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4 Cardinality and Countability

Our goal in this chapter is to discuss the notions of cardinality and countability of sets, which use functions to
formalize the idea of measuring the number of elements in a set. We begin by discussing bijections (functions that
are both one-to-one and onto) and then use them to de�ne an equivalence relation on sets whose equivalence classes
correspond to the di�erent possible sizes of sets. We then study in�nite sets and establish a surprising distinction
between di�erent sizes of in�nite sets: that of countable and uncountable sets. We close with a discussion of the
pigeonhole principle, which allows us to exploit properties of cardinality in a variety of useful ways.

4.1 Bijections and Cardinality

• In the previous chapter, we discussed bijections, functions that are both one-to-one and onto, and saw that
they provide a one-to-one correspondence between the elements of the domain with the elements of the target.

• We now use one-to-one correspondences to discuss cardinality more formally

4.1.1 Cardinality

• Notice that the process of counting the elements of a �nite set A is the same as labeling the elements of a set
with the positive integers 1, 2, 3, . . . , n.

◦ By our interpretation of a bijection as a relabeling, this is the same as giving a bijection between A and
the set {1, 2, 3, . . . , n}.
◦ We can use this idea to give a formal de�nition of the cardinality of a �nite set:

• De�nition: If A is a set and n is a nonnegative integer, we say the cardinality of A is n (written #A = n)
if there exists a bijection between A and the set {1, 2, 3, . . . , n}. If there exists an integer n such that the
cardinality of A is n, we say A is a �nite set, and otherwise we say A is an in�nite set.

◦ We take the usual convention that if n = 0 the set written as {1, 2, 3, . . . , n} means the empty set, and
so the cardinality of ∅ is 0.
◦ We must verify that this de�nition is well-posed, in the sense that for any �nite set A, there is a unique
positive integer n for which there exists a bijection between A and {1, 2, 3, . . . , n}.
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◦ If there were bijections between A and {1, 2, 3, . . . , n}, and also between A and {1, 2, 3, . . . ,m}, then since
one-to-one correspondence is an equivalence relation, this would give a bijection between {1, 2, 3, . . . , n}
and {1, 2, 3, . . . ,m}.
◦ However, such a bijection cannot exist unless m = n, as is straightforward to verify using induction. For
completeness: without loss of generality assume n ≤ m, and induct on n. The base case n = 0 follows by
observing that the only function from the empty set is the empty function (with image the empty set)
so necessarily m = 0 also.

◦ For the inductive step, assume that having a bijection from {1, 2, 3, . . . , n} to {1, 2, 3, . . . ,m} for m = k
implies n = k, and suppose we have a bijection from {1, 2, 3, . . . , n} to {1, 2, 3, . . . ,m} where m = k + 1.
If we have a bijection f : {1, 2, . . . , k + 1} → {1, 2, . . . , n}, then let g = f |{1,2,...k} be the restriction of
f to {1, 2, . . . , k} and observe that the image of g is the set {1, 2, . . . , n} with one element removed. So
then g is a bijection between {1, 2, . . . , k} and its image, which (by relabeling) is in turn in bijection with
the set {1, 2, . . . , n− 1}. Hence by the inductive hypothesis, we see k = n− 1, and so m = k + 1 = n as
claimed.

• We have various other basic properties of cardinality:

• Proposition (Properties of Cardinality): Suppose A and B are sets.

1. If A is �nite and B ⊆ A, then B is �nite, and #B ≤ #A with equality if and only if B = A.

◦ Proof: Induction on n = #A. The base case n = 0 is trivial, since in that case A = B = ∅ so
#A = #B = 0, and we have equality.

◦ For the inductive step, suppose #A = n with n ≥ 1. If B = A the result is trivial so suppose B is a
proper subset of A.

◦ Since #A = n there exists a bijection f : A→ {1, 2, . . . , n}. Then the set f(B) = {f(b) : b ∈ B} is
a proper subset of {1, 2, . . . , n} since B is a proper subset of A and f is a bijection. Restricting f to
f |B yields a bijection of B with this proper subset, which must have cardinality k for some k < n.
Then by relabeling the elements of this subset as {1, 2, . . . , k} we see that #B = k < n = #A, as
required.

2. If A and B are �nite and disjoint, then #(A ∪B) = #A+#B.

◦ Proof: Suppose #A = n and #B = m and let f : A→ {1, 2, . . . , n} and g : B → {1, 2, . . . ,m} be bi-

jections. Then the function h : {1, 2, . . . ,m+n} → A∪B with h(k) =

{
f(k) for 1 ≤ k ≤ m
g(k − n) for m+ 1 ≤ k ≤ m+ n

is also a bijection, so #(A ∪B) = m+ n = #A+#B.

3. If A is �nite, then for any B we have #(A\B) = #A−#(A ∩B).

◦ Proof: By (1) we see that A\B and A∩B are �nite since they are both subsets of A. Since they are
also disjoint and have union A, by (2) we have #A = #(A\B) +#(A ∩B) which yields the desired
result immediately.

4. If A and B are �nite, then #(A ∪B) = #A+#B −#(A ∩B).

◦ Proof: Let C = A\B and observe that C ∪B = A ∪B and that C and B are disjoint. Then by (2)
and (3) we have #(A ∪B) = #(C ∪B) = #C +#B = #A+#B −#(A ∩B) as claimed.

◦ Remark: This result generalizes inductively to larger unions, yielding a general statement that is
known as the inclusion-exclusion formula. For example, for three sets one obtains #(A ∪ B ∪ C) =
#A+#B +#C −#(A ∩B)−#(A ∩ C)−#(B ∩ C) + #(A ∩B ∩ C).

5. If A and B are �nite, then #(A×B) = #A ·#B.
◦ Proof: Suppose #A = n and #B = m and let f : {1, 2, . . . , n} → A and g : {1, 2, . . . ,m} → B
be bijections. Then the function h : {1, 2, . . . ,mn} → A × B de�ned by taking h(a + n(b − 1)) =
(f(a), g(b)) for 1 ≤ a ≤ n and 1 ≤ b ≤ m is also a bijection, so #(A × B) = mn = #A · #B as
claimed.

