows
repetition of elements.

◦ The number of multisets with k elements chosen from {1, 2, . . . , n} is referred to as a multiset coe�cient,
and is sometimes denoted

((
n
k

))
, in analogy with the binomial coe�cient

(
n
k

)
, which counts the number

of sets with k elements chosen from {1, 2, . . . , n}.

• Example: Find the number of unordered lists of 6 integers, allowing repetition, from the set {1, 2, 3, 4, 5}.

◦ This is a �stars and bars� calculation with k = 6 stars and n = 4 bars. The stars are the 6 integers while
the regions created by the 4 bars are the 5 possible values of the integers.

◦ The total number of lists is therefore
(
n+k−1
n−1

)
=
(
9
3

)
= 84 .

• Example: Find the number of ways of placing 12 identical balls into 6 distinguishable boxes.

◦ This is a �stars and bars� calculation with k = 12 stars and n = 5 bars. The stars are the 12 balls while
the regions created by the 5 bars represent the 6 boxes.

◦ The total number of ways is therefore
(
n+k−1
n−1

)
=
(
17
4

)
= 2380 .

• Here are some other variations on this counting problem that can be solved using the stars-and-bars approach.

• Example: Find the number of possible 7-digit phone numbers in which the digits are nonincreasing (i.e., each
digit is less than or equal to the previous).

◦ This is a �stars and bars� calculation with 7 stars and 9 bars. The stars are the 7 digits while the regions

created by the 9 bars are the 10 possible values of the digits. The total is therefore
(
16
7

)
= 11440 .

◦ We will remark that it is also possible to solve this problem using bijections in a slightly di�erent
way: to the 7-tuple (a1, a2 . . . , a7) of digits 0 ≤ a1 ≤ a2 ≤ · · · ≤ a7 ≤ 9 we associate the 7-tuple
(a1 + 1, a2 + 2, . . . , a7 + 7), which has the property that 1 ≤ a1 + 1 < a2 + 2 < · · · < a7 + 7 ≤ 16.

◦ Then selecting the digits (a1, a2, . . . , a7) is equivalent to selecting the numbers (a1+1, a2+2, . . . , a7+7).
But since these 7 numbers are integers between 1 and 16 inclusive in increasing order, there are

(
16
7

)
ways to select them.

◦ It is not hard to see that this correspondence is one-to-one, and that every such choice yields a valid

selection (a1, a2, . . . , a7). Hence the total, as above, is
(
16
7

)
= 11440 .

• Example: Find the number of ordered triples (a, b, c) of nonnegative integers with a+ b+ c = 19.

◦ Here, we can imagine arranging 19 stars and 2 bars in a line to create 3 regions. The integer a then
corresponds to the number of stars in the �rst region, while b is the number of stars in the second region,
and c is the number of stars in the third region.

◦ It is easy to see that this correspondence is one-to-one, so we have a bijection between the ordered triples
(a, b, c) and the arrangements of 19 stars and 2 bars in a line, and so the number of ordered triples is(
21
2

)
= 210 .

◦ Remark: In the same way, we can see that the number of ordered n-tuples of nonnegative integers
(a1, a2, . . . , an) with a1 + a2 + · · ·+ an = k is equal to

(
n+k−1
n−1

)
.

• Example: Find the number of ordered triples (a, b, c) of positive integers with a+ b+ c = 19.

◦ We can reduce this problem to the previous one by letting a′ = a − 1, b′ = b − 1, and c′ = c − 1: then
the condition that a, b, c are positive is equivalent to the condition that a′, b′, c′ are nonnegative, while
the condition a+ b+ c = 19 becomes a′ + b′ + c′ = 16.

◦ Then we can use stars-and-bars to enumerate the triples (a′, b′, c′) with a′ + b′ + c′ = 16 as above.

◦ We conclude that the total number of triples (a′, b′, c′), and hence the total number of triples (a, b, c), is

equal to
(
18
2

)
= 153 .
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◦ Remark: In the same way, we can see that the number of ordered n-tuples of positive integers (a1, a2, . . . , an)
with a1 + a2 + · · ·+ an = k is equal to

(
k−1
n−1
)
.

• Example: Find the number of 8-element subsets of {1, 2, 3, . . . , 20} that contain no consecutive elements.

◦ We can view the 8 elements of the subset as being the bars, and the remaining 12 elements as being the
stars.

◦ Then the condition that no elements are consecutive is the same as saying that no two bars are consecutive,
which in turn is the same as saying that each of the 7 regions on the inside contains at least one star.

◦ If we now remove one star from each of the 7 interior regions, we obtain a bijection of the 8-element
subsets of {1, 2, 3, . . . , 20} having no consecutive elements with the arrangements of 8 bars and 5 stars.

◦ Hence there are precisely
(
13
5

)
= 1287 such subsets.

