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2 Fields and Field Extensions

Our goal in this chapter is to study the structure of �elds, a subclass of rings in which every nonzero element has a
multiplicative inverse, and �eld extensions. Fields arise naturally in studying the solutions to polynomial equations,
and we will explore the connections between polynomials and �elds in detail. As a particular application of the
basic theory of �eld extensions, we will be able to establish the impossibility of certain classical straightedge-and-
compass constructions such as trisecting an arbitrary angle and doubling the cube. We will also discuss at length
the structure of �elds obtained by �adjoining� roots of polynomials, and in particular the (historically perilous)
topic of establishing that every �eld has an algebraic closure. We �nish with a lengthy discussion of some more
technical matters regarding separability and transcendence.

2.1 Fields and Vector Spaces

• In the previous chapter, we have already essentially de�ned �elds as a special type of ring. Our �rst goal is
to develop some basic properties of �elds, and then to discuss vector spaces over �elds.
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2.1.1 De�nition, Examples, and Basic Properties of Fields

• For simplicity, we will again list the axioms for a �eld:

• De�nition: A �eld is any set F having two (closed) binary operations + and · that satisfy the nine axioms
[F1]-[F9]:

[F1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any elements a, b, c in F .

[F2] The operation + is commutative: a+ b = b+ a for any elements a, b in F .

[F3] There is an additive identity 0 satisfying a+ 0 = a for all a in F .

[F4] Every element a in F has an additive inverse −a satisfying a+ (−a) = 0.

[F5] The operation · is associative: a · (b · c) = (a · b) · c for any elements a, b, c in F .

[F6] The operation · is commutative: a · b = b · a for any elements a, b in F .

[F7] There is a multiplicative identity 1 6= 0, satisfying 1 · a = a = a · 1 for all a in F .

[F8] Every nonzero a in F has a multiplicative inverse a−1 satisfying a · a−1 = 1.

[F9] The operation · distributes over +: a · (b+ c) = a · b+ a · c for any elements a, b, c in F .

• We have previously mentioned four examples of �elds: the rational numbers Q, the real numbers R, the
complex numbers C, and the �nite �elds Fp = Z/pZ where p is a prime number. From our discussion of
polynomials, we have also established that if F is any �eld and p is any irreducible polynomial in F [x], then
the ring F [x]/p of residue classes modulo p is also a �eld.

• Here are a few additional examples of �elds:

• Example: If F is a �eld, the collection of rational functions in t with coe�cients in F , denoted F (t), forms a
�eld.

◦ Remark: We use the letter t to denote the indeterminate rather than x, since we will later want to discuss
polynomials in the context of this �eld of rational functions.

◦ Explicitly, the elements of this �eld are quotients of polynomials
p

q
where p, q ∈ F [t] and q 6= 0, and

where
p

q
=
r

s
whenever ps = rq.

◦ The addition and multiplication operations are de�ned in the same way as for regular fractions:
p

q
+
r

s
=

ps+ qr

qs
and

p

q
· r
s

=
pr

qs
. It is tedious (but straightforward) to verify that these operations are well-de�ned

and satisfy the �eld axioms.

• Example: The set S = {a+ b
√

2 : a, b ∈ Q} forms a �eld, denoted Q(
√

2) (typically read as �Q adjoin
√

2�).

◦ The arithmetic in Q(
√

2) is as follows: (a+b
√

2)+(c+d
√

2) = (a+c)+(b+d)
√

2, and (a+b
√

2)(c+d
√

2) =
(ac+ 2bd) + (ad+ bc)

√
2.

◦ Since Q(
√

2) is clearly closed under subtraction and multiplication, and contains 0 = 0 + 0
√

2, it is a
subring of C and hence an integral domain, since it contains 1.

◦ To see that Q(
√

2) is actually a �eld, we need to show that every element has a multiplicative inverse:

this follows by �rationalizing the denominator�, since we can write (a+ b
√

2)−1 =
a− b

√
2

a2 − 2b2
, and as long

as one of a, b is nonzero the denominator is also nonzero because
√

2 is irrational.

• Example: The set S = {a + bi : a, b ∈ Q} forms a �eld, denoted Q(i). (As usual, i denotes the imaginary
unit with i2 = −1.)

◦ The arithmetic in Q(i) is the same as for regular complex numbers: (a+ bi)+(c+di) = (a+ c)+(b+d)i,
and (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.
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◦ Like with Q(
√

2) we can see that every nonzero element has a multiplicative inverse, since (a+ bi)−1 =
a− bi
a2 + b2

, so Q(i) is a �eld.

• Both Q(
√

2) and Q(i) are special cases of the more general class of quadratic �elds, obtained by �adjoining�
the square root of something to Q:

• Example: Let D be a squarefree integer not equal to 1. The quadratic �eld Q(
√
D) is the set of complex

numbers of the form a+ b
√
D, where a and b are rational numbers.

◦ Remark: An integer is squarefree if it is not divisible by the square of any prime. We lose nothing here
by assuming that D is a squarefree integer, since two di�erent integers di�ering by a square factor would
generate the same set of complex numbers a+ b

√
D.

◦ As in the two cases above, Q(
√
D) is a �eld because we can write (a + b

√
D)−1 =

a− b
√
D

a2 −Db2
, and

a2 −Db2 6= 0 provided that a and b are not both zero because
√
D is irrational (by the assumption that

D is squarefree and not equal to 1).

◦ An important quantity related to these quadratic �elds is the quadratic �eld norm N : Q(
√
D) → Q,

de�ned as N(a+ b
√
D) = a2 −Db2 = (a+ b

√
D)(a− b

√
D).

◦ The fundamental property of this �eld norm is that it is multiplicative: N(xy) = N(x)N(y) for two
elements x and y in Q(

√
D), as can be veri�ed by writing out both sides explicitly and comparing the

results.

◦ The �eld norm provides a measure of �size� of an element of Q(
√
D), in much the same way that the

complex absolute value measures the �size� of a complex number. In fact, if D < 0, then the �eld norm
of an element a+ b

√
D is the same as the square of its complex absolute value.

• Since �elds are commutative integral domains (with 1), we have a number of basic properties of �eld arithmetic
that follow immediately from the axioms:

• Proposition (Basic Arithmetic): The following properties hold in any �eld F :

1. The additive identity 0 and the multiplicative identity 1 are unique, as are additive and multiplicative
inverses.

2. Addition has a cancellation law: for any a, b, c ∈ F , if a+ b = a+ c, then b = c.

3. Multiplication has a cancellation law: for any a, b, c ∈ F with a 6= 0, if ab = ac then b = c. In particular,
ab = 0 implies a = 0 or b = 0.

4. For any a ∈ F , 0 · a = 0 = a · 0 and (−1) · a = −a.
5. For any a, b ∈ F , −(a+ b) = (−a) + (−b), (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.
6. For any positive integers m and n and any a ∈ F , ma+ na = (m+ n)a, m(na) = (mn)a, am+n = aman,

and amn = (am)n.

• There is another fundamental quantity attached to a �eld known as its characteristic:

• De�nition: If F is a �eld, we say F has characteristic p if p1F = 0, and no smaller positive integer multiple of
1 is 0. (Recall that p1F = 1F + 1F + · · ·+ 1F︸ ︷︷ ︸

p times

.) If n1F 6= 0 for all n > 0, then we say F has characteristic 0.

◦ Example: For a prime p, the �nite �eld Fp = Z/pZ has characteristic p, while the �elds Q, R, and C
have characteristic 0.

◦ Any �nite �eld necessarily has positive characteristic, although in�nite �elds with positive characteristic
also exist.

• Proposition (Positive Characteristic): If the �eld F has characteristic p > 0, then p is a prime.

◦ Proof: Suppose F has characteristic m > 0 and m = ab for positive integers a, b: then 0 = m1F =
(a1F ) · (b1F ).

◦ Since F is a �eld, this implies that one of a1F and b1F must be zero, but since m is minimal, the only
possibility is that a = m or b = m, meaning that m must be prime.
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2.1.2 Vector Spaces

• Vector spaces are a central ingredient for studying �elds, so we will brie�y outline some of the basic properties
of vector spaces over an arbitrary �eld.

• De�nition: Let F be a �eld, and refer to the elements of F as scalars. A vector space over F is a triple
(V,+, ·) of a collection V of vectors, together with two binary operations, addition of vectors (+) and scalar
multiplication of a vector by a scalar (·), satisfying the following axioms:

[V1] Addition is commutative: v + w = w + v for any vectors v and w.

[V2] Addition is associative: (u + v) + w = u + (v + w) for any vectors u, v, and w.

[V3] There exists a zero vector 0, with v + 0 = v = 0 + v for any vector v.

[V4] Every vector v has an additive inverse −v, with v + (−v) = 0 = (−v) + v.

[V5] Multiplications are consistent: α · (β · v) = (αβ) · v for any scalars α, β and vector v.

[V6] Addition of scalars distributes: (α+ β) · v = α · v + β · v for any scalars α, β and vector v.

[V7] Addition of vectors distributes: α · (v + w) = α · v + α ·w for any scalar α and vectors v and w.

[V8] The scalar 1 acts like the identity on vectors: 1 · v = v for any vector v.

◦ Remark: We will often omit the · for scalar multiplication, and will frequently assume that the �eld F
is clear from the context.

• Here are a few standard examples of vector spaces:

◦ Example: For any positive integer n, the set of all n-tuples of elements from F , denoted Fn, is an
F -vector space under componentwise addition and scalar multiplication.

∗ Explicitly, the operations in Fn are 〈a1, a2, . . . , an〉+ 〈b1, b2, . . . , bn〉 = 〈a1 + b1, a2 + b2, . . . , an + bn〉
and α · 〈b1, b2, . . . , bn〉 = 〈αb1, αb2, . . . , αbn〉.

∗ The additive identity is the zero vector 〈0, 0, . . . , 0〉 and additive inverses are given by negating each
component: −〈b1, b2, . . . bn〉 = 〈−b1,−b2, . . . ,−bn〉.

◦ Example: The zero space with a single element 0, with 0 + 0 = 0 and α · 0 = 0 for every α ∈ F , is an
F -vector space.

◦ Example: The rings F [x] and F [x]/p for any polynomial p are F -vector spaces.

◦ Example: The complex numbers C are a vector space over Q, R, and C (in each case via normal addition
and multiplication in C).

• Like with rings and �elds, vector spaces have some basic arithmetic properties that can be derived immediately
from the axioms:

• Proposition (Basic Arithmetic): In any vector space V , the following are true:

1. The additive identity 0 is unique, as are additive inverses.

2. Addition has a cancellation law: for any a,b, c ∈ V , if a + b = a + c, then b = c.

3. For any v ∈ V , 0 · v = 0, and for any α ∈ F , α · 0 = 0.

4. For any v ∈ V , (−1) · v = −v, and −(−v) = v.

• Now we can discuss the structure of vector spaces:

• De�nition: A subspaceW of a vector space V is a subset of the vector space V which, under the same addition
and scalar multiplication operations as V , is itself a vector space.

◦ Example: Any vector space V has two obvious subspaces: the zero space and V itself.

◦ Example: As a Q-vector space, R is a subspace of C.

• De�nition: Given a set v1,v2, . . . ,vn of vectors in a vector space V , we say a vector w in V is a linear
combination of v1,v2, . . . ,vn if there exist scalars a1, · · · , an such that w = a1 · v1 + a2 · v2 + · · ·+ an · vn.
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◦ Example: In Q4, the vector 〈4, 0, 5, 9〉 is a linear combination of 〈1, 0, 0, 1〉, 〈0, 1, 0, 0〉, and 〈1, 1, 1, 2〉,
because 〈4, 0, 5, 9〉 = 1 · 〈1,−1, 2, 3〉 − 2 · 〈0, 1, 0, 0〉+ 3 · 〈1, 1, 1, 2〉.
◦ Example: In F2

3, the vector 〈1, 0, 2〉 is a linear combination of 〈1, 1, 1〉 and 〈2, 1, 0〉, because 〈1, 2〉 =
2 · 〈1, 1, 1〉+ 1 · 〈2, 1, 0〉.
◦ Non-Example: In R3, the vector 〈0, 0, 1〉 is not a linear combination of 〈1, 1, 0〉 and 〈0, 1, 1〉 because there
exist no scalars a1 and a2 for which a1 · 〈1, 1, 0〉 + a2 · 〈0, 1, 1〉 = 〈0, 0, 1〉: this would require a common
solution to the three equations a1 = 0, a1 + a2 = 0, and a2 = 1, and this system has no solution.

• De�nition: If V is a vector space and S is a subset, the span of S is de�ned to be span(S) = {a1·v1+· · ·+an·vn :
ai ∈ F, vi ∈ S}, the set of all linear combinations of �nitely many vectors in S. (Note that span(∅) = {0}.)

◦ It is not hard to show that span(S) is the smallest subspace of V containing S.