◦ Remark: This result generalizes inductively to larger Cartesian products. For example, for three
sets one obtains #(A×B × C) = #A ·#B ·#C.
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6. If A is in�nite and A ⊆ B, then B is in�nite. In particular, A ∪ C is in�nite precisely when A or C is
in�nite.

◦ Proof: Suppose A ⊆ B. By (1), if B is �nite, then A is �nite, so taking the contrapositive yields
that if A is in�nite, then B is in�nite.

◦ For the second part, if A or C is in�nite, then since each is a subset of the union A ∪ C, the union
is in�nite. Otherwise, if both A and C are �nite, then by (4) so is A ∪ C.

7. If A is in�nite and B is nonempty, then A×B is in�nite.

◦ We remark that A × ∅ = ∅, so the hypothesis that B be nonempty is needed here for A × B to be
in�nite.

◦ Proof: Suppose A is in�nite and x ∈ B. Then A × B contains the subset A × {x}, which is in
bijection with the in�nite set A hence is also in�nite. Then by (6), we see A×B is in�nite.

• By employing these results in various ways we can solve simple counting problems.

• Two fundamental counting principles are as follows:

◦ (�Addition Principle�) When choosing among n disjoint options labeled 1 through n, if option i has ai
possible outcomes for each 1 ≤ i ≤ n, then the total number of possible outcomes is a1 + a2 + · · ·+ an.

◦ To illustrate the addition principle, if a restaurant o�ers 5 main courses with chicken, 6 main courses
with beef, and 12 vegetarian main courses, then (presuming no course is counted twice) the total possible
number of main courses is 5 + 6 + 12 = 23.

◦ The addition principle can be justi�ed using our results about cardinalities of unions of disjoint sets: if
Ai corresponds to the set of outcomes of option i, then the union A1 ∪ A2 ∪ · · · ∪ An corresponds to a
single choice of one outcome from one of the Ai. Then because all of the di�erent options are disjoint,
the number of such choices is #(A1 ∪A2 ∪ · · · ∪An) = #A1 +#A2 + · · ·+#An by repeatedly applying
(2).

◦ (�Multiplication Principle�) When making a sequence of n independent choices, if step i has bi possible
outcomes for each 1 ≤ i ≤ n, then the total number of possible collections of choices is b1 · b2 · · · · · bn.
◦ To illustrate the multiplication principle, if a fair coin is tossed (2 possible outcomes) and then a fair
6-sided die is rolled (6 possible outcomes), the total number of possible results of �ipping a coin and then
rolling a die is 2 · 6 = 12.

◦ The multiplication principle follows from our results about cardinalities of Cartesian products: if Bi

corresponds to the set of outcomes of choice i, then the elements of the Cartesian product B1 × B2 ×
· · · ×Bn correspond to ordered n-tuples of outcomes, one for each choice. The number of such n-tuples
is #(B1 ×B2 × · · · ×Bn) = #B1 ·#B2 · · · · ·#Bn by repeatedly applying (5).

• By employing these principles appropriately, we can solve a variety of basic counting problems.

• Example: Determine the number of possible outcomes from rolling a 6-sided die 5 times in a row.

◦ Each individual roll has 6 possible outcomes. Thus, by the multiplication principle, the number of
possible sequences of 5 rolls is 65 = 7776 .

• Example: Determine the number of subsets of the set {1, 2, . . . , n}.

◦ We may characterize a subset S of {1, 2, . . . , n} by listing, for each k ∈ {1, 2, . . . , n}, whether k ∈ S or
k 6∈ S.

◦ By the multiplication principle, the number of possible ways of making this sequence of n choices is 2n .

• Example: If #A = n and #B = m, �nd the total number of functions f : A→ B.

◦ If A = {a1, a2, . . . , an}, then such a function is completely determined by the values f(a1), f(a2), ... ,
f(an).

◦ Since #B = m, there are m possible choices for each of the n values f(a1), f(a2), ... , f(an).

◦ Since all such choices are allowed, the total number of functions is therefore mn .
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• Example: Find the number of positive integer divisors of 90000.

◦ Note that 90000 = 243254, so any positive integer divisor must have the form 2a3b5c where a ∈
{0, 1, 2, 3, 4}, b ∈ {0, 1, 2}, and c ∈ {0, 1, 2, 3, 4}.
◦ On the other hand, every such integer is a divisor, and so since there are 5 choices for a, 3 for b, and 5
for c, there are 5 · 3 · 5 = 75 divisors in total.

◦ Remark: In the same way, one may see that n = 2n23n35n5 · · · has a total of (n2 +1)(n3 +1)(n5 +1) · · ·
positive integer divisors.

4.1.2 Countable and Uncountable Sets

• Because we have de�ned cardinality in terms of bijections, and the property of being in a one-to-one corre-
spondence is an equivalence relation on sets, we see that there is a bijection between two �nite sets if and
only if they have the same cardinality.

◦ This gives us an alternative way to view cardinalities, namely, as representing the equivalence classes of
sets under the relation of being in one-to-one correspondence.

◦ For example, one equivalence class contains the sets {1, 2}, {1, 5}, {22, π}, {A,B}, {?, potato}, ... , since
any pair of these sets is in one-to-one correspondence with one another. This equivalence class may be
thought of as being the collection of all sets of cardinality 2.

◦ The advantage of this approach to cardinality is that it also extends to in�nite sets:

• De�nition: We say two sets are equinumerous (or equipollent) if there exists a bijection between them.

◦ Example: The sets {1, 2, 3} and {a, b,Q} are equinumerous because there exists a bijection between
them, namely, the function f = {(1, a), (2, b), (3, Q)}.
◦ Example: The sets Z and 2Z (the even integers) are equinumerous because there exists a bijection
between them, namely, the function f : Z→ 2Z given by f(n) = 2n (it is easy to see that f is one-to-one
and onto).