◦ Remark: In the same way, we can see that the number of k-element subsets of {1, 2, 3, . . . , n} that
contain no consecutive elements is

(
n−k+1

k

)
, and more generally, the number of k-element subsets of

{1, 2, 3, . . . , n} having no two elements di�er by at most a is
(
n−ak+1

k

)
.

• Example: A pizza chain o�ers 15 di�erent toppings, and any pizza may have from 0 up to 6 toppings, including
duplicates (so one option is triple pepperoni, while another is double olives and quadruple peppers). How
many di�erent topping choices are possible?

◦ Suppose the pizza has k toppings. Then the number of topping choices is a �stars and bars� calculation
with k stars and n = 14 bars, so there are

(
14+k
k

)
possible topping choices.

◦ Since each k = 0, 1, . . . , 6 is allowed, the total number of topping choices is
(
14
0

)
+
(
15
1

)
+· · ·+

(
20
6

)
= 54264 .

4.2 The Pigeonhole Principle

• We now establish several related facts about cardinality and �nite sets that all fall under the umbrella of the
so-called �pigeonhole principle�. These results are very intuitively natural, but we can give formal proofs using
the language we have developed about functions and sets.

4.2.1 Statements of the Pigeonhole Principle

• Proposition (Pigeonhole Principle): Supposem > n. Then there exists no one-to-one function f : {1, 2, . . . ,m} →
{1, 2, . . . , n}. More generally, if A and B are �nite sets and #A > #B, then there exists no one-to-one function
f : A→ B.

◦ We often phrase this more intuitively as follows: suppose we have m pigeons and we place each pigeon
into one of n holes. If m > n, then there must be at least one hole that has more than one pigeon. (This
particular formulation is the reason for the name �pigeonhole principle�.)

◦ Proof: For the �rst statement, we show the result by contradiction.

◦ If f is one-to-one, then f is a bijection between {1, 2, . . . ,m} and im(f), and so #im(f) = m.

◦ But since im(f) is a subset of the target set {1, 2, . . . , n}, we also have #im(f) ≤ n, and so m ≤ n.
◦ This contradicts the assumption that m > n, so there cannot exist any such function f .

◦ The second statement follows simply by replacing {1, 2, . . . ,m} with the set A and {1, 2, . . . , n} with the
set B.

• Here are some other formulations of the pigeonhole principle.

• Proposition (Pigeonhole, Set Version): If S is a �nite set with #S = m, and S = S1 ∪ S2 ∪ · · · ∪ Sn for some
m > n, then #Si > 1 for at least one value of i.

◦ Proof: Work by contradiction: if #Si ≤ 1 for all i, then #S = #(S1 ∪ S2 ∪ · · · ∪ Sn) ≤ #S1 + #S2 +
· · ·+#Sn ≤ n, with the latter inequality following by inclusion-exclusion or induction.
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◦ But this is a contradiction since m > n. Hence #Si > 1 for at least one value of i.

◦ Alternatively, we could deduce this formulation from the one we gave above by writing Si = {x ∈ S :
f(x) = i}, and then observing that #Si > 1 for some i is equivalent to saying that f(x1) = i = f(x2)
for two unequal values x1, x2 ∈ S, which in turn is the same as saying that f is not one-to-one.

• Proposition (Pigeonhole, Onto Version): If A and B are �nite sets and #A < #B, then there exists no onto
function g : A→ B.

◦ The intuitive explanation here is that if we have more holes than pigeons, then at least one hole must
not have a pigeon in it.

◦ Proof: Suppose there did exist an onto function g : A→ B. For each b ∈ B, let Sb = {x ∈ A : g(x) = b}.
◦ Then the sets Sb have union A by the assumption that g is onto, so by the set version of the pigeonhole
principle above, at least one set, say gc has cardinality larger than 1.

◦ But this contradicts the assumption that g is a function, because then g would not be well-de�ned on
the element c.

• We can also strengthen the pigeonhole principle as follows:

• Proposition (Average-Value Pigeonhole): If S is a �nite set with #S = m, and S = S1 ∪ S2 ∪ · · · ∪ Sn, then
#Si ≥

m

n
for at least one value of i. If S is in�nite and S = S1 ∪ S2 ∪ · · · ∪ Sn, then at least one of the Si

must also be in�nite.

◦ The intuitive version is that if we place m pigeons into n holes, there must be (at least) one hole that

has at least the average number
m

n
of pigeons in it.

◦ Proof: If #S = m and #Si <
m

n
for all i, then #S = #(S1 ∪S2 ∪ · · · ∪Sn) ≤ #S1 +#S2 + · · ·+#Sn <

n · m
n

= m, which contradicts the statement #S = m.