◦ Example: The span of the set {1, x} inside F [x] is the set of linear polynomials (i.e., of the form a+ bx
for a, b ∈ F ).

• De�nition: If span(S) = V , we say that S is a spanning set for V : in other words, when every vector in V
can be written as a linear combination of the vectors in S.

◦ Example: The set {1, i} is a spanning set for C as a vector space over R.
◦ Example: The set {〈1, 0, 0〉 , 〈0, 1, 0〉 , 〈0, 0, 1〉} is a spanning set for F 3 for any �eld F .

◦ Example: The set {〈1, 1〉 , 〈2, 1〉 , 〈3, 1〉} is a spanning set for Q2.

◦ In the �rst two examples, it is not hard to see that every vector in V can be written uniquely as a linear
combination of the elements of the spanning set. In the third example, however, the linear combinations
are not unique (since for example 〈4, 2〉 = 2 · 〈2, 1〉 = 〈1, 1〉+ 〈3, 1〉).

• De�nition: If V is a vector space, a subset S of V is linearly independent if, for any distinct vectors vi ∈ S and
any scalars ai ∈ F , a1 · v1 + · · ·+ an · vn = 0 implies a1 = · · · = an = 0. Otherwise, S is linearly dependent.

◦ For a �nite set S = {v1, . . . ,vn}, S is linearly independent precisely when the only way to form the zero
vector as a linear combination of v1, . . . ,vn is when all the scalar coe�cients are zero (the �trivial� linear
combination). An in�nite set is linearly independent when all its �nite subsets are linearly independent.

◦ Example: The vectors 〈1, 1, 0〉 and 〈0, 2, 1〉 in R3 are linearly independent, because a·〈1, 1, 0〉+b·〈0, 2, 1〉 =
〈0, 0, 0〉 implies a = 0, a+ 2b = 0, and b = 0, so that a = b = 0.

◦ Example: The complex numbers 3 − 5i, 3 − 4i, and 1 − i are Q-linearly dependent because 1(3 − 5i) −
2(3− 4i) + 3(1− i) = 0.

◦ Example: The empty set is always linearly independent, in any vector space.

◦ The terminology of �linear dependence� arises from the fact that if a set of vectors is linearly dependent,
one of the vectors is necessarily a linear combination of the others (i.e., it �depends� on the others).

• If a set of vectors is linearly independent, every vector in their span can be uniquely written as a linear
combination:

• Proposition (Characterization of Linear Independence): A set S of vectors is linearly independent if and only
if every vector w in span(S) may be uniquely written as a sum w = a1 · v1 + · · ·+ an · vn for unique scalars
a1, a2, . . . , an and unique vectors v1,v2, . . . ,vn in S (where we view sums as equivalent if additional terms
with coe�cient 0 are added or removed).

◦ Proof: First suppose the decomposition is always unique: then for any v1,v2, . . . ,vn in S, a1 ·v1 + · · ·+
an · vn = 0 implies a1 = · · · = an = 0, because 0 · v1 + · · · + 0 · vn = 0 is by assumption the only
decomposition of 0.

◦ Now suppose that w = a1 · v1 + · · ·+ an · vn = b1 · v1 + · · ·+ bn · vn. Subtracting yields (a1 − b1) · v1 +
· · ·+ (an − bn) · vn = w−w = 0, and since v1, . . . ,vn are linearly independent, a1 − b1, · · · , an − bn are
all zero.

• De�nition: A linearly independent set of vectors that spans V is called a basis for V . (The plural of �basis�
is �bases�.)

5



◦ From our characterization of linear independence above, we can see that S is a basis for V if and only if
every vector in V can be written uniquely as a linear combination of vectors in S.

◦ Example: The �standard basis� for Fn consists of the unit coordinate vectors 〈1, 0, . . . , 0, 0〉, 〈0, 1, . . . , 0, 0〉,
... , 〈0, 0, . . . , 0, 1〉.
◦ Example: The set {1, i} is a basis for C over R, as is the set {1 + i, 2− 3i}.
◦ Example: If p has degree n, then the set {1, x, x2, . . . , xn−1} is a basis for F [x]/p.

◦ Non-Example: The vectors 〈1, 1, 0〉 and 〈1, 1, 1〉 are not a basis for Q3 since they do not span Q3.

◦ Non-Example: The vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉 are not a basis for Q3 since they are not
linearly independent.

• A basis for a vector space can always be obtained by removing vectors from a spanning set, or by adding
vectors to a linearly independent set:

• Theorem (Spanning Sets): If V is a vector space, then any spanning set for V contains a basis of V .

◦ If the spanning set is �nite, then the idea is to throw away linearly dependent vectors one at a time until
the resulting set is linearly independent. The collection of elements which we have not thrown away
will always be a spanning set (since removing a dependent element will not change the span). By an
easy induction argument, this process will eventually terminate, and the end result will be a linearly
independent spanning set.

◦ In the event that the spanning set is in�nite, the argument relies on a result known as Zorn's lemma
(equivalent to the axiom of choice).

◦ Zorn's lemma says that if S is a nonempty partially-ordered set such that every chain has an upper
bound in S, then S contains a maximal element1.

◦ Here is the Zorn's lemma argument: Let F be the collection of all linearly-independent subsets of V ,
partially ordered by inclusion, and note that F is not empty since it contains the empty set. If C is any
chain in F , then the union of all the elements of C is an upper bound for C and is linearly independent:
any linear dependence in the union would imply a linear dependence in one of the elements in the chain
(linear dependences involve only �nitely many vectors, so we may take the maximum of the subsets in
which all vectors appear). Thus, by Zorn's lemma, F contains a maximal element. Finally, we observe
that a maximal linearly-independent subset is in fact a basis (otherwise, we could adjoin an element not
in the span, contradicting maximality).

• Theorem (Building-Up Theorem): Given any linearly independent set of vectors in V , there exists a basis of
V containing those vectors. In short, any linearly independent set of vectors can be extended to a basis.

◦ The idea (roughly speaking) is to start with the given linearly independent set, and then append linearly
independent vectors to S one at a time until a basis for V is obtained.

◦ If V is ��nite-dimensional� (see below), then this procedure will always terminate in a �nite number of
steps. In the case where V is �in�nite-dimensional�, the argument again relies on Zorn's lemma.

• Theorem (Bases of Vector Spaces): Every vector space has a basis, and any two bases have the same number
of elements.

◦ The existence of bases follows from either of the theorems given above2. To show that any two bases have
the same number of elements is more di�cult, and can be done by �rst proving the following �replacement
theorem�:

◦ Theorem (Replacement Theorem): Suppose that S = {v1,v2, . . . ,vn} is a basis for V and {w1,w2, . . . ,wm}
is a linearly independent subset of V . Then there is a reordering of the basis S, say {a1,a2, . . . ,an} such
that for each 1 ≤ k ≤ m, the set {w1,w2, . . . ,wk,ak+1,ak+2, . . . ,an} is a basis for V . Equivalently,
the elements {w1,w2, . . . ,wm} can be used to successively replace the elements of the basis, with each
replacement remaining a basis of V .

1A chain is a totally-ordered subset of S, an upper bound for a subset is an element greater than or equal to all elements of the
subset, and a maximal element is an element such that no element is strictly greater than it.

2It has been proven that the statement �every vector space has a basis� is actually equivalent to the axiom of choice (under the
Zermelo-Frankel axioms of set theory), so in fact appealing to the axiom of choice, or equivalently Zorn's lemma, is necessary to establish
this theorem.
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◦ By applying the replacement theorem appropriately, one can deduce the following useful result:

◦ Corollary: Suppose V has a basis with n elements. If m > n, then any set of m vectors of V is linearly
dependent. In particular, any two bases must have the same number of elements.

• De�nition: If V is an F -vector space, the number of elements in any basis of V is called the dimension of V
and is denoted dimF (V ). If dimF (V ) is �nite, V is �nite-dimensional; otherwise, V is in�nite-dimensional3.

◦ Example: dimF (Fn) = n, since the standard unit vectors form a basis.

◦ Example: dimF (F [x]) =∞ since the set {1, x, x2, . . . } is a basis.

◦ Example: dimF (F [x]/p) = deg(p) since the set {1, x, x2, . . . , xdeg(p)−1} is a basis.

◦ Example: The dimension of the zero space is 0, because the empty set (containing 0 elements) is a basis.

◦ Example: dimR(C) = 2 since the set {1, i} is a basis.

◦ Example: dimC(C) = 2 since the set {1} is a basis.

◦ Example: dimQ(C) =∞ since any �nite-dimensional vector space over Q necessarily has only countably
many elements, and C is uncountable. Alternatively, C contains a transcendental number π, so the
set {1, π, π2, π3, . . . } is Q-linearly independent since otherwise π would be a root of a polynomial with
rational coe�cients.

◦ As the last three examples indicate, the dimension of a vector space depends intrinsically on its associated
�eld of scalars.

• We can also study the structure-preserving maps on vector spaces, which are the vector-space equivalent of
homomorphisms:

• De�nition: If V and W are vector spaces having the same scalar �eld F , we say a function T : V → W
is a linear transformation if it respects addition of vectors and scalar multiplication: in other words, if
T (v1 + v2) = T (v1) + T (v2) and T (αv) = αT (v) for any vectors v,v1,v2 ∈ V and any scalar α ∈ F . If T is
a linear transformation that is also a bijection, then T is a (vector space) isomorphism.

◦ Example: If A is anym×n matrix, the map T : Fm → Fn given by T (v) = Av is a linear transformation;
indeed, these are all the linear transformations from Fm to Fn.

◦ Example: If V is the vector space of di�erentiable functions and W is the vector space of real-valued
functions, the derivative map D sending a function to its derivative is a linear transformation from V to
W .

◦ Example: If V is the vector space of all continuous functions on [a, b], then the integral map I(f) =´ b
a
f(x) dx is a linear transformation from V to R.

◦ Example: The transpose map is a linear transformation fromMm×n(F ) toMn×m(F ) for any �eld F and
any positive integers m,n: in fact, it is an isomorphism.

◦ Example: For any a ∈ F , the evaluation at a map on F [x], de�ned by T (p) = p(a), is a linear transfor-
mation from F [x] to F .

◦ Example: If V and W are any vector spaces, the zero map sending all elements of V to the zero vector
in W is a linear transformation from V to W .

◦ Example: If V is any vector space, the identity map sending all elements of V to themselves is a linear
transformation from V to V . The identity map is an isomorphism of V with itself.

• Also like with rings, we have the natural notion of kernel and image for linear transformations:

• De�nition: If T : V → W is a linear transformation, then the kernel of T , denoted ker(T ), is the set of
elements v ∈ V with T (v) = 0, and the image of T , denoted im(T ), is the set of elements w ∈ W such that
there exists v ∈ V with T (v) = w.

◦ It is easy to verify from the de�nitions that the kernel and image are subspaces of V andW , respectively.

3In general, we will not need to concern ourselves with the cardinality of the basis for an in�nite-dimensional vector space, and
merely refer to all of these in�nite cardinalities as ∞.
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◦ Like with ring homomorphisms, it is not hard to show that ker(T ) = {0} if and only if T is one-to-one.
Thus, we see that T is an isomorphism if and only if ker(T ) = {0} and im(T ) = W .

• Like with ring homomorphisms, linear transformations have various basic properties:

• Proposition (Properties of Linear Transformations): If T : V →W is linear, then the following hold:

1. T (0V ) = 0W .

2. For any v1, . . . ,vn ∈ V and a1, . . . , an ∈ F , T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).

3. T : V →W is linear if and only if for any v1 and v2 in V and any scalar α, T (v1+αv2) = T (v1)+αT (v2).

◦ Proofs: Straightforward from the de�nition.

4. T is characterized by its values on a basis of V : for any basis B = {vi} of V and any vectors {wi} ∈W ,
there exists a unique linear transformation T : V →W such that T (vi) = wi for each i.

◦ Proof: The fact that the values of T are determined by its values on the basis follows from property
(2) above, since any any vector v in V can be written as v = a1v1 + a2v2 + · · ·+ anvn for (unique)
vectors v1, . . . ,vn in B and scalars a1, . . . , an.

◦ Conversely, suppose that we are given the values T (vi) = wi for each vi ∈ B. Then it is not hard to
see that the map T : V →W de�ned by setting T (a1vi1 +a2vi2 + · · ·+anvin) = a1wi1 + · · ·+anwin

is a well-de�ned linear transformation from V to W , and by the remark above, it must be unique.

5. If T is an isomorphism, then T preserves linear independence and span (i.e., if S is a linearly independent
set then so is T (S), and likewise for a spanning set).

◦ Proof: Straightforward from the de�nition.

6. Two vector spaces V and W are isomorphic if and only if they have the same dimension. In particular,
any �nite-dimensional vector space V with scalar �eld F is isomorphic to Fn, where n = dimF V .