◦ We think of two equinumerous sets as having the same cardinality: from our observations above, this
interpretation agrees with the de�nition of cardinality for �nite sets.

◦ It is somewhat strange to think of the set of even integers as having the same cardinality as the set of
all integers, because the set of even integers is a proper subset of the set of all integers (indeed, in some
sense1 only �half� of all integers are even). But this is the type of statement we must accept if we are to
give any sensible de�nition for the cardinality of an in�nite set that behaves well under set operations.

◦ Example: The sets Z and Z>0 (the positive integers) are equinumerous, because the function f : Z→ Z>0

given by f(n) =

{
2n+ 2 if n ≥ 0

−2n+ 1 if n < 0
is a bijection, since it maps the nonnegative integers to the even

positive integers and it maps the negative integers to the odd positive integers.

◦ Example: The sets Z>0 (the positive integers) and the set S of perfect squares are equinumerous, because
the function f : Z>0 → S given by f(n) = (n− 1)2 is a bijection.

• As we have noted above, counting elements of a set is the same as assigning positive integer labels to the
elements of the set, which is in turn the same as creating a bijection with a subset of the positive integers.

• De�nition: If S is a set, we say S is countable if there exists a bijection between S and a subset of the positive
integers, and we say S is countably in�nite if S is countable and in�nite. If S is not countable, we say S is
uncountable.

1One may make precise the idea that half of all integers are even by noting that if E is the set of even integers, then the limit

limN→∞
#[E ∩ {−N, . . . , N}]

#[{−N, . . . , N}]
is equal to

1

2
. Equivalently, the proportion of the integers in {−N,−N + 1, . . . , N − 1, N} that

are even approaches 1/2 as N → ∞). In general, if S is a subset of the integers, its �natural density� is de�ned as the limit

limN→∞
#[S ∩ {−N, . . . , N}]
#[{−N, . . . , N}]

, if the limit exists; note that there do exist sets whose natural density is unde�ned, such as the set

of integers with leading digit 1 (in base 10).
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◦ By de�nition, any �nite set is countable since it can be put in bijection with the set {1, 2, 3, . . . , n} where
n is its cardinality.

• Proposition (Properties of Countability): The following are true:

1. If S is a countably in�nite subset of the positive integers, there exists a bijection between S and Z>0.

◦ Intuitively, we can just de�ne the bijection by mapping 1 to the smallest element of S, 2 to the
second smallest, and so forth.

◦ Proof: By the well ordering axiom, since S is nonempty it has a smallest element a1.

◦ Since S is in�nite, S\{a1} is also in�nite hence nonempty, so it has a smallest element a2 > a1.

◦ By a trivial induction, we may continue this process for each positive integer n ≥ 1 to construct
an > an−1 > · · · > a1 where S\{a1, . . . , an} is in�nite and has all elements greater than an. Since
the ai are all distinct positive integers in increasing order, we also see that an ≥ n for each n.

◦ Setting f(n) = an then yields a one-to-one function f : Z>0 → S. But f is also onto, since any
k ∈ S will be the smallest element of S\{1, 2, . . . , k − 1} hence necessarily is among the values
f(1), . . . , f(k).

2. More generally, any subset of a countable set is countable.

◦ Proof: Suppose A is countable and B ⊆ A. Then by de�nition there is a bijection f : A→ Z with a
subset Z of the positive integers.

◦ The restriction f |B is a then bijection from B to im(f |B) ⊆ Z, which is also a subset of the positive
integers.

◦ Hence there is a bijection from B to a subset of the positive integers, so B is countable.

3. A nonempty set S is countable if and only if there exists an onto function f : Z>0 → S.

◦ The utility of this result is that it provides an easier way to establish countability, since onto maps
are less restrictive and thus easier to construct than bijections.

◦ Proof: Suppose S is nonempty. If there exists an onto function f : Z>0 → S, let nx be the smallest
positive integer such that f(nx) = x. (Note that this integer necessarily exists by applying the
well-ordering axiom to the set of integers f maps to x which is nonempty since f is onto.)

◦ Then for A = {nx : x ∈ S}, we see that f |A is a bijection (since it is onto and also one-to-one) with
the subset A of Z>0 with S, so S is countable.

◦ Conversely, suppose S is countable and nonempty, so that there exists a bijection g : A→ S where
A is a subset of the positive integers. Let x ∈ S (here is where we are using the fact that S is

nonempty), and then de�ne f : Z>0 → S via f(n) =

{
g(n) if n ∈ A
x if n 6∈ A

.

◦ Clearly f is onto since it contains the image of g (which is A), so there exists an onto function
f : Z>0 → S as claimed.

4. The Cartesian product of two countable sets is countable.

◦ Proof: Since the product map of two bijections is a bijection on the respective Cartesian products,
and a subset of a countable set is countable by (2) above, it is enough to prove that the Cartesian
product Z>0 × Z>0 is countable.

◦ We give an explicit bijection f : Z>0 × Z>0 → Z>0 by labeling the points in �diagonal stripes� as
shown in the diagram below:
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◦ More explicitly, the bijection is given by f(a, b) =
(a+ b)(a+ b− 1)

2
− a + 1 for positive integers a

and b.

◦ It is a straightforward induction on b to see that this labeling is correct on all of the points with
a = 1: then increasing a by 1 and decreasing b by 1 decreases f by exactly 1 (since a + b is not
changed), so the labeling is also correct on all of the diagonal stripes.

◦ Thus, Z>0 × Z>0 is countable, hence so is the Cartesian product of any two countable sets.

5. The union of two countable sets is countable.

◦ Proof: Suppose A and B are countable. If either A or B is empty then the union is just the other
of the two sets, so the result is trivial.

◦ Now assume both sets are nonempty. Then by (3) there exist onto functions fA : Z>0 → A and
fB : Z>0 → B.

◦ Now de�ne the function f : Z>0 → A ∪B via f(n) =

{
fA(

n+1
2 ) if n is odd

fB(
n
2 ) if n is even

.