◦ The in�nite version follows in the same way: if all of the Si are �nite, then by de�nition there exists a
�nite number N for which #Si ≤ N (namely, the maximum of all of the cardinalities).

◦ Then we would have #S ≤ #S1 + · · ·+#Sn = n ·N which is �nite, contradicting the assumption that
S is in�nite.

• By using the idea of the pigeonhole principle's proof we can establish the following very useful result about
functions on �nite sets of the same cardinality:

• Proposition (Maps on Same-Cardinality Sets): Suppose A and B are �nite sets with #A = #B. Then a
function f : A→ B is one-to-one if and only if it is onto, if and only if it is a bijection.

◦ Proof: Suppose f : A→ B is one-to-one and #A = #B.

◦ Then f is a bijection of A with im(f), so #im(f) = #A.

◦ But since #B = #A and B is �nite, the only possibility is to have im(f) = B. Hence f is onto, as
claimed.

◦ Conversely, suppose f : A→ B is onto. If we take Sb = {a ∈ A : f(a) = b} for each b ∈ B, then the Sb
are disjoint, A = ∪b∈BSb, and #Sb ≥ 1 for each b ∈ B (since f is onto).

◦ Then we can write #A = #B ≤ #S1 + · · · + #S#B ≤ #A, meaning that we must have equality
everywhere. This means #Sb = 1 for each b ∈ B, and so f is one-to-one.

◦ Hence f is one-to-one if and only if f is onto. This means either condition is equivalent to both, which
is to say, either condition is equivalent to saying f is a bijection.
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4.2.2 Examples of the Pigeonhole Principle

• Here are some problems that can be solved by using pigeonhole arguments:

• Example: A sock drawer contains 10 pairs of (identical) white socks, 8 pairs of blue socks, 3 pairs of black
socks, and 1 pair of purple socks. What is the least number of socks that need to be taken out (without
looking at them) in order to guarantee a matching pair?

◦ If we think of the holes as the sock colors and the pigeons as the di�erent socks being removed, then the
pigeonhole principle says that if we have more pigeons than holes, then at least two pigeons are in the
same hole.

◦ Thus, if we draw 5 socks, we are guaranteed to have a matching pair, since there are only 4 possible
colors.

• Example: Show that if 25 people are sitting in a room, then at least 3 of them must share the same birth
month (e.g., October).

◦ If the holes are the 12 birth months and the pigeons are the 25 people, then by the average-value

pigeonhole principle, at least one month has at least
25

12
people corresponding to it.

◦ Since
25

12
> 2, there must be at least 3 people sharing the same birth month.

• Example: Show that if 51 elements from the set {1, 2, 3, . . . , 100} are chosen, then at least one pair of the
elements must sum to 101.

◦ Observe that there are 50 pairs of elements summing to 101 are {1, 100}, {2, 99}, {3, 98}, ... , {50, 51}.
◦ Thus, if we view the holes as the 50 pairs and the pigeons as the 51 elements being selected, then at least
one hole must have 2 pigeons, which is to say, both elements of the pair are chosen.

◦ But this means we obtain at least one pair of elements summing to 101, as claimed.

• Example: If a is any integer and m is a modulus, show that there must exist positive integers p < q such that
ap ≡ aq (mod m).

◦ Here, we want to look at the values {a1, a2, a3, a4, . . . } modulo m.

◦ Since there are onlym residue classes modulom and there are in�nitely many di�erent powers a1, a2, a3, a4, . . . ,
by the in�nite version of the pigeonhole principle, there is some residue class containing in�nitely powers.

◦ In particular it has at least 2 powers ap and aq, so that ap ≡ aq (mod m).

• Example: Show that if any �ve lattice points in the plane (i.e., points whose coordinates are both integers)
are chosen, then at least one of the line segments joining one pair of these points has a lattice midpoint.

◦ Since the midpoint of (a, b) and (c, d) is (a+c2 , b+d2 ), the midpoint is a lattice point precisely when a+ c
and b+ d are both even.

◦ This is the same as saying that the midpoint is a lattice point precisely when the ordered pairs of residue
classes (a, c) and (b, d) modulo 2 are equal.

◦ Since there are only 2 · 2 = 4 possible ordered pairs of residue classes modulo 2, then if we have 5 such
ordered pairs, by the pigeonhole principle some two of them must land in the same class. Then the
midpoint of that segment is a lattice point, as required.

• Example: Show that if any 51 elements from the set {1, 2, 3, . . . , 100} are chosen, then at least one of them
must divide another one.

◦ The idea is to �nd a way of partitioning the set into subsets that are totally ordered under divisibility:
then if two elements are chosen in the same subset, one of them must divide the other.