◦ Proof: By (5), isomorphisms preserve linear independence, so two vector spaces can only be isomor-
phic if they have the same dimension.

◦ For the other direction, choose a basis {vi}i∈I for V and a basis {wi}i∈I for W . Then by (4), there
exists a unique linear transformation T : V → W with T (vi) = wi for each i ∈ I. It is then a
straightforward check that T is an isomorphism.

• There is a well-de�ned notion of a quotient vector space, but we will not bother to develop this notion.
However, we can still give the analogue of the �rst isomorphism theorem, which is extremely important:

• Theorem (Nullity-Rank): For any linear transformation T : V →W , dim(ker(T )) + dim(im(T )) = dim(V ).

◦ The dimension of the kernel is called the nullity, while the dimension of the image is called the rank
(whence the name �nullity-rank theorem�).

◦ Proof: Let β = {wi}i∈I be a basis for im(T ) in W . By de�nition, there exist {vi}i∈I in V such that
T (vi) = wi for each i ∈ I
◦ Also, let α = {aj}j∈J be a basis for ker(T ). We claim that the set of vectors S = {vi}i∈I ∪ {aj}j∈J is a
basis for V .

◦ To see that S spans V , let v be an element of V . Since T (v) ∈ im(T ), there exist scalars b1, . . . , bk and

v1, . . . ,vk such that T (v) =

k∑
j=1

bjwj .

◦ Then T

v − k∑
j=1

bjvj

 = T (v)−
k∑
j=1

bjT (vj) =

k∑
j=1

bjwj −
k∑
j=1

bjwj = 0.

◦ This means v−
k∑
j=1

bjvj is in ker(T ), so it can be written as a sum

l∑
i=1

ciai for some scalars ci and some

a1, . . . ,al ∈ α: then v =

k∑
j=1

bjvj +

l∑
i=1

ciai ∈ span(S), so S spans V .
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◦ To see that S is linearly independent, if we had a dependence 0 =

k∑
j=1

bjvj +

l∑
i=1

ciai, applying T to both

sides would yield 0 = T (0) =

k∑
j=1

bjT (vj) +

l∑
i=1

ciT (ai) =

k∑
j=1

bjwj .

◦ Since the wj are linearly independent, all the coe�cients bj must be zero. Then 0 =

l∑
i=1

ciai, but now

since the ai are linearly independent, all the coe�cients ci must also be zero.

2.2 Sub�elds and Field Extensions

• As with other algebraic structures like vector spaces and rings, a natural �rst step in studying the structure
of �elds is to study sub�elds.

• De�nition: If F is a �eld, we say a subset S of F is a sub�eld if S is itself a �eld under the same operations
as F . If F is a sub�eld of the �eld K, we say that K is an extension �eld of F .

◦ Notation: We often write K/F (�K over F �) to symbolize that K is an extension �eld of F . (It is not
the quotient of K by F !)

◦ Example: Q is a sub�eld of R, which is a sub�eld of C.

◦ Example: For any squarefree integer D 6= 1, Q(
√
D) is a sub�eld of C.

◦ Example: F2 is a sub�eld of F2[x]/(x2 + x+ 1) since the latter is also a �eld.

• We can also exploit the structure of vector spaces to study the structure of �elds. A fundamental observation
is that if K is an extension �eld of F , then K is an F -vector space (under the addition and multiplication of
K).

• De�nition: If K is an extension �eld of F , the degree [K : F ] (also called the relative degree or occasionally
the index) is the dimension dimF (K) of K as an F -vector space. The extension K/F is �nite if it has �nite
degree; otherwise, the extension is in�nite.

◦ Example: We have [C : R] = 2, [Q(
√
D) : Q] = 2, and [R : Q] = ∞. The �rst two are �nite extensions,

while the third is in�nite.

2.2.1 Examples of Sub�elds

• Like with subrings, it is not necessary to verify most of the �eld axioms to show that a subset is actually a
sub�eld:

• Proposition (Sub�eld Criterion): A subset S of a �eld F is a sub�eld if and only if S contains 0 and 1, and is
closed under subtraction and division. In other words, for any a, b, c ∈ S with c 6= 0, we have a − b ∈ S and
a · c−1 ∈ S.

◦ Equivalently, S is a sub�eld if and only if it is a subring that contains 1 and is closed under multiplicative
inverses.

◦ Proof: First suppose S is a sub�eld: then it contains an additive identity 0S . We have 0S + 0S = 0S =
0S + 0F by [F3] in S and in F , and so by additive cancellation in F we see 0S = 0F . In a similar way
we see that 1S = 1F , and that the additive and multiplicative inverses in S agree with those in F ; the
statements a− b ∈ S and a · c−1 ∈ S are then immediate.

◦ Conversely, suppose S is nonempty and closed under subtraction and division. The axioms [F1], [F2],
[F5], [F6], and [F9], follow immediately from the corresponding properties of F .

◦ Setting b = a shows a − a = 0 ∈ S yielding [F3], and then setting a = 0 yields 0 − b = −b ∈ S yielding
[F4].

◦ Setting c = a shows a · a−1 = 1 ∈ S yielding [F7], and then setting a = 1 yields c−1 ∈ S yielding [F8].
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◦ Remark: Note that closure under subtraction and division is equivalent to closure under addition, mul-
tiplication, additive inverses, and multiplicative inverses. (It is sometimes easier to check these four
properties independently, rather than combining them.)

• Here are a few more examples and non-examples of sub�elds:

• Non-Example: The set S = {a+ b 3
√

2 : a, b ∈ Q} is not a sub�eld of R, where 3
√

2 denotes the real cube root
of 2.

◦ This set is not closed under multiplication (so it is not even a subring): the element 3
√

2 · 3
√

2 = 3
√

4 is
not in the set, because we cannot write 3

√
4 = a+ b 3

√
2 for any rational numbers a and b. This fact may

seem obvious, but it is not so easy to prove directly!

◦ Here is one argument: if 3
√

4 = a+ b 3
√

2 then multiplying by 3
√

2 yields 2 = a 3
√

2 + b 3
√

4 and plugging in
for 3
√

4 then yields 2 = a 3
√

2 + b(a+ b 3
√

2) = ab+ (a+ b2) 3
√

2. Since 3
√

2 is irrational and a, b are rational,
the coe�cient of 3

√
2 must be 0 so that a = −b2. But this does not work since it yields −a3 = 2, which

is impossible if a is rational.

• Example: The set S = {a + b 3
√

2 + c 3
√

4 : a, b, c ∈ Q} is a sub�eld of R, denoted Q[ 3
√

2]. (We use square
brackets, like with the polynomial ring F [x], because Q[ 3

√
2] is the collection of polynomials in 3

√
2.)

◦ It is a straightforward calculation to see that S is closed under addition, additive inverses, and multi-
plication (so it is a subring). It is less clear why every nonzero element in S possesses a multiplicative
inverse.

◦ In fact, one may verify that
1

a+ b 3
√

2 + c 3
√

4
=

(a2 − 2bc) + (2c2 − ab) 3
√

2 + (b2 − ac) 3
√

4

a3 + 2b3 + 4c3 − 6abc
, and that the

denominator is never zero for a, b, c ∈ Q except when a = b = c = 0.

◦ Explicitly: since every term in the denominator has degree 3, by multiplying through by a common
denominator we may assume that a, b, c are relatively prime integers. Then a must be even since the
other terms all have even coe�cients; cancelling the common factor of 2 then shows b must be even, and
then cancelling again shows c must be even: contradiction.

◦ Using a similar calculation, we can show that the set {1, 3
√

2, 3
√

4} is Q-linearly independent and is
therefore a basis for Q[ 3

√
2]. Thus, we see that [Q[ 3

√
2] : Q] = 3.

• Non-Example: The set S = {a+ b
√

2 + c
√

3 : a, b, c ∈ Q} does not form a �eld.

◦ This set is not closed under multiplication, since
√

6 =
√

2 ·
√

3 is not in S. Like in the example above,
this is not so easy to prove directly.

◦ Here is one argument: if
√

6 = a+b
√

2+c
√

3 then rearranging yields
√

6−c
√

3 = a+b
√

2. Squaring both
sides yields (6 + 3c2) − 6c

√
2 = (a2 + 2b2) + 2ab

√
2. Since

√
2 is irrational this requires 2ab = −6c and

6 + 3c2 = a2 + 2b2. Solving the �rst equation for c yields c = −ab/3, and then plugging into the second
equation yields 18 + a2b2 = 3a2 + 6b2. But this can be rearranged and factored as (a2 − 6)(b2 − 3) = 0,
which has no rational solutions for a, b.

• Example: The set S = {a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q} forms a �eld, denoted Q[
√

2,
√

3].

◦ As with Q[ 3
√

2], it is easy to see that S is a subring: the hard part is the existence of multiplicative
inverses.

◦ One can �rationalize denominators� repeatedly to compute multiplicative inverses in S: explicitly, the
multiplicative inverse of a+ b

√
2 + c

√
3 + d

√
6 can be computed to be

(a3−2ab2−3ac2+12bcd−6ad2)+(−2a2b+2b3−3bc2+6acd−6bd2)
√
2+(−a2c−2b2c+3c3+4abd−6cd2)

√
3+(2abc−a2d+2b2d−3c2d+6d3)

√
6

a4−4a2b2−6a2c2−12a2d2+48abcd+4b4−12b2c2−24b2d2+9c4−36c2d2+36d4

and one can similarly show that the denominator is never zero unless a = b = c = d = 0.

◦ Using a similar calculation, we can show that the set {1,
√

2,
√

3,
√

6} is Q-linearly independent and is
therefore a basis for Q[

√
2,
√

3]. Thus, we see that [Q[
√

2,
√

3] : Q] = 4.
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• The computations in the examples above have the virtue of being explicit, but seem far more complicated
than necessary to justify the (seemingly) simple statements that the sets Q[ 3

√
2] and Q[

√
2,
√

3] are �elds, and
they also seem unlikely to generalize well to further examples.

◦ Ad hoc calculations like these are hard to extend to a general theory, so we will need to develop other
techniques for studying sub�elds and �eld extensions.

2.2.2 Properties of Sub�elds

• As an immediate corollary of the sub�eld criterion, we see that the intersection of sub�elds is also a sub�eld:

• Proposition (Intersection of Sub�elds): If F is a �eld, then the intersection of any nonempty collection of
sub�elds of F is also a sub�eld of F .

◦ Proof: Let S =
⋂
i∈I Fi where the Fi are sub�elds of F . Then by the sub�eld criterion, 0, 1 ∈ Fi for all

i ∈ I, so S contains 0 and 1.

◦ Furthermore, for any a, b, c ∈ S with c 6= 0, we have a, b, c ∈ Fi for all i. Thus, a− b ∈ Fi and a · c−1 ∈ Fi
for all i by the sub�eld criterion, and therefore a− b ∈ S and a · c−1 ∈ S, so S is a sub�eld.

• Like with vector spaces and span, if we have a subset S of a �eld, we would like to understand the structure
of the sub�eld of F �generated by� the elements of S.

◦ If F is a �eld and S is a subset of F , a natural choice is to de�ne �the sub�eld generated by S� to be the
smallest sub�eld of F containing S.

◦ A priori, it is not obvious that there is such a smallest sub�eld. However, since the intersection of
any nonempty collection of sub�elds is also a sub�eld, per the above proposition, and since S is always
contained in at least one sub�eld (namely F itself), we can equivalently de�ne the sub�eld E ⊆ F
generated by S to be the intersection of all sub�elds containing S.

◦ Although this de�nition is clearly well-posed, we have not really described what the elements in this
sub�eld E actually are.

◦ If x1, x2, . . . , xn ∈ S, then since E is closed under addition and multiplication and contains 1, we see
that any polynomial with integer coe�cients in x1, x2, . . . , xn must be in S as well. And since E is
closed under division, it must in fact contain any �rational function� (i.e., quotient of one polynomial by
another) of x1, x2, . . . , xn.

◦ On the other hand, one can verify that the collection of all such rational functions in elements of S
actually does form a �eld (since the sum, product, additive inverse, and multiplicative inverse of rational
functions are also rational functions), so this collection is the desired �eld E.

• De�nition: If F is a �eld and S is a subset of F , we de�ne the sub�eld of F generated by S to be the
intersection of all sub�elds of F containing S.

◦ We will frequently be interested in extensions of sub�elds: if S is a subset of F and E is a sub�eld of F ,
then we de�ne E(S) to be the smallest sub�eld containing E and S.

• A particular special case is the sub�eld generated by 1:

• De�nition: If F is a �eld, the prime sub�eld of F is the sub�eld generated by 1. (It is sometimes written F ′.)

◦ Any sub�eld of F contains 1, so the sub�eld generated by 1 will be the �smallest� sub�eld of F , and will
be contained in every other sub�eld of F .