◦ Then f is onto, since its image contains each value fA(k) = f(2k) and fB(k) = f(2k − 1) for each
positive integer k. Hence by (3) again we see that A ∪B is countable.

6. More generally, a countable union of countable sets is countable: if I is a countable indexing set and Si

is a countable set for each i ∈ I, then
⋃

i∈I Si is countable.

◦ Proof: If any Si is empty we may simply discard it without a�ecting the union, so suppose each
Si is nonempty. Additionally, if I is �nite, then an easy induction using (5) shows that

⋃
i∈I Si is

countable.

◦ So assume that I is in�nite. Then by (1) there is a bijection f : Z>0 → I and the positive integers, so
by setting Tj = Sf(j) for each positive integer j, we are reduced to showing that

⋃∞
j=1 Tj is countable.

◦ By (3), for each j ≥ 1 there exists an onto function fj : Z>0 → Tj . Now de�ne the function
g : Z>0 × Z>0 →

⋃∞
j=1 Tj via g(a, b) = fa(b). Then g is onto, since its image contains im(fj) = Tj

for each j.

◦ Finally, since Z>0 × Z>0 is countable by (5), composing a bijection h : Z>0 → Z>0 × Z>0 with g
yields an onto map h ◦ g : Z>0 →

⋃∞
j=1 Tj , so by (3) we see that

⋃∞
j=1 Tj is countable.

7. (Cantor) The set of rational numbers Q is countable.

◦ Proof 1: For Q, associate the rational number a/b in lowest terms with b > 0 to the ordered pair
(a, b) in the Cartesian product Z× Z. This yields a bijection between Q and a subset of Z× Z.
◦ Then since Z × Z is countable by (4) above, and any subset of a countable set is countable by (2)
above, we conclude Q is countable, as claimed.

◦ Proof 2: By de�nition Q is the union of the countable sets Sn =
1

n
Z = {. . . ,− 2

n
,− 1

n
, 0,

1

n
,
2

n
,
3

n
, . . . }

for integers n ≥ 1. By (6), a countable union of countable sets is countable, so Q is countable.

◦ Remark: It is also possible to show that Z×Z is countable directly by labeling the points in �spirals�
outward from the origin. The countability of Q can also be established using this method, where we
label the points (a, b) in spirals, where a/b is a rational number in lowest terms.

◦ Remark: Another way to show that Q is countable is �rst to observe that the rational numbers be-
tween 0 and 1 are countable, by simply listing them �rst in order of increasing denominators and then

in order of increasing numerators, skipping terms already listed:

{
0

1
,
1

1
,
1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
, . . .

}
.

Then we can obtain any rational number merely by including reciprocals and negatives (and negative

reciprocals) after each term in the list above:

{
0

1
,
1

1
,−1

1
,
1

2
, −1

2
,
2

1
, −2

1
,
1

3
, −1

3
,
3

1
, −3

1
, . . .

}
.

• So far we have only given examples of sets that are countable. However, not every set is countable:

• Theorem (Cardinality of Power Set): If S is any set, �nite or in�nite, then there does not exist a bijection
between S and its power set P(S). In particular, the power set P(Z>0) is uncountable.

◦ Proof: Suppose f : S → P(S) is any function. We will show that f cannot be onto, so in particular, f
cannot be a bijection.
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◦ Let A = {a ∈ S : a 6∈ f(a)} be the collection of elements of S that are not an element of their image
under f . We claim that A is not in the image of f .

◦ For any s ∈ S, either s ∈ A or s 6∈ A.
◦ If s ∈ A, then by de�nition of A, s 6∈ f(s). Hence f(s) 6= A because s is an element of A but not f(s).

◦ If s 6∈ A, then by de�nition of A, s ∈ f(s). Hence f(s) 6= A, because s is an element of f(s) but not A.

◦ In either case, f(s) 6= A. Since this holds for every s ∈ S, we conclude A 6∈ im(f). Hence f is not onto,
so (in particular) is not a bijection.

◦ Remark: Compare this argument to our analysis of Russell's paradox, in which we established that there
is no set of all sets. It uses the same technique of considering sets whose (image) does not contain itself.

• It is also true that the set R of real numbers is uncountable, as �rst established by Cantor in 1874:

• Theorem (Uncountability of R): The set R of real numbers is uncountable. In fact, the set of real numbers in
the interval [0, 1] is uncountable.

◦ In this proof we will use a few basic facts about decimal expansions of real numbers; in particular, recall
that every real number has a decimal expansion, and some real numbers have two decimal representations,
such as 1.000 · · · = 0.999 . . . . More speci�cally, the real numbers with two decimal expansions are the
ones of the form n/10k where n and k are integers: one representation ends in an in�nite string of 0s
while the other ends in an in�nite string of 9s.

◦ Proof: By way of contradiction suppose that the set of real numbers in [0, 1] is countable. Then we may
list the elements as r1, r2, r3, . . . .

◦ Arrange the decimal expansions of these real numbers in an array as follows:

r1 = 0.d1,1d2,1d3,1d4,1 . . .

r2 = 0.d1,2d2,2d3,2d4,2 . . .

r3 = 0.d1,3d2,3d3,3d4,3 . . .

r4 = 0.d1,4d2,4d3,3d4,4 . . .

...
...

...

◦ Now we construct a real number in [0, 1] that cannot be equal to any of the numbers r1, r2, r3, r4 using
the �diagonal� digits di,i: if di,i = 1, set ei = 2, and if di,i = 2, set ei = 1.

◦ We claim the real number α = 0.e1e2e3e4 . . . cannot be equal to any of the numbers ri.

◦ To see this, �rst observe that for any i, the ith decimal digit of α di�ers from the ith decimal digit of ri.
Then because α cannot have two decimal representations and its representation cannot be equal to any
decimal expansion of any ri, we conclude that α ∈ [0, 1] is a real number not equal to any ri.

◦ This is a contradiction, and therefore the set of real numbers in [0, 1] is countable.