◦ One way to do this is to start with an odd integer and repeatedly double it: this gives the 50 sets
{1, 2, 4, 8, . . . , 64}, {3, 6, 12, . . . , 96}, {5, 10, 20, . . . , 80}, ... , {99}.
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◦ Hence by the pigeonhole principle, if we select 51 elements from {1, 2, 3, . . . , 100}, at least two of them
must land in the same of these 50 subsets, and then one of them will divide the other, as claimed.

• Example: Assume (somewhat contrary to reality) that friendship is a symmetric relation, and also that it is
irre�exive, so that no one is friends with themself. Show that in any group of people, there must be some pair
that have the same number of friends.

◦ If there are n people, then each person can have between 0 and n − 1 friends, inclusive. This does not
allow for applying the pigeonhole principle, since there are n possible numbers of friends and n people.

◦ However, it is not actually possible to have both a person with 0 friends and a person with n− 1 friends:
the person with 0 friends would be friends with nobody, while the person with n − 1 friends would be
friends with everyone else.

◦ Thus, in fact, there are at most n − 1 possible numbers of friends for any actual collection of n people.
Thus by the pigeonhole principle, there are 2 people with the same number of friends.

• Example: In a group of 6 people, each pair of people is either acquainted or strangers. Show that either there
are 3 mutual acquaintances or 3 mutual strangers in the group.

◦ Choose any person A and consider their relation to the 5 remaining people in the group.

◦ Since each of these 5 people is either an acquaintance or a stranger to A, by the pigeonhole principle,
there must be at least 3 people who fall into the same category.

◦ If these 3 are all acquantances, then consider their relation to one another: if any pair are acquaintances,
then this pair and A form 3 mutual acquaintances. Otherwise, all three are strangers to one another, so
they form a set of 3 mutual strangers.

◦ The same logic applies if all 3 are strangers: either some pair of them are strangers in which case they
and A are 3 mutual strangers, or all 3 are acquainted with one another, so they form a set of 3 mutual
acquaintances.

◦ Thus in all cases, there are either 3 mutual acquaintances or 3 mutual strangers in the group.

◦ Remark: A group of 5 people need not have 3 mutual acquaintances or mutual strangers: if the �ve
people are arranged in a circle and each person is acquainted with the two people next to them (but not
the other two) then this arrangement has no set of 3 mutual acquaintances or 3 mutual strangers.

◦ Remark: This type of problem falls into the area of combinatorial graph theory called Ramsey theory,
which (broadly speaking) studies how large a set must be before a particular type of structure must
necessarily exist.

• One (among several) more real-word application of the pigeonhole principle as well is the following:

• Example: Show that a lossless data compression algorithm cannot guarantee compression for all input data
sets.

◦ Suppose that each �le is represented as a string of bits, and that the compression algorithm transforms
every �le into an output �le that has fewer bits.

◦ If we let AN be the set of all �les with at most N bits (note that AN is �nite, and in fact AN = 2N+1−1
if we include the empty �le), then if the compression algorithm never increases the size of an input �le,
it is a function f : AN → AN .

◦ The statement that the compression algorithm is lossless means that the original data set can always be
recovered from its output, which is simply saying that f is one-to-one.

◦ But now by our result on same-cardinality sets, this means that f : AN → AN is one-to-one, hence it
is a bijection. Since this holds for every N , by an easy induction this means that f must map the �les
with exactly N bits to themselves, meaning that f cannot actually compress any �le.

◦ Remark: Another way of phrasing this result is that if a lossless data compression algorithm shortens
any one �le, then it must lengthen another one.
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4.3 Other Examples of Counting Problems

• Using all of the techniques we have developed so far, we can solve a wide array of basic counting problems, of
which we now discuss various examples.

4.3.1 Prime Powers Dividing Factorials

• Example: Find the largest power of 2 that divides 2019!.

◦ An initial guess might be that since there are 1009 even terms in 2019! (namely, 2, 4, . . . , 2018) that the
power of 2 in the prime factorization of 2019! would be 21009.

◦ However, each of the 504 terms 4, 8, . . . , 2016 (namely, the terms divisible by 4) will actually contribute
two factors of 2, so we must also count the additional 2504 that are contributed by these terms.

◦ In a similar way we must also add the extra powers of 2 arising from the terms divisible by 8, 16, 32, ...
, and 1024.

◦ Because in general there are exactly b 2019k c terms among {1, 2, . . . , 2019} divisible by k, we can see that

the total number of factors of 2 in 2019! is

10∑
k=1

b 2019
2k
c = b 20192 c+ b

2019
4 c+ b

2019
8 c+ · · ·+ b

2019
1024c.

◦ Explicitly, this sum is 1009+ 504+ 252+126+63+31+15+7+3+1 = 2011. (We will note in passing
that each term is half of the previous one, rounded down.)

◦ Hence we conclude that the largest power of 2 that divides 2019! is 22011 .