◦ The structure of the prime sub�eld will depend on the characteristic of F :

• Proposition (Prime Sub�eld): If F has characteristic p > 0, then the prime sub�eld of F is (isomorphic to)
Fp = Z/pZ, and if F has characteristic 0, then the prime sub�eld of F is (isomorphic to) Q.

◦ Proof: Let E be the prime sub�eld of F . If F has characteristic p > 0, consider the map ϕ : (Z/pZ)→ E
de�ned by ϕ(a) = a1F . This map is well-de�ned by the assumption on the characteristic (since p1F = 0
in a �eld of characteristic p).
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◦ Furthermore, it is easy to see that ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), and that ϕ has an inverse
map de�ned by ϕ−1(a1F ) = a. Thus, ϕ is a ring isomorphism and E is isomorphic to Z/pZ.
◦ If F has characteristic 0, then instead consider the map ϕ : Q→ E de�ned by ϕ(a/b) = (a1F ) · (b1F )−1.
This map is well-de�ned by the assumption that b1F 6= 0F whenever b 6= 0.

◦ As above it is straightforward to see that ϕ(a+ b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), and that ϕ has an
inverse map de�ned by ϕ−1[(a1F ) · (b1F )−1] = a/b. Thus, ϕ is a ring isomorphism and E is isomorphic
to Q.

• As we noted above, every sub�eld of F contains the prime sub�eld of F , which is to say, every sub�eld of F
is an extension �eld of the prime sub�eld. We can therefore always denote the sub�eld of F generated by S
as E(S), where E is the prime sub�eld of F .

◦ The round parentheses are intended to indicate that we are closing under �eld operations, in contrast to
square brackets where we only close under ring operations.

◦ Thus, for example, the sub�eld of R generated by 3
√

2 (the �rational functions in 3
√

2 with rational
coe�cients�) is denoted Q( 3

√
2), in contrast to the set Q[ 3

√
2] of polynomials in 3

√
2.

◦ As it happens, these two sets turn out to be the same, because Q[ 3
√

2] is actually a �eld, but as we
discussed, this is not a trivial statement to establish. Furthermore, as we will see, there exist real numbers
α with the property that Q(α) 6= Q[α] (an example being the case where α is the transcendental number
π).

2.2.3 Simple Extensions, Minimal Polynomials

• Let us return to the example of the �eld F = Q[ 3
√

2] = {a+b 3
√

2+c 3
√

4 : a, b, c ∈ Q} with a di�erent approach
to show it is (in fact) a �eld:

◦ For shorthand, write x = 3
√

2: then every element of F has the form a+ bx+ cx2.

◦ Addition is performed in the obvious way: (a+ bx+ cx2)+(d+ex+fx2) = (a+d)+(b+e)x+(c+f)x2.

◦ For multiplication, we can use the distributive law to compute (a + bx + cx2) · (d + ex + fx2) = ad +
(ae+ bd)x+ (af + be+ cd)x2 + (bf + ce)x3 + cfx4.

◦ Since x3 = ( 3
√

2)3 = 2, we see (a + bx + cx2) · (d + ex + fx2) = (ad + 2bf + 2ce) + (ae + bd + 2cf)x +
(af + be+ cd)x2.

◦ Now notice this is precisely the same description as the arithmetic in the polynomial quotient ring
Q[x]/(x3− 2): thus, since the map sending a+ bx+ cx2 to a+ b 3

√
2 + c 3

√
4 is clearly a bijection, the rings

Q[ 3
√

2] and Q[x]/(x3 − 2) are isomorphic.

◦ Furthermore, because the polynomial x3− 2 is irreducible in Q[x] (either because it has degree 3 and no
rational roots, or by Eisenstein's criterion with p = 2), we know that Q[x]/(x3 − 2) is a �eld.

◦ Therefore, Q[ 3
√

2] is a �eld as well, since it is ring-isomorphic to a �eld.

• We can generalize the analysis in this example to the class of �eld extensions generated by a single element:

• De�nition: If K/F is a �eld extension, we say that K is a simple extension if K = F (α) for some α ∈ K: in
other words, if K is generated over F by the single element α.

◦ Example: C is a simple extension of R, generated by the element i. (In fact, C is generated over R by
any non-real complex number.)

◦ Example: The rational function �eld F (x) is a simple extension of F , generated by the element x.

• It is not always obvious whether a given extension has a single generator (although we will later be able to
characterize simple extensions). In many cases, if we have a list of generators for the extension, there is often
some combination of generators that generates the �eld by itself:

• Example: Show that the �eld Q[
√

2,
√

3] is a simple extension of Q generated by the element α =
√

2 +
√

3.
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◦ We can see that α2 = 5 + 2
√

6 and α3 = 11
√

2 + 9
√

3, so
√

6 =
1

2
(α2 − 5),

√
2 =

1

2
(α3 − 9α), and

√
3 =

1

2
(11α− α3).

◦ Therefore, every element in the �eld is a rational function (in fact, a polynomial) with rational coe�cients
in α, meaning that α is a generator for the �eld.

• The structure of the simple extension K = F (α) will depend on the nature of the element α: speci�cally, on
whether α is the root of some polynomial with coe�cients in F .

• De�nition: If K/F is a �eld extension, we say that the element α ∈ K is algebraic over F if α is the root of
some nonzero polynomial p ∈ F [x]. Otherwise, if α is not a root of any nonzero polynomial in F [x], we say α
is transcendental over F .

◦ Example: The elements
√

2, 3
√

2, i, and 2 − 3i of C are algebraic over Q, since they are roots of the
polynomials x2 − 2, x6 − 4, x4 − 1, and (x− 2)2 + 9 respectively.

◦ Example: The elements e and π of R are transcendental over Q (neither of these statements is easy to
prove, and we will not prove them!).

◦ Example: The element t in the �eld of rational functions F (t) is transcendental over F , since it does not
satisfy any polynomial with coe�cients in F . (This fact is implicit in the de�nition of the polynomial
ring F [t].)

◦ Example: If p is any irreducible polynomial over F , then the element x in the polynomial quotient ring
K = F [x]/p is algebraic over F , because p(x) = 0 in K.

• An algebraic element is by de�nition a root of some nonzero polynomial, and may be a root of many di�erent
polynomials (for example,

√
2 is a root of each of x2 − 2, x3 + x2 − 2x− 2, and x4 − 4). However, all of these

polynomials are multiples of an essentially unique monic polynomial:

• Proposition (Minimal Polynomials): If K/F is a �eld extension and α ∈ K is algebraic over F and nonzero,
then there exists a unique monic irreducible polynomial m ∈ F [x] such that m(α) = 0. This polynomial is
called the minimal polynomial of α over F , and is the monic polynomial of smallest positive degree having α
as a root; furthermore, any other polynomial having α as a root is divisible by m.

◦ Proof: If α is algebraic, consider the set of all nonzero polynomials in F [x] having α as a root. By
hypothesis, S is nonempty, so by the well-ordering axiom, S contains a polynomial of minimal positive
degree.

◦ It is easy to see that if m(α) = 0, then any F -multiple of m also has α as a root, so we may divide m by
its leading coe�cient to see that m is monic.

◦ We claim that m is irreducible: if m had a factorization m = pq with 0 < deg p, deg q < degm, then by
evaluating both sides at α we would see 0 = m(α) = p(α)q(α).

◦ Since K is a �eld, this implies p(α) = 0 or q(α) = 0 so that one of p, q has α as a root and is therefore
in S. But this is a contradiction, since m was assumed to be an element of minimal degree in S: thus,
m is irreducible.

◦ Furthermore, if b(α) = 0 then applying the division algorithm to b and m shows that b = qm+r for some
q, r with deg r < degm. Evaluating both sides at α and rearranging then yields r(α) = b(α)−q(α)m(α) =
0, so since deg r < degm we must have r = 0.

◦ For the uniqueness of m, if there were another such polynomial m′, then by the above we would have
m′|m and m|m′ so that m and m′ are associates. But since both m and m′ are monic, they are equal.

• Example: The minimal polynomial of
√

2 over Q is x2−2, and the minimal polynomial of 3
√

2 over Q is x3−2.

◦ Both of these observations follow because these polynomials do have the required root and are irreducible.

• The nature of the simple extension F (α) will depend on whether α is algebraic or transcendental over F .
Explicitly:
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• Theorem (Simple Extensions): Suppose K/F is a simple extension with K = F (α). If α is algebraic over F
with minimal polynomial m(x) then K is isomorphic to the �eld F [x]/m(x), while if α is transcendental over
F then K is isomorphic to the �eld F (t) of rational functions in t.

◦ The idea of the proof is simply to show that the map associating x (or t, as appropriate) with α is a
well-de�ned ring isomorphism.

◦ Proof: First suppose α is algebraic over F with minimal polynomial m(x). Consider the map ϕ :

F [x]/m(x)→ K given by mapping p(x) to p(α). This map is well de�ned because if p = q in F [x]/m(x),
then m divides q − p, so since α is a root of m, we see that p(α) = q(α).

◦ Furthermore, it is easy to see that

ϕ(p+ q) = ϕ(p+ q) = (p+ q)(α) = p(α) + q(α) = ϕ(p) + ϕ(q)

ϕ(p · q) = ϕ(pq) = (pq)(α) = p(α)q(α) = ϕ(p)ϕ(q)

so ϕ respects addition and multiplication.

◦ Furthermore, ϕ is injective, because ϕ(p) = ϕ(q) implies ϕ(p− q) = 0 implies (p− q)(α) = 0, and by our
discussion above this implies m divides p− q so that p = q in F [x]/m(x).

◦ All of this shows that the image of the map ϕ (i.e., the set of elements of K of the form ϕ(p) for some
p) is ring-isomorphic to F [x]/m(x), since ϕ yields a bijection between F [x]/m(x) and this subring of K.

◦ But F [x]/m(x) is a �eld since m is irreducible, so the image of ϕ is a sub�eld of K containing α and F .
But by de�nition of F (α), this means it must actually be F (α) = K, as claimed.

◦ If α is transcendental over F , the argument is similar, except we instead use the map ϕ : F (t) → K

sending
p(t)

q(t)
to

p(α)

q(α)
. This map is well de�ned because q(α) 6= 0 whenever q is not the zero polynomial

by the assumption that α is transcendental.

◦ It is easy to see that ϕ respects addition and multiplication, and is injective (the latter because α is
transcendental).

◦ Surjectivity follows by a similar argument as above: F (t) is isomorphic as a ring to the image of ϕ, and
since F (t) is a �eld, we conclude that the image of ϕ is a sub�eld of K containing α and F , hence is
equal to K = F (α).

• Using the description of simple extensions we can easily compute the extension degree, and characterize when
F (α) = F [α]:

• Corollary (Simple Extension Degrees): Suppose K/F is a simple extension with K = F (α). If α is algebraic
over F with minimal polynomialm(x) then [F (α) : F ] = degm, and F (α) is spanned (as an F -vector space) by
{1, α, α2, . . . , αdegm−1}, while if α is transcendental over F then [F (α) : F ] =∞. Furthermore, F (α) = F [α]
if and only if α is algebraic over F .

◦ Proof: If α is algebraic over F with minimal polynomial m(x), then K is isomorphic to F [x]/m(x).
Suppose degm = n.

◦ From our discussion of residue classes in F [x]/m(x), we know (via an application of the division algorithm)
that every residue class can be written uniquely in the form b0 +b1x+ · · ·+bn−1x

n−1 for unique elements
bi ∈ F .
◦ Equivalently, this says that the set {1, x, x2, . . . , xn−1} is an F -basis for F [x]/m(x). Applying the iso-
morphism between K and F [x]/m(x) shows that the set {1, α, α2, . . . , αn−1} is an F -basis for F (α), so
[F (α) : F ] = n. Furthermore, we see immediately that F (α) = F [α] in this case.

◦ If α is transcendental over F , then the set {1, α, α2, . . . } is linearly independent over F , as any nontrivial
linear dependence c0 + c1α+ · · ·+ cnα

n = 0 would imply that α is the root of some nonzero polynomial
in F [x], but this cannot occur because α is transcendental.

◦ Since K contains an in�nite F -linearly independent set we see [K : F ] =∞. Furthermore, F (α) contains
elements that are not polynomials in α (namely, any rational function that is not a polynomial). For
example, we cannot have α−1 = p(α) since this would imply 1− αp(α) = 0 so that α would be a root of
a nonzero polynomial. Therefore, α−1 ∈ F (α) is not in F [α], so F (α) 6= F [α] in this case.
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• Example: Show that the �eld Q( 8
√

2) has degree 8 over Q and �nd a basis.

◦ Observe that 8
√

2 is a root of the polynomial x8 − 2 over Q, and this polynomial is irreducible by
Eisenstein's criterion with p = 2.

◦ Therefore, x8 − 2 is the minimal polynomial of 8
√

2, so by our results on simple extensions we see that
[Q( 8
√

2) : Q] = 8 and that the set {1, 21/8, 22/8, . . . , 27/8} is a basis.