◦ Then R must be uncountable also, since otherwise [0, 1] would be a subset of a countable set and thus
countable itself.

◦ Remark: This type of argument, �rst given by Cantor, is known as a diagonalization argument.

4.1.3 In�nite Cardinalities

• We now discuss some other results about in�nite sets. We have seen above that there are at least two di�erent
�sizes� of in�nite sets (namely, countably in�nite and uncountably in�nite) but in fact there are more:

• Proposition (In�nite Cardinals): There exists an in�nite sequence of in�nite sets S1, S2, S3, . . . , no two of
which are equinumerous.

◦ Another way to interpret this result is that there are in�nitely many di�erent in�nite cardinalities, or
more informally, there are in�nitely many di�erent in�nities.

◦ Proof: As we have shown, there does not exist an onto map from a set to its power set.
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◦ Hence if we take S1 = Z>0, and de�ne Sn = P(Sn−1) for each n ≥ 2, then any map from Si to Sj with
i < j cannot be onto, since an appropriate restriction would necessarily yield an onto map from Si to
Si+1 = P(Si).

◦ This means in particular that no two of the in�nite sets S1, S2, S3, . . . are equinumerous, as required.

• By de�nition, two sets have the same cardinality if there is a one-to-one correspondence between them. But it
is also natural to want to compare sets of di�erent cardinalities, which we may do using one-to-one functions:

• De�nition: If A and B are sets, we say A is dominated by B, written A - B, if there exists a one-to-one
function f : A→ B.

◦ The motivation for this de�nition is the observation that if f : A→ B is one-to-one, then f is a bijection
from A to im(f) ⊆ B, and so A is in bijection with a subset of B. This is a reasonable way to capture
the idea that B has �at least as many� elements as A.

◦ Example: {1, 2, 3} - {a, p, q, s} because there exists a one-to-one function f : {1, 2, 3} → {a, p, q, s}, such
as f = {(1, a), (2, p), (3, s)}.
◦ Example: Z>0 × Z>0 - Z because there exists a one-to-one function f : Z>0 × Z>0 → Z, namely the
explicit map we constructed that gives a bijection of Z>0 × Z>0 with Z>0.

• Note that we have used the symbol -, which suggests that this relation should behave like a partial ordering.

◦ Re�exivity follows immediately, because the identity function from A to itself is one-to-one, so A - A.

◦ Transitivity is also straightforward: if A - B and B - C, then there exist one-to-one functions f : B → C
and g : A→ B. Then it is straightforward to check that f ◦ g : A→ C is also one-to-one, whence A - C.

◦ However, this relation is not antisymmetric: there are examples of sets A and B with A - B and B - A
but with A 6= B. For example, {1, 2} - {a, b} and {a, b} - {1, 2}, and also Z - Q and Q - Z.
◦ However, these examples do suggest that if A - B and B - A, then A and B are equinumerous, in
which case the relation - is antisymmetric when viewed on cardinalities (i.e., on equivalence classes of
equinumerous sets). This turns out to be true, but not so easy to prove:

• Theorem (Cantor-Schröder-Bernstein): Suppose A and B are sets such that there exists an injection from A
to B and an injection from B to A. Then there exists a bijection between A and B.

◦ The proof of this theorem is somewhat involved, but the overall idea is to consider the one-to-one maps
f : A→ B and g : B → A. If f is onto then we are done.

◦ Otherwise, we glue together part of f with part of the surjective map g−1 : im(g) → B to create a
one-to-one map h : A→ B that also takes on the values in B that were missing from im(f). Rather than
motivating the construction further, we simply give the proof.

◦ Proof: Suppose f : A→ B and g : B → A are one-to-one. Then g has an inverse function g−1 : im(g)→ B
whose image is B.

◦ Now de�ne a sequence of sets A1, A2, A3, . . . recursively: take A1 = A\im(g), and for each n ≥ 2, take
An = g(f(An−1)) = {g(f(a)) : a ∈ An−1}.

◦ Also de�ne X =
⋃

n≥1An and Y = A\X, and �nally de�ne h : A→ B via h(a) =

{
f(a) if a ∈ X
g−1(a) if a ∈ Y

.

◦ Observe that h is well-de�ned because X and Y are disjoint by de�nition, and also that if a ∈ Y (so that
a 6∈ X) then by de�nition a 6∈ A1, so a ∈ im(g) and thus g−1(a) makes sense.

◦ To show that h is one-to-one, suppose h(a1) = h(a2).

◦ If a1, a2 ∈ X then we would have f(a1) = f(a2), but since f is one-to-one, we see a1 = a2. Likewise, if
a1, a2 ∈ Y then we would have g−1(a1) = g−1(a2), and then applying g yields a1 = a2.

◦ For the remaining case assume without loss of generality that a1 ∈ X and a2 ∈ Y . Then we would
have f(a1) = g−1(a2), implying g(f(a1)) = a2, but this would mean a2 ∈ g(f(X)) = X, which is a
contradiction. Hence this case cannot occur, and so a1 = a2 in all cases, meaning that h is one-to-one.

◦ To show that h is onto, let b ∈ B: then g(b) ∈ A.
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◦ If g(b) ∈ Y , then h(g(b)) = g−1(g(b)) = b, so b ∈ im(h).

◦ If g(b) ∈ X, then by de�nition of X as a union we have g(b) ∈ An for some n.

◦ In particular since g(b) ∈ im(g) we have n 6= 1. This means g(b) ∈ g(f(An−1)), meaning that for some
a ∈ An−1 we have g(b) = g(f(a)).

◦ But then since g is one-to-one this implies b = f(a) = h(a) since a ∈ An−1 ⊆ X, and so we also have
b ∈ im(h) in this case.

◦ Hence b ∈ im(h) in either cases, so h is onto. Thus, h is a bijection as required.

• The Cantor-Schröder-Bernstein theorem shows that the relation - is a partial ordering on cardinalities.

◦ A natural followup question is whether this relation is actually a total ordering on cardinalities.