• By the same argument we can compute the largest power of p that divides n!:

• Proposition (Prime Powers in Factorials): If p is a prime, then the exponent of the largest power of p dividing

n! is

∞∑
k=1

⌊
n

pk

⌋
.

◦ Note that for k > logp n the terms are 0, so the sum is actually �nite for all n.

◦ Proof: There are b n
pk
c terms in n! that are divisible by pk.

◦ Each term divisible by p contributes one factor of p, each term divisible by p2 then contributes an
additional factor of p, and so forth.

◦ Hence the total number of factors of p is the sum

∞∑
k=1

⌊
n

pk

⌋
as claimed.

• There are also other several other formulas for this sum.

◦ To start observe that the sum

∞∑
k=1

n

pk
without the �oor function is a geometric series with sum

n

p− 1
.

◦ If we write n = adp
d + ad−1p

d−1 + · · ·+ a1p+ a0 in base p, it is not hard to calculate that the di�erence

between the geometric series and the original sum is equal to
a0 + a1 + · · ·+ ad

p− 1
.

◦ This yields a formula

∞∑
k=1

⌊
n

pk

⌋
=
n− sp(n)
p− 1

where sp(n) is the sum of the digits of n when written in

base p.

◦ These two formulas for the power of p dividing n! are sometimes called de Polignac's formulas or
Legendre's formulas.

• Example: Find the number of zeroes at the end of 2019! when it is written in base 10.

◦ We count the number of factors of 2 and 5 appearing in 2019!.
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◦ By the analysis above, the exponent of the greatest power of p dividing n! is

∞∑
k=1

b n
pk
c.

◦ The number of factors of 2 was computed above as 2011.

◦ The number of factors of 5 is b 20195 c+ b
2019
25 c+ b

2019
125 c+ b

2019
625 c = 403 + 80 + 16 + 3 = 502.

◦ Since there are more 2s than 5s (which we could also have observed without actually counting them

explicitly), the largest power of 10 is 10502, so there are 502 zeroes at the end of 2019!.

• We will also mention in passing that since we can compute the power of a prime p dividing any factorial, we

can also apply it to �nd the power of p dividing a binomial coe�cient

(
n

k

)
=

n!

k!(n− k)!
.

4.3.2 Derangements

• We now discuss the problem of counting permutations of a set in which no value is sent to its original place.

• Example (Derangements): Find the number of permutations of the set {1, 2, . . . , n} in which no number
appears in its original place. (Such permutations are called derangements.)

◦ Remark: This problem is also known as the �hat check problem� since it can also be interpreted as follows:
if n patrons check their hats at an establishment with a clerk who returns them in random order, in how
many ways can none of the patrons receive their own hat back?

◦ We use inclusion-exclusion to �nd this number Dn. If we let Ai be the set of permutations in which the
number i appears in its original place, then the desired set is the complement of A1 ∪A2 · · · ∪An.
◦ For any (nonempty) subset S ⊆ {1, 2, . . . , n} of indices, the permutations in the intersection

⋂
j∈S Aj are

those in which the jth number of the permutation is j for each j ∈ S, and the remaining elements may
have any value.

◦ Thus, we see that #
⋂
j∈S Aj is equal to (n−#S)!, since the #S elements in S must be sent to themselves

while the n−#S remaining elements may be permuted arbitrarily.

◦ Since all of the k-fold intersections have the same cardinality (n−k)!, by inclusion-exclusion the cardinality

of the union A1 ∪A2 · · · ∪An is

n∑
k=1

(−1)k+1

(
n

k

)
(n− k)!.

◦ Since

(
n

k

)
=

n!

k!(n− k)!
we can simplify the sum as

n∑
k=1

(−1)k+1n!

k!
= n! ·

[
n∑
k=1

(−1)k+1

k!

]
.

◦ Then the set of derangements has cardinality n! −#(A1 ∪ A2 ∪ · · · ∪ An), which can be simpli�ed into

the fairly elegant form Dn = n! ·
n∑
k=0

(−1)k

k!
= n! ·

[
1

0!
− 1

1!
+

1

2!
− 1

3!
+− · · ·+ (−1)n 1

n!

]
.

• Example: The number of derangements on {1, 2, 3, 4} is D4 = 4! ·
[
1

1
− 1

1
+

1

2
− 1

6
+

1

24

]
= 9.

• Using this formula, we can obtain a pleasantly simple way of computing the exact number of derangements
even for large n.

◦ Speci�cally, evaluating the Taylor series for ex at x = 1 yields e−1 =
1

0!
− 1

1!
+ · · · + (−1)n 1

n!
+

(−1)n+1 1

(n+ 1)!
+ · · · , so multiplying by n! yields

n!

e
= Dn + (−1)n+1 n!

(n+ 1)!
+ · · · .