• We can also see that if α and β have the same minimal polynomial over F , then the corresponding �eld
extensions F (α) and F (β) are isomorphic:

• Corollary: If α and β are two elements in K/F with equal minimal polynomials, then the �elds F (α) and
F (β) are isomorphic. Explicitly, there is an isomorphism ϕ : F (α) → F (β) that �xes F (i.e., sends every
element in F to itself) and sends α to β.

◦ Proof: Both �elds are isomorphic to F [x]/m(x) where m is the common minimal polynomial, and so
F (α) is isomorphic to F (β) since the composition of isomorphisms is an isomorphism. Writing this map
down explicitly shows that it sends α to β and �xes every element of F .

• Example: If α =
√

2 and β = −
√

2, then α and β both have the minimal polynomial x2 − 2 over Q, so F (α)
is isomorphic to F (β).

◦ Explicitly, the isomorphism maps a+ b
√

2 ∈ Q(
√

2) to the element a+ b(−
√

2) ∈ Q(−
√

2).

◦ In fact, these �elds are equal (as sub�elds of R or of C) because
√

2 ∈ Q(−
√

2) and −
√

2 ∈ Q(
√

2). Thus,
we may alternatively view this isomorphism as a map from Q(

√
2) to itself, acting via σ(a + b

√
2) =

a− b
√

2.

• In the example above, we saw that F (α) was actually equal to F (β) as a set. This is not necessarily the case
in general:

• Example: If α = 3
√

2 is the real cube root of 2, and β = e2πi/3 3
√

2 is a nonreal cube root of 2, then α and β
both have the minimal polynomial x3 − 2 over Q, and so F (α) is isomorphic to F (β).

◦ As an explicit complex number, notice that e2πi/3 = (−1 + i
√

3)/2 , and the cube of this number is
indeed 1 (one may either note that e2πi = 1, or simply cube it explicitly). Thus, β3 = 2 as claimed.

◦ However, as sub�elds of C, F (α) is not equal to F (β), because F (α) is a sub�eld of R while F (β) is not.
Nonetheless, these two �elds have precisely the same algebraic structure.

• The point is that the di�erent roots of the minimal polynomial are �algebraically indistinguishable�, in the
sense that the resulting extension �elds have the same algebraic structure.

◦ This does not mean that the �elds are �the same�, since we may sometimes be able to distinguish these
�elds in some other (�non-algebraic�) way.

◦ In the example above with Q( 3
√

2) and Q(e2πi/3 3
√

2), we used information about the �eld R (which
involves using additional continuous operations, rather than intrinsic algebraic properties of the �eld Q)
to distinguish these two �elds.

2.2.4 Algebraic Extensions

• Now that we have described simple extensions, we can expand our focus to other �eld extensions. A natural
class of extensions are those in which every element is algebraic:

• De�nition: The �eld extension K/F is algebraic if every α ∈ K is algebraic over F : in other words, if every
α is a root of a nonzero polynomial in F [x].

• From our description of simple extensions it is easy to characterize when a simple extension is algebraic:

• Proposition (Simple Algebraic Extensions): A simple extension F (α)/F is algebraic if and only if it has �nite
degree. Furthermore, if [F (α) : F ] = n, then every element in F (α) satis�es a nonzero polynomial of degree
at most n in F [x].
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◦ Proof: If F (α) is algebraic then α ∈ F (α) is algebraic over F . If the minimal polynomial for α has degree
n, then as we showed earlier, [F (α) : F ] = n, so the extension has �nite degree.

◦ Conversely, suppose F (α)/F has degree n and let β ∈ F (α). Observe the set {1, β, β2, . . . , βn} has n+ 1
elements, so since F (α) only has dimension n over F , it must be linearly dependent.

◦ In other words, there exist ci ∈ F , not all zero, with c0 + c1β + · · ·+ cnβ
n = 0: thus, β is the root of a

nonzero polynomial in F [x], so β is algebraic over F . The second statement is also immediate.

• Corollary: Finite-degree extensions are algebraic.

◦ We will remark that there exist algebraic extensions of in�nite degree, so the converse of this result is
not true.

◦ Proof: By the previous proposition, any element of a degree-n extension satis�es a polynomial of degree
at most n, and is therefore algebraic.

• Next we analyze extensions with a �nite number of generators: K = F (α1, α2, . . . , αn) for some αi ∈ K.

◦ If any of the αi are transcendental over F , then clearly K is non-algebraic since it contains a transcen-
dental element.

◦ On the other hand, if all of the αi are algebraic over F , it seems reasonable to hypothesize that K itself
will also be algebraic over F , since every element of K is a combination of algebraic elements.

◦ The key idea is to observe that we can obtain K as a �chain� of simple extensions by adjoining the αi
one at a time.

◦ To illustrate, suppose K = F (α, β, γ). Then K contains F (α) along with β, and so it contains the
extension �eld F (α)(β).

◦ But F (α, β) is by de�nition the smallest sub�eld of K containing α and β, so F (α, β) is contained in
F (α)(β).

◦ On the other hand, since F (α, β) contains F (α) and β, since F (α)(β) is the smallest sub�eld of K
containing F (α) and β, we see that F (α)(β) is contained in F (α, β).

◦ Thus, F (α, β) = F (α)(β), so F (α, β)/F (α) is a simple extension.

◦ In the same way, we can see that K = F (α, β, γ)/F (α, β) is also a simple extension, so we can obtain K
from F using a chain of 3 simple extensions F (α, β, γ)/F (α, β)/F (α)/F .

◦ In order to show that the resulting �eld K will be algebraic if each αi is algebraic, we need to know how
extension degrees behave in �towers� of �eld extensions:

• Theorem (Degrees in Towers): If L/K and K/F are both �eld extensions, then so is L/F , and [L : F ] = [L :
K] · [K : F ] (where if one side is in�nite, then so is the other). In particular, [K : F ] divides [L : F ].

◦ Although we will not need it, in fact a more general statement is true: if V is a K-vector space and K/F
is a �eld extension, then (under the same operations) V is also an F -vector space, and dimF V = [K :
F ] · dimK V . The theorem is the special case where V is the K-vector space L.

◦ Proof: First suppose that [K : F ] = n with basis {a1, a2, . . . , an} and [L : K] = m with basis
{v1, v2, . . . , vm} are both �nite. We claim that the set β of the mn pairwise products aivj for 1 ≤ i ≤ n
and 1 ≤ j ≤ m is a basis for L/F .

◦ First observe that no two of these pairwise products are equal; to see this suppose aivj = akvl so that
aivj − akvl = 0. If j 6= l then vj , vl would be K-linearly dependent (contrary to our assumption), and if
j = l then cancelling vj (which is nonzero since it is a basis element) would yield ai = ak.

◦ To see that β is a spanning set, for any w ∈ L by the hypothesis that {v1, v2, . . . , vm} spans L/K, we
may write w = b1v1 + · · · + bmvm for some bi ∈ K. Furthermore, since the bi ∈ K, by the hypothesis
that {a1, a2, . . . , an} spans K/F , we may write bi = ci,1a1 + · · ·+ ci,nan for some ci,j ∈ F .
◦ Now substituting in the expressions for the bi in terms of the ci,j and the ai to the expression for w yields

w = b1v1 + · · ·+ bmvm

= (c1,1a1 + · · ·+ c1,nan)v1 + · · ·+ (cm,1a1 + · · ·+ cm,nan)vm

= c1,1a1v1 + · · ·+ cm,nanvm

and therefore w is an F -linear combination of the elements of β, meaning that β is a spanning set.
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◦ To see that β is linearly independent, suppose we had a linear combination c1,1a1v1 + · · ·+cm,nanvm = 0
for some ci,j ∈ F .
◦ By the above calculation (in reverse) if we set bi = ci,1a1 + · · · + ci,nan then bi ∈ K for each i and
b1v1 + · · ·+ bmvm = 0. Since the vi are linearly independent over K, this means bi = 0 for each i.

◦ Then since bi = ci,1a1 + · · ·+ ci,nan and the ai are linearly independent over F , we conclude that ci,j = 0
for each i, j, and so β is also linearly independent, hence a basis.

◦ For the in�nite-degree cases, if [K : F ] = ∞ then any basis of K/F is an in�nite linearly-independent
subset of L/F , meaning that [L : F ] =∞ as well.

◦ Likewise, if [L : K] = ∞, then any basis of L/K is an in�nite K-linearly independent subset, which is
also clearly F -linearly independent (since any linear dependence over F would also hold over K), and so
[L : F ] =∞ again.

◦ Finally, if [L : F ] =∞, then at least one of [L : K] and [K : F ] must be in�nite, since if both are �nite
then our proof above shows that [L : F ] is also �nite.

• Corollary (Finite Algebraic Extensions): If K/F is a �eld extension with K = F (α1, α2, . . . , αn), then K/F
is algebraic if and only if each of the αi are algebraic over F . In this case, [K : F ] ≤

∏n
i=1[F (αi) : F ], and

every element of K is a polynomial (with coe�cients from F ) in the αi.

◦ Proof: If any of the αi are transcendental over F then K is not algebraic over F , so now suppose each
of the αi are algebraic.

◦ As noted earlier, we may obtainK as a chain of simple extensionsK/F (α1, . . . , αn−1)/ · · · /F (α1, α2)/F (α1)/F .

◦ By hypothesis, for each 1 ≤ i ≤ n, αi is algebraic over F , so αi is also algebraic over F (α1, . . . , αi−1),
since the minimal polynomial for αi over F may also be thought of as a polynomial over F (α1, . . . , αi−1).

◦ Therefore, since a simple extension is algebraic if and only if it has �nite degree, we see that [F (α1, . . . , αi) :
F (α1, . . . , αi−1)] is �nite for each i.

◦ Then by the multiplicativity of extension degrees (and a trivial induction), we conclude that [K : F ] =∏n
i=1[F (α1, . . . , αi) : F (α1, . . . , αi−1)] is �nite. Since �nite-degree extensions are algebraic, this means

K/F is algebraic as claimed.

◦ For the second statement, consider the minimal polynomialm(x) of αi over F and the minimal polynomial
m′(x) of αi over F (α1, . . . , αi−1). Since m(x) is also a polynomial in F (α1, . . . , αi−1) having αi as a root,
by properties of minimal polynomials we see that m′(x) divides m(x), so degm′ ≤ degm. Converting
to a statement about extension degrees yields [F (α1, . . . , αi) : F (α1, . . . , αi−1)] ≤ [F (αi) : F ], and then
taking the product from i = 1 to n yields [K : F ] ≤

∏n
i=1[F (αi) : F ].

◦ For the last statement, since E[β] = E(β) when β is algebraic over E, by an easy induction we see that
every element of K is a polynomial in the αi.

◦ Remark: More explicitly, every element of K is an F -linear combination of elements of the form
αc11 α

c2
2 · · ·αcnn , where each ci is an integer with 0 ≤ ci ≤ [F (αi) : F ]. This also follows by a straightfor-

ward induction, using the fact that every element of E(β) is of the form b0 + b1β+ · · ·+ bd−1β
d−1 where

[E(β) : E] = d, as both the base case and inductive step.

• We can also show that every �nite-degree extension is generated by a �nite set of algebraic elements, and that
an algebraic extension of an algebraic extension is also algebraic:

• Corollary (Characterization of Finite Extensions): If K/F is a �eld extension, then K/F has �nite degree if
and only if K = F (α1, . . . , αn) for some elements α1, . . . , αn ∈ K that are algebraic over F .

◦ Proof: We already showed that F (α1, . . . , αn)/F is �nite if α1, . . . , αn are algebraic over F . For the
forward direction, suppose K/F has �nite degree: then by de�nition, K has a �nite basis {α1, . . . , αn}
as an F -vector space, and so K = F (α1, . . . , αn).

◦ Furthermore, since F (αi) is a sub�eld of the �nite-degree extension K/F , we see that [F (αi) : F ] is also
�nite (by the multiplicativity of extension degrees) and thus αi is algebraic over F for each i, as required.

• Corollary (Towers of Algebraic Extensions): If L/K is an algebraic extension, and K/F is an algebraic
extension, then L/F is an algebraic extension.
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◦ Proof: Let α ∈ L: then since α is algebraic over K it is the root of some polynomial p(x) = a0 + a1x+
· · ·+ anx

n with the ai ∈ K.

◦ SinceK/F is also algebraic, each of the ai are algebraic over F , and so the extension E = F (a0, a1, . . . , an)
has �nite degree over F . Furthermore, E(α)/E also has �nite degree, because α is the root of a nonzero
polynomial in E[x].

◦ Thus, since E(α)/E and E/F both have �nite degree, so does E(α)/F : this means α satis�es a polynomial
of �nite degree over F , so α is algebraic over F . This holds for all α ∈ L, so L is algebraic over F .