◦ Equivalently, we are asking whether any two sets are always comparable under -, which is to say, given
any two sets, does there necessarily exist an injection from one the other?

◦ It turns out that the answer relies on a foundational axiom of set theory known as the axiom of choice,
which (in one formulation) states that the Cartesian product of an arbitrary collection of nonempty sets
is nonempty.

◦ If the axiom of choice is accepted, it can be shown that - is a total ordering on sets: in fact, it is actually
true that the axiom of choice is equivalent to the statement that - is a total ordering on sets.

• In this formulation (the Cartesian product of an arbitrary collection of nonempty sets is nonempty), the axiom
of choice seems like a natural assumption to make, and it is generally accepted by most mathematicians in
practical work.

◦ There exist many other equivalent formulations of the axiom of choice, some of which seem fairly natural,
and others which are less so.

◦ Another statement equivalent to the axiom of choice is called Zorn's lemma, which states that every
nonempty partially-ordered set having the property that any totally ordered subset has an upper bound
(an element greater than or equal to every element of the subset) has a maximal element (an element
such that no element is greater than it).

◦ A third equivalent to the axiom of choice (familiar to students who have studied linear algebra) is the
statement that every vector space has a basis.

◦ A fourth equivalent to the axiom of choice is called the well-ordering principle, which states that every
set admits a well-ordering (a total ordering in which every nonempty subset has a smallest element).

◦ This fact was one of our axioms [N3] for the de�nition of the integers. However, it is much less intuitive
to ask what a well-ordering on the set R would look like: the usual total ordering ≤ is not a well-ordering,
because there are many sets, like the open interval (0, 1) or even R itself, that have no smallest element
under ≤.
◦ It has also been proven that the axiom of choice is independent of the standard Zermelo-Fraenkel axioms
of set theory, in the sense that the axioms are consistent provided the axiom of choice is accepted if and
only if the axioms are consistent provided the axiom of choice is rejected.

4.2 The Pigeonhole Principle

• We now establish several related facts about cardinality and �nite sets that all fall under the umbrella of the
so-called �pigeonhole principle�. These results are very intuitively natural, but we can give formal proofs using
the language we have developed about functions and sets.

4.2.1 Statements of the Pigeonhole Principle

• Proposition (Pigeonhole Principle): Supposem > n. Then there exists no one-to-one function f : {1, 2, . . . ,m} →
{1, 2, . . . , n}. More generally, if A and B are �nite sets and #A > #B, then there exists no one-to-one function
f : A→ B.
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◦ We often phrase this more intuitively as follows: suppose we have m pigeons and we place each pigeon
into one of n holes. If m > n, then there must be at least one hole that has more than one pigeon. (This
particular formulation is the reason for the name �pigeonhole principle�.)

◦ Proof: For the �rst statement, we show the result by contradiction.

◦ If f is one-to-one, then f is a bijection between {1, 2, . . . ,m} and im(f), and so #im(f) = m.

◦ But since im(f) is a subset of the target set {1, 2, . . . , n}, we also have #im(f) ≤ n, and so m ≤ n.
◦ This contradicts the assumption that m > n, so there cannot exist any such function f .

◦ The second statement follows simply by replacing {1, 2, . . . ,m} with the set A and {1, 2, . . . , n} with the
set B.

• Here are some other formulations of the pigeonhole principle.

• Proposition (Pigeonhole, Set Version): If S is a �nite set with #S = m, and S = S1 ∪ S2 ∪ · · · ∪ Sn for some
m > n, then #Si > 1 for at least one value of i.

◦ Proof: Work by contradiction: if #Si ≤ 1 for all i, then #S = #(S1 ∪ S2 ∪ · · · ∪ Sn) ≤ #S1 + #S2 +
· · ·+#Sn ≤ n, with the latter inequality following by induction using #(A ∪B) ≤ #A+#B.

◦ But this is a contradiction since m > n. Hence #Si > 1 for at least one value of i.

◦ Alternatively, we could deduce this formulation from the one we gave above by writing Si = {x ∈ S :
f(x) = i}, and then observing that #Si > 1 for some i is equivalent to saying that f(x1) = i = f(x2)
for two unequal values x1, x2 ∈ S, which in turn is the same as saying that f is not one-to-one.

• Proposition (Pigeonhole, Onto Version): If A and B are �nite sets and #A < #B, then there exists no onto
function g : A→ B.

◦ Intuitively, if we have more holes than pigeons, then at least one hole must not have a pigeon in it.

◦ Proof: Suppose there did exist an onto function g : A→ B. For each b ∈ B, let Sb = {x ∈ A : g(x) = b}.
◦ Then the sets Sb have union A by the assumption that g is onto, so by the set version of the pigeonhole
principle above, at least one set, say gc has cardinality larger than 1.

◦ But this contradicts the assumption that g is a function, because then g would not be well-de�ned on
the element c.

• We can also strengthen the pigeonhole principle as follows:

• Proposition (Average-Value Pigeonhole): If S is a �nite set with #S = m, and S = S1 ∪ S2 ∪ · · · ∪ Sn, then
#Si ≥ m/n for at least one value of i. If S is in�nite and S = S1 ∪ S2 ∪ · · · ∪ Sn, then at least one of the Si

must also be in�nite.

◦ The intuitive version is that if we place m pigeons into n holes, there must be (at least) one hole that
has at least the average number m/n of pigeons in it.

◦ Proof: If #S = m and #Si < m/n for all i, then #S = #(S1∪S2∪· · ·∪Sn) ≤ #S1+#S2+ · · ·+#Sn <
n ·m/n = m, which contradicts the statement #S = m.

◦ The in�nite version follows in the same way: if all of the Si are �nite, then by de�nition there exists a
�nite number N for which #Si ≤ N (namely, the maximum of all of the cardinalities).

◦ Then we would have #S ≤ #S1 + · · ·+#Sn = n ·N which is �nite, contradicting the assumption that
S is in�nite.