◦ Since the terms in the tail of the series alternate in sign and the �rst one is
n!

(n+ 1)!
=

1

n+ 1
, by

standard properties of alternating series, the di�erence between the in�nite series and the partial sum

n! ·
[
1

0!
− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n 1

n!

]
is less than the absolute value of the �rst term, which is

1

n+ 1
.

◦ Thus, for n ≥ 2, Dn is the nearest integer to
n!

e
. For example, since

8!

e
= 14832.899 . . . , we see that

D8 = 14833, as can be con�rmed by using the formula.
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4.3.3 Counting Equivalence Relations

• Next we analyze the problem of counting the number of equivalence relations on a set of cardinality n.

• Proposition: Let Bn be the number of distinct equivalence relations on a set with cardinality n. Then

Bn+1 =

n∑
k=0

(
n

k

)
Bk.

◦ Proof: As we have shown previously, an equivalence relation on a set is the same as a partition of the
set.

◦ It is clear that relabeling the elements of a set does not a�ect the partitions (we have an obvious bijection
between them) so suppose the set of n+ 1 elements is {1, 2, . . . , n+ 1}.
◦ Now imagine removing the subset S in the partition that contains n + 1, and suppose #S = k + 1 for
some k ≥ 0.

◦ Removing S = S′ ∪ {n + 1} from the partition of {1, 2, . . . , n + 1} will yield a partition of a subset
of {1, 2, . . . , n} consisting of the n − k elements that remain after removing S′ from {1, 2, . . . , n}. By
de�nition, there are Bn−k such partitions.

◦ Therefore, by summing over all possible subsets S′ of {1, 2, . . . , n}, we see thatBn+1 =
∑

S′⊆{1,2,...,n}

Bn−#S′ .

◦ Since there are

(
n

n− k

)
possible subsets S′ with #S′ = k, grouping the subsets together by cardinality

yields the required formula Bn+1 =

n∑
k=0

(
n

n− k

)
Bn−k =

n∑
k=0

(
n

k

)
Bk upon reversing the summation.

• These numbers Bn from the proposition above are sometimes called the Bell numbers after the mathematician
E.T. Bell, although (like many other named combinatorial objects) he was not the �rst to study them.

◦ Since B0 = B1 = 1, we can use the recurrence relation to calculate the next few values of Bn:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Bn 1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597

◦ Various other places the Bell numbers show up include as the number of possible rhyme schemes for an
n-line poem, as the nth moment of the Poisson distribution with mean 1, and in the coe�cient of xn in

the Taylor series at x = 0 for3 the function ee
x−1 =

∞∑
n=0

Bn
n!
xn.

4.3.4 The Multinomial Theorem

• We can generalize the binomial theorem to a �multinomial theorem� involving terms with more than 2 sum-
mands.

• Proposition (Multinomials): If n is a positive integer and n1, . . . , nk are nonnegative integers with n1+· · ·nk =
n, then the coe�cient of the term an1

1 an2
2 · · · a

nk

k in the expansion of (a1 + a2 + · · · + ak)
n is equal to the

multinomial coe�cient

(
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!
. Then we obtain a multinomial expansion

(a1 + a2 + · · ·+ ak)
n =

∑
n1+n2+···+nk=n

(
n

n1, n2, . . . , nk

)
an1
1 an2

2 · · · a
nk

k .

3In fact this can be proven using the recurrence relation we derived above, by observing that the derivative of
∞∑

n=0

Bn

n!
xn is

∞∑
n=0

Bn+1

n!
xn =

∞∑
n=0

n∑
k=0

Bk

k!(n− k)!
xn and observing that this is also the product of ex − 1 =

∞∑
k=1

xn

n!
with

∞∑
n=0

Bn

n!
xn after rear-

rangement. Thus, both
∞∑

n=0

Bn

n!
xn and ee

x−1 satisfy the di�erential equation y′ = (ex − 1)y, so since they also satisfy the initial

condition y(0) = 1, by the uniqueness of solutions to initial-value problems we get the claimed equality.
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◦ Example: We have (a+ b+ c)3 = a3 + b3 + c3 + 3(a2b+ ab2 + a2c+ ac2 + b2c+ bc2) + 6abc, and indeed

the coe�cient of abc is
(

3
1,1,1

)
=

3!

1!1!1!
= 6 while the coe�cient of ac2 is

(
3

1,0,2

)
=

3!

1!0!2!
= 3.

◦ Proof: Imagine expanding the product (a1+a2+ · · ·+ak)n = (a1+a2+ · · ·+ak) · · · · · (a1+a2+ · · ·+ak)
using the distributive law.

◦ Each of the n terms contributes a single factor ai to the product. So the number of times the term
an1
1 an2

2 · · · a
nk

k appears is the number of ways of selecting n1 terms a1, n2 terms a2, ... , and nk terms ak.