• We can also extend these results on degree to general �composite �elds�:

• De�nition: If K1 and K2 are sub�elds of K, the composite �eld K1K2 is the intersection of all sub�elds of K
containing both K1 and K2.

◦ We can also consider composites of an arbitrary collection of sub�elds (namely, the intersection of all
sub�elds containing every �eld in the collection).

◦ Like with sub�elds generated by a set, it is easy to see that the composite �eld is the smallest sub�eld
of K that contains both K1 and K2.

• Proposition (Degrees of Composites): If K1/F and K2/F are both �nite-degree subextensions of K/F , then
[K1K2 : F ] ≤ [K1 : F ] · [K2 : F ]. If the degrees [K1 : F ] and [K2 : F ] are relatively prime, then equality
always holds.

◦ Proof: Suppose K1/F has basis α1, . . . , αn and K2/F has basis β1, . . . , βm.

◦ Then K1K2 contains F and each of α1, . . . , αn, β1, . . . , βm hence it contains F (α1, . . . , αn, β1, . . . , βm).
On the other hand, F (α1, . . . , αn, β1, . . . , βm) contains both K1 and K2, hence K1K2.

◦ Therefore, K1K2 = F (α1, . . . , αn, β1, . . . , βm) = K1(β1, . . . , βm). Thus, β1, . . . , βm span K1K2/K1, so
[K1K2 : K1] ≤ [K2 : F ]. Then [K1K2 : F ] = [K1K2 : K1] · [K1 : F ] ≤ [K1 : F ] · [K2 : F ] as claimed.

◦ For the second statement, note that [K1K2 : F ] is divisible by both [K1 : F ] = n and [K2 : F ] = m. If
m and n are relatively prime, this implies [K1K2 : F ] ≥ mn, so since [K1K2 : F ] ≤ mn from above, we
must have equality.

2.2.5 Examples of Small-Degree Field Extensions

• By using our results on simple and composite extensions, along with the multiplicativity of �eld degrees in
towers, we can often say a great deal about extensions of small degree:

• Proposition (Quadratic Extensions): Suppose F is a �eld of characteristic not equal to 2 and K/F is a
quadratic extension (i.e., degree 2). Then K = F (α) for any α ∈ K not in F , and in fact we can take
K = F (β) for some element with β2 ∈ F and β 6∈ F .

◦ The last statement says (essentially) that K = F (
√
D) for some D ∈ F that is not a square in F . (It is

hard to be more precise than this, because it is di�cult to give a clear de�nition for what �
√
D� means

that does not end up being circular.)

◦ In particular, the quadratic extensions of Q (inside C) are precisely the extensions Q(
√
D) that we have

previously described.

◦ Proof: Suppose K/F is a quadratic extension. If α ∈ K is not in F , then the set {1, α} is F -linearly
independent, and since [K : F ] = 2 it must therefore be a basis for K. Thus, K = F (α).

◦ For the second statement, consider the minimal polynomial for any α ∈ K not in F : since K = F (α)
and [K : F ] = 2 we see that the minimal polynomial for α has degree 2: say, x2 + bx+ c.

◦ Then α2 + bα + c = 0, so completing the square (here is where we require the characteristic not to be
equal to 2, since we must divide by 2 to do this) and setting β = α+b/2 yields (α+b/2)2+(c−b2/4) = 0.
Setting β = α + b/2 shows that β2 = (b2 − 4c)/4 ∈ F . Furthermore, β is not in F since otherwise this
would imply that α = β − b/2 was in F .

◦ Thus, K = F (β) for an element β with β2 ∈ F and β 6∈ F , as claimed.
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• Example: Determine the degree of L = Q(
√

2,
√

3) over Q.

◦ The �eld Q(
√

2,
√

3) is a �nite algebraic extension of Q, and since [Q(
√

2) : Q] = [Q(
√

3) : Q] = 2 we see
that the extension degree is at least 2 and at most 4.

◦ In particular, by the remark following the corollary on �nite algebraic extensions, we see thatQ(
√

2,
√

3) =
Q[
√

2,
√

3] = {a + b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q}, which establishes that the latter ring is in fact a
�eld. (Notice how much simpler this argument is than the explicit calculations we performed earlier!)

◦ In fact, since Q(
√

2) is a sub�eld of Q(
√

2,
√

3), the extension degree [Q(
√

2,
√

3) : Q] must in fact be
divisible by 2, so it is either 2 or 4. To determine which of these cases holds we need to compute
[Q(
√

2,
√

3) : Q(
√

2)], which is either 1 or 2 since [Q(
√

3) : Q] = 2.

◦ If [Q(
√

2,
√

3) : Q(
√

2)] = 1, then the degree of the minimal polynomial of
√

3 over Q(
√

2) is 1, which is
to say,

√
3 ∈ Q(

√
2).

◦ But this is not true: if
√

3 = a+ b
√

2 for a, b ∈ Q then squaring yields 3 = (a2 + 2b2) + 2ab
√

2, so since√
2 is irrational, one of a, b would be zero (otherwise we could write

√
2 = (3−a2−2b2)/(2ab)). However,

we cannot have a =
√

3 or b
√

2 =
√

3 because
√

3 and
√

6 are also irrational.

◦ Therefore, we must have [Q(
√

2,
√

3) : Q] = 4. This tells us in particular that [Q(
√

2,
√

3) : Q(
√

2)] = 2,
and so for example this means that the minimal polynomial for

√
3 over Q(

√
2) must have degree 2.

Since
√

3 is a root of x2 − 3, that means the polynomial x2 − 3 is irreducible in Q(
√

2).

◦ Furthermore, since {1,
√

2,
√

3,
√

6} is a spanning set for Q(
√

2,
√

3), the fact that [Q(
√

2,
√

3) : Q] = 4
tells us that this set is a basis (and thus linearly independent), which is also not so easy to prove directly.

• Example: Determine the degree of L = Q(
√

3, 3
√

3) over Q.

◦ If we let K1 = Q( 3
√

3) and K2 = Q(
√

3), then L = K1K2. Furthermore, [K1 : Q] = 3 and [K2 : Q] = 2
since K1 is generated by a root of the irreducible polynomial x3− 3 and K2 is generated by a root of the
irreducible polynomial x2 − 3.

◦ Then from our result on the degree of a composite extension, we know that [L : Q] ≤ [K1 : Q]·[K2 : Q] = 6.

◦ Furthermore, since K1 and K2 are both sub�elds of L, we see that [L : Q] is divisible by both [K1 : Q] = 2
and [K2 : Q] = 3, and hence by 6. Therefore, since [L : Q] ≤ 6, the only possibility is to have [L : Q] = 6.

◦ Another approach is to observe that L contains the element α =
√

3/ 3
√

3 = 31/6. But since
√

3 = α3 and
3
√

3 = α2 we conclude that L = Q(α).

◦ Then since α is a root of the (Eisenstein) irreducible polynomial x6−3, we see that L = Q(α) has degree
6 over Q.

• Example: Determine the degree of L = Q( 3
√

2, e2πi/3 3
√

2) over Q.

◦ If we let K1 = Q( 3
√

2) and K2 = Q(e2πi/3 3
√

2), then L = K1K2. Furthermore, from our earlier discussion
of these �elds, we know that [K1 : Q] = [K2 : Q] = 3, since both �elds are generated by an element
whose minimal polynomial over Q is x3 − 2.

◦ Then [L : Q] = [L : K] · [K : Q] so [L : Q] is divisible by 3, and we also know that [L : Q] ≤ [K1 :
Q] · [K2 : Q] = 9.

◦ We might expect [L : Q] to be 9, but in fact, it is not!

◦ To see this, observe that L also contains the element ζ = e2πi/3 = (−1 + i
√

3)/2, and one can verify that
ζ2 + ζ + 1 = 0. Thus, ζ is a root of the polynomial x2 + x + 1, which is irreducible over Q, and so for
K3 = Q(ζ) we have [K3 : Q] = 2.

◦ Since Q(ζ) is also a sub�eld of L, we see that [L : Q] is divisible by 2. Since it is also divisible by 3 and
≤ 9, the only possibility is for [L : Q] = 6.

◦ In fact, it is not hard to see that L = Q( 3
√

2, ζ) = K1K3. (With this description, it is much easier to see
that [L : Q] = 6.)

◦ Remark: One way to explain why the degree of the composite is strictly less than the product of the
�eld degrees is that the minimal polynomial of e2πi/3 3

√
2, namely x3 − 2, is not irreducible over K1.

Alternatively, the basis {1, e2πi/3 3
√

2, e4πi/3 3
√

4} for K2/Q is not linearly independent over K1, because
2 + ( 3

√
4)[e2πi/3 3

√
2] + ( 3

√
2)[e4πi/3 3

√
4] = 0.
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• IfK/F is any �eld extension, we can in particular consider the collection of all elements ofK that are algebraic
over F .

• Proposition (Algebraic Elements): If K/F is any �eld extension and α, β ∈ K are algebraic over F , then so
are α ± β, αβ, and α−1 (the latter presuming α 6= 0). In particular, the collection of all elements of K that
are algebraic over F is a sub�eld of K.

◦ Proof: The �eld F (α, β) has �nite degree over F when α and β are both algebraic over F , hence F (α, β)
is algebraic over F . Then every element in F (α, β) is algebraic over F , including (in particular) α ± β,
αβ, and α−1.

◦ The second statement follows immediately from the �rst one, upon applying the sub�eld criterion.

• We can use this observation to construct in�nite algebraic extensions:

• Example: Consider the collection Q of all elements of C that are algebraic over Q. Show that every element
of Q has �nite degree over Q, but that Q/Q is an in�nite (algebraic) extension.

◦ The �rst statement follows immediately from our discussion of algebraic elements.

◦ To show that [Q : Q] = ∞, notice that (for any positive integer n) the element n
√

2 is contained in Q,
hence the entire �eld Q( n

√
2) is a sub�eld of Q.

◦ Because n
√

2 has minimal polynomial xn − 2 (irreducible by Eisenstein), we see that [Q( n
√

2) : Q] = n.

◦ Therefore, [Q : Q] ≥ [Q( n
√

2) : Q] = n for every positive integer n, so we must have [Q : Q] =∞.

◦ We will also remark that although Q is much larger than Q, it still only has a countably in�nite number
of elements: every element of Q is a root of a monic polynomial with rational coe�cients, and there are
only countably in�nitely many such polynomials (and each one has a �nite number of roots).

◦ In particular, because R and C are both uncountable, there exist (very many!) transcendental real and
complex numbers. Nonetheless, it is typically quite di�cult to prove that any particular transcendental
number (like e or π) is actually transcendental.

2.2.6 Classical Geometric Constructions

• One major aspect of classical Euclidean geometry, per Euclid, is concerned with describing geometric con-
structions using straightedge and compass.

◦ Among various problems that can be solved with straightedge and compass are: bisecting (or trisecting)
a segment, bisecting an angle, projecting a point onto a line, or drawing a line parallel to a given line
passing through a given point.

• As an application of some of our results on degrees in �eld extensions, we can establish the impossibility of
several classical geometric problems, originally posed by the ancient Greeks:

◦ Doubling the Cube: Is it possible to construct, with straightedge and compass, a cube whose volume
is twice that of a given cube?

◦ Trisecting an Angle: Given an arbitrary angle, is it possible to trisect it with straightedge and compass?
(In other words, to construct an angle with 1/3 the measure of the given angle.)

◦ Squaring the Circle: Given a circle, is it possible using straightedge and compass to construct a square
with the same area as the circle?

• In order to discuss these problems, we must �rst translate the allowed operations of straightedge-and-compass
constructions into algebraic language.

◦ A straightedge is an (unmarked) straight segment of arbitrary length, and may be used to draw the line
between two given points.

◦ A compass may be used to draw a circle with center at one given point passing through another given
point.
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◦ If two lines, a line and a circle, or two circles intersect, we may draw a new point where they intersect.

• Each of these problems begins with two given points: by translating and rescaling, we may assume the distance
is 1 and the points are (0, 0) and (1, 0).

◦ Any distance is determined by its length in terms of this unit distance, so we may view distances as
elements of R, and view points as elements of the Cartesian plane R2.

◦ We say a distance d is constructible if, starting with the points (0, 0) and (1, 0), we can use some sequence
of straightedge-and-compass constructions to create two points whose distance is d.

◦ It is a standard Euclidean construction to project a point onto a line. Thus, if we can construct a point
(a, b) ∈ R2, then we can construct both of the numbers a and b. Conversely, if we can construct both
the lengths a and b, then we may construct the point (a, b) by drawing x = a and y = b and �nding their
intersection.

◦ Thus, we say a point (x, y) ∈ R2 is constructible if both its coordinates are constructible lengths.

◦ Any problem of constructibility then reduces to determining whether the appropriate lengths are con-
structible.

• Proposition (Constructible Lengths): If a and b are constructible lengths, then so are a± b, ab, a/b, and
√
a.