• By using the idea of the pigeonhole principle's proof we can establish the following very useful result about
functions on �nite sets of the same cardinality:

• Proposition (Maps on Same-Cardinality Sets): Suppose A and B are �nite sets with of the same cardinality.
Then a function f : A→ B is one-to-one if and only if it is onto, if and only if it is a bijection.

◦ Proof: Suppose f : A → B is one-to-one and #A = #B. Then f is a bijection of A with im(f), so
#im(f) = #A. But since #B = #A and B is �nite, the only possibility is to have im(f) = B. Hence f
is onto, as claimed.
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◦ Conversely, suppose f : A→ B is onto. If we take Sb = {a ∈ A : f(a) = b} for each b ∈ B, then the Sb

are disjoint, A = ∪b∈BSb, and #Sb ≥ 1 for each b ∈ B (since f is onto).

◦ Then we can write #A = #B ≤ #S1 + · · · + #S#B ≤ #A, meaning that we must have equality
everywhere. This means #Sb = 1 for each b ∈ B, and so f is one-to-one.

◦ Hence f is one-to-one if and only if f is onto. This means either condition is equivalent to both, which
is to say, either condition is equivalent to saying f is a bijection.

4.2.2 Examples of the Pigeonhole Principle

• Here are some problems that can be solved by using pigeonhole arguments:

• Example: A sock drawer contains 10 pairs of (identical) white socks, 8 pairs of blue socks, 3 pairs of black
socks, and 1 pair of purple socks. What is the least number of socks that need to be taken out (without
looking at them) in order to guarantee a matching pair?

◦ If we think of the holes as the sock colors and the pigeons as the socks being drawn, the pigeonhole
principle says that if we have more pigeons than holes, then at least two pigeons are in the same hole.

◦ So if we draw 5 socks, we are guaranteed to have a matching pair since there are only 4 possible colors.

• Example: Show that if 25 people are sitting in a room, then at least 3 of them must share the same birth
month (e.g., October).

◦ If the holes are the 12 birth months and the pigeons are the 25 people, then by the average-value
pigeonhole principle, at least one month has at least 25/12 people corresponding to it.

◦ Since 25/12 > 2, there must be at least 3 people sharing the same birth month.

• Example: Show that if 51 elements from the set {1, 2, 3, . . . , 100} are chosen, then at least one pair of the
elements must sum to 101.

◦ Observe that there are 50 pairs of elements summing to 101 are {1, 100}, {2, 99}, {3, 98}, ... , {50, 51}.
◦ Thus, if we view the holes as the 50 pairs and the pigeons as the 51 elements being selected, then at least
one hole must have 2 pigeons, which is to say, both elements of the pair are chosen.

◦ But this means we obtain at least one pair of elements summing to 101, as claimed.

• Example: If a is any integer and m is a modulus, show that there must exist positive integers p < q such that
ap ≡ aq (mod m).

◦ Here, we want to look at the values {a1, a2, a3, a4, . . . } modulo m.

◦ Since there are onlym residue classes modulom and there are in�nitely many di�erent powers a1, a2, a3, a4, . . . ,
by the in�nite version of the pigeonhole principle, some residue class contains in�nitely many powers.

◦ In particular it has at least 2 powers ap and aq, so that ap ≡ aq (mod m).

• Example: Show that if any �ve lattice points in the plane (i.e., points whose coordinates are both integers)
are chosen, then at least one of the line segments joining one pair of these points has a lattice midpoint.

◦ Since the midpoint of (a, b) and (c, d) is (a+c
2 , b+d

2 ), the midpoint is a lattice point precisely when a+ c
and b+ d are both even.

◦ This is the same as saying that the midpoint is a lattice point precisely when the ordered pairs of residue
classes (a, c) and (b, d) modulo 2 are equal.

◦ Since there are only 2 · 2 = 4 possible ordered pairs of residue classes modulo 2, then if we have 5 such
ordered pairs, by the pigeonhole principle some two of them must land in the same class. Then the
midpoint of that segment is a lattice point, as required.

• Example: Show that if any 51 elements from the set {1, 2, 3, . . . , 100} are chosen, then at least one of them
must divide another one.
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◦ The idea is to �nd a way of partitioning the set into subsets that are totally ordered under divisibility:
then if two elements are chosen in the same subset, one of them must divide the other.

◦ One way to do this is to start with an odd integer and repeatedly double it: this gives the 50 sets
{1, 2, 4, 8, . . . , 64}, {3, 6, 12, . . . , 96}, {5, 10, 20, . . . , 80}, ... , {99}.
◦ Hence by the pigeonhole principle, if we select 51 elements from {1, 2, 3, . . . , 100}, at least two of them
must land in the same of these 50 subsets, and then one of them will divide the other, as claimed.

• Example: Assume (somewhat contrary to reality) that friendship is a symmetric relation, and also that it is
irre�exive, so that no one is friends with themself. Show that in any �nite collection of people, there must be
some pair that have the same number of friends.

◦ If there are n people, then each person can have between 0 and n − 1 friends, inclusive. This does not
allow for applying the pigeonhole principle, since there are n possible numbers of friends and n people.

◦ However, it is not actually possible to have both a person with 0 friends and a person with n− 1 friends:
the person with 0 friends would be friends with nobody, while the person with n − 1 friends would be
friends with everyone else.

◦ Thus, in fact, there are at most n − 1 possible numbers of friends for any actual collection of n people.
Thus by the pigeonhole principle, there are 2 people with the same number of friends.

• Example: In a group of 6 people, each pair of people is either acquainted or strangers. Show that either there
are 3 mutual acquaintances or 3 mutual strangers in the group.

◦ Choose any person A and consider their relation to the 5 remaining people in the group.

◦ Since each of these 5 people is either an acquaintance or a stranger to A, by the pigeonhole principle,
there must be at least 3 people who fall into the same category.

◦ If these 3 are all acquantances, then consider their relation to one another: if any pair are acquaintances,
then this pair and A form 3 mutual acquaintances. Otherwise, all three are strangers to one another, so
they form a set of 3 mutual strangers.