◦ Thus we wish to enumerate the total number of strings that contain n1 terms a1, n2 terms a2, ... , and
nk terms ak.

◦ From our discussion of permutations of strings of letters, if we imagine all of the terms ai as having a
di�erent color, then we would have n! possible permutations, so there are n! possible colored strings.

◦ Since each uncolored string has a total of n1!n2! · · ·nk! possible colorings, the total number of uncolored
strings is

n!

n1!n2! · · ·nk!
, as claimed.

◦ Remark: It is also possible to prove the multinomial theorem by induction on the number of variables
k, using the binomial theorem in the inductive step.

• Example: Find the coe�cient of x20y19 in (x+ 2y + 3)45.

◦ From the multinomial theorem we see that the term with x20y19 in (x + 2y + 3)45 will have n1 = 20,
n2 = 19, hence n3 = 45− 20− 19 = 6.

◦ This term is then
(

45
20,19,6

)
x20(2y)1936 =

45!

20!19!6!
21936 · x20y19, so the coe�cient is

45!

20!19!6!
21936 .

• Here are a few other properties of the multinomial coe�cients and the multinomial expansion:

• Proposition (Multinomial Properties): Suppose n1, . . . , nk are nonnegative integers with n1 + · · ·+ nk = n.

1. The multinomial coe�cient
(

n
n1,...,nk

)
=
(

n
m1,...,mk

)
for any permutation m1, . . .mk of n1, . . . , nk.

◦ Proof: This follows immediately from
(

n
n1,...,nk

)
=

n!

n1!n2! · · ·nk!
, since the denominators of both

terms are the same, merely rearranged.

2. The multinomial coe�cient
(

n
n1,...,nk

)
=
(
n
n1

)(
n−n1

n2

)(
n−n1−n2

n3

)
· · ·
(
n−n1−···−nk−1

nk

)
.

◦ Proof: This follows from the interpretation of the multinomial coe�cient as the number of letter
strings containing n1 terms a1, n2 terms a2, ... , and nk terms ak.

◦ Equivalently, we could select the letters one type at a time: there are
(
n
n1

)
ways to choose the

locations of the a1s, then
(
n−n1

n2

)
ways to choose the locations of the a2s, and so forth, up to a total

of
(
n−n1−···−nk−1

nk

)
ways to select the aks.

◦ Since the product counts the total number of strings, it equals the multinomial coe�cient.

3. The sum
∑

n1+n2+···+nk=n

(
n

n1,...,nk

)
of all the multinomial coe�cients is kn.

◦ Proof: Set a1 = a2 = · · · = ak = 1 in the multinomial theorem.

4. The total number of di�erent monomials appearing in the expansion of (a1 + a2 + · · ·+ ak)
n is

(
n+k−1
n

)
.

◦ Proof: This is a �stars and bars� calculation with n stars, representing the n terms in a product, and
k − 1 bars, corresponding to separators between the k possible subscripts on an ai.

5. The total number of ways of arranging n distinct objects into k distinct boxes, where ni objects go into
the ith box, is

(
n

n1,...,nk

)
.

◦ Proof: This follows immediately from our interpretation of
(

n
n1,...,nk

)
as the number of letter strings

with ni terms labeled i, obtained by listing the box number in which the objects are placed.
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4.3.5 Stirling Numbers

• Next we study the so-called �Stirling numbers of the second kind�, which count the number of equivalence
relations on the set{1, 2, . . . , n} having exactly k equivalence classes.

◦ Equivalently, these numbers count the number of ways of partitioning the set{1, 2, . . . , n} into exactly k
unordered subsets.

• Proposition (Stirling Numbers): If

{
n
k

}
denotes the number of equivalence relations on the set{1, 2, . . . , n}

having exactly k equivalence classes, then

{
n
k

}
= k

{
n− 1
k

}
+

{
n− 1
k − 1

}
.

◦ Remark: These numbers are called Stirling numbers of the second kind.

◦ Proof: Suppose we have a partition of {1, 2, . . . , n} into exactly k subsets, and consider the subset
containing n.

◦ If n is a singleton, meaning that the set containing n is just {n}, then deleting {n} from the partition

yields a partition of {1, 2, . . . , n − 1} into exactly k − 1 subsets, and there are exactly

{
n− 1
k − 1

}
such

partitions.

◦ Otherwise, if n is not a singleton, then consider the partition obtained by deleting n: this yields a

partition of {1, 2, . . . , n− 1} into exactly k subsets, and there are exactly

{
n− 1
k

}
such partitions.

◦ Then we may adjoin n to any one of these k subsets to produce a partition {1, 2, . . . , n} into exactly k
subsets.

◦ All of these cases are disjoint, so we obtain

{
n
k

}
= k

{
n− 1
k

}
+

{
n− 1
k − 1

}
as claimed.