◦ Proof: Each of these is a standard construction from Euclidean geometry, which we brie�y illustrate:

• From the proposition we can immediately see that the set of constructible lengths (and their negatives) is
a sub�eld of R, and so we can construct all of Q, and we may also take arbitrary square roots (possibly
iteratively). Explicitly, suppose that all of the lengths in our constructions so far lie in the �eld F : we want
to know what kind of �eld extension we may obtain by performing another construction step.

◦ First, we may draw a line through two constructible points P = (a, b) and Q = (c, d). It is straightforward
to verify that an equation for this line is (c−a)(y− b) = (d− b)(x−a), which has the form Ax+By = C
for A,B,C rational functions in terms of a, b, c, d. Thus, if a, b, c, d ∈ F , then A,B,C ∈ F as well.

◦ Second, we may �nd the intersection of two lines. If the coe�cients of the lines are elements of a �eld F ,
then so are the coe�cients of the intersection points, since the solution to two simultaneous equations
Ax + By = C and A′x + B′y = C ′ with A,B,C,A′, B′, C ′ ∈ F will also have x, y ∈ F by basic linear
algebra.

◦ We may also draw a circle with a given center and radius: the equation of such a circle has the form
(x− h)2 + (y − k)2 = r2 where h, k, r ∈ F . We can see, again, that all of the coe�cients of the equation
of the circle lie in F .

◦ Third, we may �nd the intersection of a line and a circle. If the line has equation Ax + By = C and
the circle has equation (x − h)2 + (y − k)2 = r2, then by solving for x or y in the equation of the line
and plugging into the equation of the circle, we end up with a quadratic equation for the other variable.
Thus, both x and y lie in a quadratic extension of F .

◦ Fourth, we may �nd the intersection of two circles (x−h)2+(y−k)2 = r2 and (x−h′)2+(y−k′)2 = (r′)2.
By subtracting the two equations, we may equivalently intersect the circle (x− h)2 + (y− k)2 = r2 with
the line 2(h′ − h)x + 2(k′ − k)y = r2 − (r′)2 − h2 + (h′)2 − k2 + (k′)2. (This is simply the line passing
through the two intersection points of the circles, presuming they do intersect.) Thus, by the previous
analysis, x and y again both lie in a quadratic extension of F .

◦ Since these are the only possible operations, we see that every operation either yields another element
in F or an element in a quadratic extension of F .
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• Proposition (Constructibility): The element α ∈ R is constructible if and only if the �eld Q(α) can be obtained
by a sequence of quadratic extensions of Q. In particular, if α is constructible, then [Q(α) : Q] is a power of
2.

◦ Proof: From our proposition on constructible lengths, and our characterization of quadratic extensions
(as being obtained via taking square roots), we can see that any α in an extension �eld of Q obtained
by a sequence of quadratic is in fact constructible.

◦ The converse follows from our discussion of the possible extension �elds obtained by each step of the
construction, since each individual �eld extension is either trivial or quadratic.

• Corollary: None of the three classical Greek problems (doubling the cube, trisecting an angle, and squaring
the circle) can be solved using straightedge-and-compass constructions.

◦ Proof: Doubling the cube is possible if and only if 3
√

2 is constructible. However, as we have discussed,
[Q( 3
√

2) : Q] = 3, which is not a power of 2. Thus, 3
√

2 is not constructible.

◦ If the angle θ can be constructed with straightedge and compass, then by orienting the angle from the
positive x-axis and intersecting the corresponding ray with the unit circle, then cos θ is constructible.
Conversely, if cos θ is constructible, then the angle θ can be obtained in the same way by intersecting
the line y = cos θ with the unit circle.

◦ We will show that cos 20◦ is not constructible. The triple angle formula for cosine states cos 3θ =

4 cos3 θ − 3 cos θ, so taking θ = 20◦, and writing α = 2 cos 20◦, yields
1

2
= α3/2 − 3α/2, so that

α3 − 3α− 1 = 0.

◦ By the rational root test, x3 − 3x − 1 has no rational roots and is therefore irreducible (since it has
degree 3). Therefore, [Q(α) : Q] = 3, and so α, and thus α/2 = cos 20◦, is not constructible. From our
discussion, we conclude that an angle of 20◦ is not constructible.

◦ Finally, squaring the circle requires constructing
√
π. Since π is transcendental, π itself is not even

constructible (let alone
√
π).

• Another classical constructibility question is: which n-gons are constructible?

◦ Since the interior angle of a regular n-gon is π − 2π/n, whose cosine is − cos(2π/n), this question is
equivalent to asking: for which n is the number cos(2π/n) constructible?

◦ We will return to this problem later once we discuss cyclotomic extensions, but we will mention that
there are standard constructions for an equilateral triangle (n = 3) and a regular pentagon (n = 5).

◦ From the addition and subtraction formulas for cosine, and the half-angle formulas, we can then see that
cos 3◦ is constructible (corresponding to a 120-gon). Since cos 20◦ is not constructible, this means that
cos 1◦ and cos 2◦ are not constructible, so the smallest constructible integer-valued angle is 3◦.

• As a �nal remark, all of the constructions we have described rely on an unmarked straightedge. By using
di�erent tools, it is possible to give solutions to some of these classical problems.

◦ For example, if one wishes to use a ruler (a device that allows one to mark o� speci�c lengths, while
positioning the ruler arbitrarily), then there do in fact exist ruler-and-compass constructions for doubling
the cube and for trisecting an arbitrary angle.

◦ Alternatively, by using a formalization of the operations allowed in origami (paper folding), it can also
be shown that there exist origami constructions for doubling the cube and trisecting an arbitrary angle.

◦ However, a marked ruler and origami constructions can only create algebraic distances, and therefore
squaring the circle is still impossible, even with these additional tools.

2.3 Splitting Fields

• We now continue investigating the connections between �elds and roots of polynomials.
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◦ We have already shown that if p is an irreducible polynomial in F [x], then F has a �eld extension that
contains a root of p: explicitly, in the extension K = F [t]/p(t), the element t ∈ K has the property that
p(t) = 0.

◦ We may extend this observation to any polynomial p as follows: �rst �nd the factorization of p over
F [x], and choose any irreducible factor q(x). Then construct the �eld extension K = F [t]/q(t), and like
before, observe that the element t ∈ K has the property that q(t) = 0. Finally, since q divides p in F [x],
we also have p(t) = 0.

◦ Thus, we see that if p is any polynomial in F [x], then there exists a �eld extension of F that contains a
root of p.

• We will now extend this argument to show that there is a �eld extension that contains �all the roots� of p,
and in fact there is a well-de�ned notion of a �smallest� such �eld.

2.3.1 Splitting Fields

• De�nition: If K is an extension �eld of F , the polynomial p(x) ∈ F [x] splits completely (or factors completely)
in K[x] if there exist c, r1, r2, . . . , rn ∈ K such that p(x) = c(x− r1)(x− r2) · · · (x− rn) in K[x].

◦ Example: The polynomial x4 − 1 ∈ R[x] splits completely over C as (x− 1)(x+ 1)(x− i)(x+ i).

◦ Example: The polynomial x2 − 5 ∈ Q[x] splits completely over C as (x −
√

5)(x +
√

5). In fact, it also
splits completely with the same factorization over R, or over Q(

√
5).

• We would like to show that there is always some extension �eld of F in which p(x) splits completely.

◦ From the above discussion, we can construct a �eld extension K1/F in which p(x) has at least one root
r1. By the factor theorem, if p has degree n, then we can then write p(x) = (x − r1) · p1(x) for a
polynomial p1(x) ∈ K1[x] of degree n− 1 and some element r1 ∈ K1.

◦ Now applying the argument to p1(x) over K1[x] shows that there exists a �eld extension K2/K1 in which
p1(x) has at least one root r2, so like before we can write p1(x) = (x − r2) · p2(x) for a polynomial
p2(x) ∈ K2[x] of degree n− 2 and some element r2 ∈ K2.

◦ By iterating this argument we eventually obtain a tower of �eld extensions Kn/Kn−1/ · · · /K1/K, where
pi−1(x) = (x− ri)pi(x) where pi(x) ∈ Ki[x] has degree n− i. Then pn has degree 0 so it is some constant
c, and so we obtain p(x) = c(x− r1)(x− r2) · · · (x− rn) for some c, r1, r2, . . . , rn ∈ K.

• If p ∈ F [x] splits completely over K, then p also splits completely over any extension �eld of K (as we saw
above with the example of x2 − 5, which splits completely over Q(

√
5) and also in its �eld extensions R and

C).

◦ It is therefore natural to ask: what is the �smallest possible� �eld extension of F in which p splits
completely?

◦ When we discussed simple extensions inside the extension K/F , we de�ned the �eld F (α) to be the
intersection of all sub�elds of K containing F and α.

◦ It might seem valid to de�ne this �smallest possible� �eld extension of F in which p splits completely to
be the intersection of all extension �elds K/F in which p splits completely. But in fact, this de�nition
only makes sense when all of these extension �elds are themselves subsets of some larger �eld.

◦ We can illustrate the di�culties with an example: consider the polynomial p(x) = x2 + 4 ∈ R[x].

◦ We can see that p(x) = x2 + 4 splits completely over C as p(x) = (x − 2i)(x + 2i), and p(x) also splits
completely over the �eld extension R[t]/(t2 + 4) as p(x) = (x − t)(x + t). Since both of these �elds are
degree-2 extensions of R, they both seem valid candidates for the �smallest possible� �eld extension of R
in which p splits completely.

◦ It does not really make sense to ask what �the intersection� of C and R[t]/(t2 + 4) is, without specifying
the manner in which these two �elds are to be considered as subsets of some larger collection.

◦ We can avoid this particular issue (and although it seems minor, it is actually very important!) by
instead posing the de�nition entirely within the �eld K itself.
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• De�nition: If K/F is a �eld extension, we say that K is a splitting �eld for the polynomial p(x) ∈ F [x] if p
splits completely over K, and p does not split completely over any proper sub�eld of K.

◦ If p splits completely over K as p(x) = c(x− r1)(x− r2) · · · (x− rn), then by the remainder theorem, any
sub�eld of K in which p splits completely must contain r1, . . . , rn, and hence contain F (r1, . . . , rn).

◦ On the other hand, clearly p(x) does split completely over F (r1, . . . , rn), so saying that p splits completely
in K but not over any proper sub�eld is equivalent to saying that K = F (r1, r2, . . . , rn). (In particular,
the de�nition is well-posed.)

◦ From our construction above, we can see that splitting �elds always exist: simply choose an extension L/F
in which p(x) splits completely as p(x) = c(x−r1)(x−r2) · · · (x−rn), and then takeK = F (r1, r2, . . . , rn).

• Example: Q(
√
D) is a splitting �eld for the polynomial p(x) = x2 −D over Q.

◦ Like with the example above, this follows immediately because p(x) = (x+
√
D)(x−

√
D) ∈ Q(

√
D)[x]

and Q(
√
D) = Q(

√
D,−

√
D).

• Example: Q(
√

2,
√

3) is a splitting �eld for the polynomial p(x) = (x2 − 2)(x2 − 3) over Q.

◦ We can see that p(x) splits completely over K = Q(
√

2,
√

3) because p(x) = (x −
√

2)(x +
√

2)(x −√
3)(x+

√
3) in K[x].

◦ Furthermore, K = Q(
√

2,
√

3) = Q(
√

2,−
√

2,
√

3,−
√

3), so K is indeed a splitting �eld.

• We can give an upper bound on the degree of a splitting �eld, by formalizing the arguments we gave above:

• Proposition (Degree of Splitting Fields): For any �eld F and any (nonzero) polynomial p ∈ F [x] of degree n,
there exists a splitting �eld K/F for p, and [K : F ] ≤ n!.

◦ Proof: This is simply a formalization of the discussion above. Explicitly, we use induction on n: for the
base case n = 1 with p(x) = ax+ b = a(x+ b/a), we have a single root r1 = −b/a ∈ F . Thus, K = F is
a splitting �eld.

◦ For the inductive step, assume that any polynomial of degree n − 1 over any �eld has a splitting �eld
extension of degree at most (n− 1)!, and let p ∈ F [x] have degree n.

◦ Choose any irreducible factor (in F [x]) q of p of degree k ≤ n and set K1 = F [t]/q(t). Then [K1 : F ] = k
by our results on simple extensions.

◦ Furthermore, q(t) = 0 in K1, so since q divides p we have p(t) = 0 in K1. Hence by the factor theorem
we may write p(x) = (x − t) · p1(x) for a polynomial p1(x) ∈ K1[x] of degree n − 1 and some element
r1 ∈ K1.

◦ By the induction hypothesis, there exists a splitting �eld L for p1(x) over K1 of degree at most (n− 1)!.
Then [L : F ] = [L : K1] · [K1 : F ] ≤ (n − 1)! · k ≤ n!, and p(x) splits completely in L, say as
p(x) = c(x− r1)(x− r2) · · · (x− rn).