◦ The same logic applies if all 3 are strangers: either some pair of them are strangers in which case they
and A are 3 mutual strangers, or all 3 are acquainted with one another, so they form a set of 3 mutual
acquaintances.

◦ Thus in all cases, there are either 3 mutual acquaintances or 3 mutual strangers in the group.

◦ Remark: A group of 5 people need not have 3 mutual acquaintances or mutual strangers: if the �ve
people are arranged in a circle and each person is acquainted with the two people next to them (but not
the other two) then this arrangement has no set of 3 mutual acquaintances or 3 mutual strangers.

• This type of problem above falls into the area of combinatorial graph theory called Ramsey theory, which
(broadly speaking) studies how large a set must be before a particular type of structure must necessarily exist.
Here is another result of this type:

• Example: Suppose m and n are positive integers. Show that any sequence of mn + 1 distinct real numbers
must contain either a strictly increasing subsequence of m + 1 numbers or a strictly decreasing subsequence
of n+ 1 numbers.

◦ For each integer in the sequence, label it with the ordered pair (ai, bi) where ai is the length of the longest
possible increasing subsequence starting with it, and bi is the length of the longest possible decreasing
subsequence ending with it. Note in particular each ordered pair has positive integer entries.

◦ If there is no increasing subsequence of length m + 1 or longer, all of the �rst coordinates of the pairs
are at most m, and if there is no decreasing subsequence of length n + 1 or longer, all of the second
coordinates of the pairs are at most n.

◦ Therefore there are only mn possible ordered pairs, so since there are mn+1 numbers in the list, by the
pigeonhole principle, two elements xi and xj with i < j must be labeled with the same ordered pair.

◦ But this is a contradiction: if xi < xj then appending xi to the longest increasing sequence starting at
xj gives a longer one for xi, and if xi > xj appending xj to the longest decreasing sequence ending at xi
gives a longer one for xj .
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◦ Remark: This result is known as the Erd®s-Szekeres theorem. The numbers given are sharp, in the sense
that there exists a list ofmn numbers with no increasing sequence of lengthm+1 nor decreasing sequence
of length n + 1: one such list consists of the m runs of n decreasing integers {n, n − 1, n − 2, . . . , 1},
{2n, 2n− 1, 2n− 2, . . . , n+ 1}, {3n, 3n− 1, . . . , 2n+ 1}, ... , {mn,mn− 1, . . . ,m(n− 1) + 1}.

• Example: Suppose α is an irrational real number. Show that there exists in�nitely many rational numbers
p/q such that |α− p/q| < 1/q2.

◦ First we recall a basic fact about the real numbers: for any real number x, there exists a unique integer
n such that n ≤ x < n + 1. (This n is simply the greatest integer less than or equal to x.) As such,
for any real number x, we may write x = n + {x} where 0 ≤ {x} < 1. We call this quantity {x} the
fractional part of x.

◦ Now choose any positive integer m, and consider the m + 1 multiples of α given by 0α, 1α, 2α, ... ,
mα, take each of their fractional parts {0α}, {1α}, {2α}, {mα}. All of these fractional parts lie in the
interval [0, 1).

◦ Thus, applying the pigeonhole principle to the k intervals [0, 1/m, [1/m, 2/m), ... , [(m − 1)/m, 1) and
the k + 1 fractional parts shows that at least one of the intervals must contain two fractional parts.

◦ Suppose speci�cally that one of these intervals contains both {q1α} and {q2α} where q1 < q2. Then the
distance between {q1α} and {q2α} is less than 1/m, since both of these numbers lie in an interval of
length 1/m, and one of the endpoints is excluded.

◦ So this means −1/m < {q2α} − {q1α} < 1/m. Writing q1α = p1 + {q1α} and q2α = p2 + {q2α} then
yields −1/m < (q2α − p2) − (q1α − p1) < 1/m, which upon setting p = p2 − p1 and q = q2 − q1 is
equivalent to −1/m < qα− p < 1/m, so that |qα− p| < 1/m and thus |α− p/q| < 1/(mq).

◦ But now m is at least as large as q = q2 − q1, so in fact we have |α− p/q| < 1/(mq) ≤ 1/q2: this
means p/q is one rational number satisfying the requirement. But since m can be arbitrarily as large,
and |α− p/q| cannot be zero since α is irrational, there must be in�nitely many such p/q.

◦ Remark: This result is known as Dirichlet's approximation theorem, and was the �rst recorded use of
the pigeonhole principle in mathematics. The idea is that any irrational number has many good rational
approximations, where we measure �good� in terms of how close the approximation is relative to the size
of the denominator. The closeness of the rational approximations is much better than that obtained by
using a decimal approximation: if we just take p/q to be the decimal expansion of α out to n decimal
places, then q will (typically) be 10n while the error could be as large as 10−n ≈ 1/q.

• One real-world implication of the pigeonhole principle is the following:

• Example: Show that a lossless data compression algorithm (i.e., a function on data sets that does not lose
information) cannot guarantee compression for all input data sets (i.e., cannot guarantee that the output of
the function has smaller size than the input).

◦ Suppose that each �le is represented as a string of bits, and that the compression algorithm transforms
every �le into an output �le that has fewer bits.

◦ If we let AN be the set of all �les with at most N bits (note that AN is �nite, and in fact AN = 2N+1−1
if we include the empty �le), then if the compression algorithm never increases the size of an input �le,
it is a function f : AN → AN .

◦ The statement that the compression algorithm is lossless means that the original data set can always be
recovered from its output, which is simply saying that f is one-to-one.

◦ But now by our result on same-cardinality sets, this means that f : AN → AN is one-to-one, hence it
is a bijection. Since this holds for every N , by an easy induction this means that f must map the �les
with exactly N bits to themselves, meaning that f cannot actually compress any �le.

◦ Remark: Another way of phrasing this result is that if a lossless data compression algorithm shortens
any one �le, then it must lengthen another one.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2019-2022. You may not reproduce or distribute this
material without my express permission.
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