• By using the easily calculated values

{
0
0

}
= 1 and

{
n
0

}
=

{
0
n

}
= 0 for n > 0, we can calculate the values{

n
k

}
recursively. Below is a small table of Stirling number values:

n\k 0 1 2 3 4 5 6 7 8

0 1

1 0 1

2 0 1 1

3 0 1 3 1

4 0 1 7 10 1

5 0 1 15 65 15 1

6 0 1 31 350 140 21 1

7 0 1 63 1701 1050 266 28 1

8 0 1 127 7770 6951 2646 462 36 1

• The Stirling numbers of the second kind also obey a number of other properties and identities, much as the
binomial coe�cients do. Some of these are as follows:

• Proposition (Stirling Number Identities): If n and k are nonnegative integers, then the following hold:

1. The number of onto functions from {1, 2, . . . , n} to {1, 2, . . . , k} is equal to k!
{
n
k

}
.

◦ Proof: If f : {1, 2, . . . , n} → {1, 2, . . . , k} is onto, consider the k sets Si = f−1({i}) = {a ∈
{1, 2, . . . , n} : f(a) = i} for i ∈ {1, 2, . . . , k}.
◦ These sets give a partition of {1, 2, . . . , n} into k nonempty sets (each set is nonempty because f is
onto).
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◦ Conversely, any such list of nonempty subsets S1, S2, . . . , Sk giving a partition of {1, 2, . . . , n} yields
a unique onto function f : {1, 2, . . . , n} → {1, 2, . . . , k}.

◦ The number of such lists is k! times the number of unordered partitions

{
n
k

}
of {1, 2, . . . , n}, so the

number of onto functions from {1, 2, . . . , n} to {1, 2, . . . , k} is equal to k!
{
n
k

}
, as claimed.

2. For any n, the nth Bell number is given by Bn =

n∑
k=0

{
n
k

}
.

◦ Proof: For positive n, observe that any partition of {1, 2, . . . , n} can have between 0 and n parts
inclusive, and these cases are disjoint.

◦ Since the total number of partitions of {1, 2, . . . , n} is the Bell number Bn and the number of

partitions into k parts is

{
n
k

}
, the result follows immediately.

3. The Stirling number

{
n
k

}
=

1

k!

k∑
j=0

(
k

j

)
(−1)k−jjn.

◦ Proof: Using (1) it is su�cient to show that the total number of onto functions from {1, 2, . . . , n} to

{1, 2, . . . , k} is equal to 1

k!

k∑
j=0

(
k

j

)
(−1)k−jjn.

◦ To do this we �rst observe that the number of functions with image contained in any subset of
{1, 2, . . . , k} of cardinality a is simply na, and there are

(
n
a

)
possible images of cardinality a.

◦ We can then apply inclusion-exclusion, recursively, to compute the number of functions whose image
has cardinality 1, 2, 3, ... , up to k (we omit the precise details).

◦ The last calculation yields that there are

k∑
j=0

(
k

j

)
(−1)k−jjn onto functions from {1, 2, . . . , n} to

{1, 2, . . . , k}, as claimed.

4. For any n, k, we have

{
n+ 1
k + 1

}
=

n∑
j=k

(
n

j

){
j
k

}
=

n∑
j=k

(k + 1)n−j
{
j
k

}
.

◦ These results are both (in some sense) a version of the hockey-stick identity for the Stirling numbers.

◦ Proof: Suppose that a partition of {1, 2, . . . , n+ 1} with k + 1 subsets is given.

◦ For the �rst identity, consider deleting the subset containing n+1 and suppose it contains n− j+1
elements for some k ≤ j ≤ n.
◦ Then there are

(
n
n−j
)
ways to choose the remaining elements of S, and deleting S yields a partition

of a subset of {1, 2, . . . , n} having exactly j elements, of which there are

{
j
k

}
total possibilities.

◦ In total, there are

(
n

j

){
j
k

}
ways. Summing over all j yields the �rst identity.

◦ For the second identity, write all of the elements in each subset in increasing order, and suppose that
j + 1 is the smallest element appearing at the beginning of any subset for some j with k ≤ j ≤ n.
◦ If we imagine deleting all of the elements larger than j, we obtain a partition of {1, 2, . . . , j} into
exactly k subsets (each part of the original partition survives, except for the one that starts with

j + 1), and there are

{
j
k

}
such partitions.

◦ If we now �ll the remaining elements back into the original partition, then j + 1 is added to a new
part, and each the remaining n− j elements can then be placed arbitrarily in any of the k+1 parts.

◦ In total, there are (k + 1)n−j
{
j
k

}
ways. Summing over all j yields the second identity.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2019. You may not reproduce or distribute this material
without my express permission.
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