◦ The sub�eld F (r1, r2, . . . , rn) of L is then a splitting �eld for p, and its degree is at most [L : F ] ≤ n!, as
required.

• We have also seen that a given polynomial may (in a sense) have several �di�erent� splitting �elds.

◦ To summarize, we saw that C is a splitting �eld for x2 + 4 over R, since x2 + 4 = (x+ 2i)(x− 2i) in C[x],
and C = R(2i,−2i).

◦ But the �eld K = R[t]/(t2 + 4) is also a splitting �eld for x2 + 4 over R, since x2 + 4 = (x− t)(x+ t) in
K[x].

◦ The key is that these two �elds are isomorphic (as �elds), with an explicit isomorphism being the one
that associates t with 2i (extended in the natural way).

◦ Thus, both of these splitting �elds have the same structure. This turns out to be true for arbitrary
splitting �elds, although it is actually easier to prove a slightly stronger result:
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• Theorem (Uniqueness of Splitting Fields): Let ϕ : E → F be an isomorphism of �elds with p(x) = a0 + a1x+
· · · + anx

n ∈ E[x], and set q(x) = ϕ(a0) + ϕ(a1)x + · · · + ϕ(an)xn ∈ F [x] to be the polynomial obtained by
applying ϕ to the coe�cients of p. If K/E is a splitting �eld for p, and L/F is a splitting �eld for q, then
the isomorphism ϕ extends to an isomorphism σ : K → L (i.e., σ|E = ϕ, or explicitly, for any α ∈ E we have
σ(α) = ϕ(α)). In particular, any two splitting �elds for p are isomorphic.

◦ Proof: The second statement follows from the �rst by taking ϕ to be the identity map, since in that case
the �rst statement says that if K/E and L/E are both splitting �elds of p, then K and L are isomorphic.

◦ To prove the �rst statement, we induct on the degree n of p. For the base case n = 1, as we have already
observed, the splitting �eld of any degree-1 polynomial over a �eld is simply the �eld itself. Thus, K = E
and L = F , so the desired map σ is simply ϕ.

◦ Now suppose the result holds for polynomials of degree n−1, and let p have degree n. Choose any monic
irreducible factor a(x) = c0 + c1x + · · · + cmx

m of p, and set b(x) = ϕ(c0) + ϕ(c1)x + · · · + ϕ(cm)xm.
It is then straightforward to verify that b(x) divides q(x) and that b(x) is also irreducible in F [x] (one
can simply do these calculations explicitly, or show �rst that ϕ extends to an isomorphism of E[x] with
F [x], so that it preserves factorizations and hence irreducibility).

◦ Since every root of a(x) is a root of p(x) we see that K contains every root of a, and similarly L contains
every root of b.

◦ Choose any root r of a(x) and any root s of b(x), and consider the map ϕ̃ : F (r) → E(s) de�ned by
mapping the polynomial d0 + d1r + · · ·+ dm−1r

m−1 7→ ϕ(d0) + ϕ(d1)s+ · · ·+ ϕ(dm−1)sm−1 for di ∈ F .
This map is actually well-de�ned on all of F (r) because r is algebraic over F with minimal polynomial
a(x) of degree m, so {1, r, . . . , rm−1} is an F -basis of F (r).

◦ It is a straightforward (though tedious) calculation to check that ϕ̃ is a ring (hence �eld) isomorphism.

◦ By the factor theorem, since r is a root of p and s is a root of q, we may write p(x) = (x− r)p′(x) and
q(x) = (x − s)q′(x) for some polynomials p′ = c(x − r2) · · · (x − rn) and q′ = d(x − s2) · · · (x − sn) of
degree n− 1. In particular, p′ splits completely over K and q′ splits completely over L.

◦ Since K is the splitting �eld of p, we see that K = F (r, r2, . . . , rn) = F (r)(r2, . . . , rn), and so in fact K
is the splitting �eld of p′ over F (r). Likewise, L is the splitting �eld of q′ over E(s).

◦ Finally, by the induction hypothesis, since we have an isomorphism ϕ̃ : F (r) → E(s), we may lift it to
obtain an isomorphism σ : K → L, as required.

• Because splitting �elds are unique up to isomorphism, we will refer to �the� splitting �eld of p(x) over F .

2.3.2 Examples of Splitting Fields

• In general, it can be quite di�cult to compute an explicit description of a splitting �eld, because it requires
knowing information about the factorization and the precise nature of the roots of p(x), along with any sort
of algebraic relations among the roots.

◦ As such, for the moment we will primarily focus on �nding splitting �elds over Q, since we have irre-
ducibility criteria that can apply to polynomials of arbitrarily large degree in Q[x].

• Example: Find the splitting �eld for p(x) = x2 + 1 over Q, over F2, and over F3.

◦ Over Q, we can see that Q(i) is a splitting �eld because p(x) = (x+ i)(x− i) ∈ Q[x] and Q(i) = Q(i,−i).
◦ Over F2, the �eld F2 itself is actually already a splitting �eld because p(x) = (x+ 1)2 ∈ F2[x].

◦ Over F3, the polynomial is irreducible (since it has degree 2 and no roots in F3), so any splitting �eld
must be of degree at least 2 over F3. On the other hand, in the degree-2 �eld extension K = F3[t]/p(t),
we can factor p(x) as p(x) = (x− t)(x+ t), and K = F3(t,−t), so we see that K is a splitting �eld for p.

◦ Remark: More generally, for any quadratic polynomial p(x) ∈ F [x], one can show that if p has a root in
F , then both its roots are in F (because their sum is an element of F ), so F itself is a splitting �eld.
Otherwise, if p is irreducible, then p does not split completely over F , but does split completely over the
quadratic extension F [t]/p(t): thus, F [t]/p(t) will be a splitting �eld.
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• Example: Show that Q( 3
√

2, ζ3) is the splitting �eld for the polynomial p(x) = x3 − 2 over Q, where ζ3 =
e2πi/3 = (−1 + i

√
3)/2 denotes a nonreal cube root of unity.

◦ As we have mentioned previously, this �eld K = Q( 3
√

2, ζ3) is also equal to Q( 3
√

2, ζ3
3
√

2), and has degree
6 over Q.
◦ We can see that p(x) splits completely over K because p(x) = (x − 3

√
2)(x − ζ3 3

√
2)(x − ζ23

3
√

2) in K[x].
(One may compute the third root of p(x) using polynomial division once the roots 3

√
2 and ζ3

3
√

2 are
identi�ed, or by directly observing that ζ23

3
√

2 is also a root.)

◦ Thus, we see that L = Q( 3
√

2, ζ3
3
√

2, ζ23
3
√

2) is a splitting �eld for p(x) over Q.
◦ Notice that L contains both generators 3

√
2 and ζ3 = (ζ3

3
√

2)/( 3
√

2) of K/Q, so L contains K. On the
other hand, K contains all three generators 3

√
2, ζ3

3
√

2, and ζ23
3
√

2 of L/Q, so K contains L. Thus, K = L
is a splitting �eld for p(x) as claimed.

• Example: Find the splitting �eld for p(x) = x4 + 64 over Q.

◦ As it happens, this polynomial factors over Q as p(x) = (x2−4x+8)(x2+4x+8), and using the quadratic
formula we can see that the roots of these two quadratics are ±2± 2i.

◦ Therefore, we can see that Q(i) is a splitting �eld for p, since it is the sub�eld of C generated by the
roots of p. Notice in particular that, although p(x) has degree 4, the degree of the splitting �eld is only
2.

• Example: If n is a positive integer, show that the splitting �eld of the polynomial xn− 1 over Q is of the form
Q(ζn) where ζn is the complex number ζn = e2πi/n = cos(2π/n) + i sin(2π/n).

◦ To see this, �rst observe that ζn = e2πi/n has the property that ζnn = e2πi = 1, and so ζn is a root of
q(x) over C.
◦ Furthermore, for each integer k with 0 ≤ k ≤ n−1, we see that ζkn = e2πik/n = cos(2πk/n)+ i sin(2πk/n)
also has the property that (ζkn)n = 1k = 1 and so ζkn is also a root of q(x) over C.
◦ The n complex numbers ζkn for 0 ≤ k ≤ n− 1 are distinct as elements of C (geometrically, they represent
n equally spaced points around the unit circle |z| = 1 in the complex plane).

◦ Thus, by the factor theorem we obtain the factorization q(x) = (x − 1)(x − ζn)(x − ζ2n) · · · (x − ζn−1n ),
and so the splitting �eld for q(x) over Q is Q(1, ζn, ζ

2
n, . . . , ζ

n−1
n ). This �eld clearly contains Q(ζn), but

since Q(ζn) contains each of the generators 1, ζn, . . . , ζ
n−1
n , it is equal to Q(ζn) as claimed.

• De�nition: The splitting �eld Q(ζn) arising in the example above is called the cyclotomic �eld of nth roots of
unity.

◦ It is a nontrivial problem (and one to which we will return later) to compute the degree [Q(ζn) : Q],
which is equivalent to determining the degree of the minimal polynomial of ζn over Q.
◦ In the case where n = p is a prime, however, we can compute it now:

• Proposition (Prime Cyclotomic Fields): If p is a prime, the degree [Q(ζp) : Q] is equal to p− 1.

◦ Proof: As noted above, the degree [Q(ζp) : Q] is equal to the degree of the minimal polynomial of ζp over
Q.
◦ Since ζp 6= 1, and since x − 1 divides xp − 1, by the factor theorem we see that ζp is a root of the

polynomial Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1.

◦ We claim that Φp(x) is irreducible over Q, and is therefore the minimal polynomial of ζp.

◦ To show this, observe that Φp(x) is irreducible if and only if Φp(x+1) is irreducible (since any factorization
Φp(x+ 1) = a(x)b(x) would yield a factorization Φp(x) = a(x− 1)b(x− 1) and vice versa).

◦ We can compute Φp(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1
=

1

x
·
p∑
k=1

(
p
k

)
xk =

p∑
k=1

(
p
k

)
xk−1 = xp−1 + pxp−2 + · · ·+ p.
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◦ Each of the binomial coe�cients
(
p
k

)
= p!

k!(p−k)! with 0 < k < p is divisible by p (since there is a p in the

numerator but not the denominator) and the constant term of Φp(x+ 1) is not divisible by p2.

◦ Thus, Φp(x + 1) is irreducible over Q by Eisenstein's criterion (with prime p), and so Φp(x) is also
irreducible over Q.
◦ Therefore, Φp(x) is the minimal polynomial of ζp, and [Q(ζp) : Q] = deg Φp = p− 1.

• By using some of our results about cyclotomic �elds, we can compute certain other splitting �elds along with
their degrees:

• Example: If p is a prime, �nd the splitting �eld K for q(x) = xp − 3 over Q and compute the degree [K : Q].

◦ We begin by observing that the roots of q(x) in C are ζkp ·
p
√

3 for 0 ≤ k ≤ p− 1, since each of these is a

root of q and they are all distinct. (Here, as elsewhere, p
√

3 represents the real pth root of 3.)

◦ Therefore, the splitting �eld for p over Q is K = Q( p
√

3, ζp
p
√

3, . . . , ζp−1p
p
√

3) = Q( p
√

3, ζp), since both
�elds contains the generators for the other.

◦ Notice that K is the composite of the �elds E = Q( p
√

3) and F = Q(ζp), and so [K : Q] ≤ [E : Q] · [F : Q].

◦ We showed that [F : Q] = p−1 above, and for [E : Q], because xp−3 is irreducible over Q by Eisenstein's
criterion (with prime 3), xp − 3 is necessarily the minimal polynomial of p

√
3, so [Q( p

√
3) : Q] = p.

◦ Therefore, [K : Q] ≤ p(p− 1).

◦ However, since E and F are both sub�elds of K, [K : Q] is divisible by both [E : Q] = p and [F : Q] =
p − 1, and thus (since they are relatively prime) by their product. We must therefore have equality,
meaning that [K : Q] = p(p− 1).

◦ Remark: Because K/E has degree p − 1 and is generated by ζp (which is a root of the degree-(p − 1)
polynomial Φp(x) ∈ Q[x]), we obtain the nontrivial fact that Φp(x) is irreducible over Q( p

√
3). By the

same reasoning, we can also deduce that xp − 3 is irreducible over Q(ζp).

• Example: Find the splitting �eld K for p(x) = x8 − 2 over Q and compute the degree [K : Q].

◦ As in the previous example, we can see that the roots of p(x) in C are ζk8 ·
8
√

2 for 0 ≤ k ≤ 7.

◦ Therefore, the splitting �eld for p over Q is K = Q( 8
√

2, ζ8
8
√

2, . . . , ζ78
8
√

2) = Q( 8
√

2, ζ8), since both �elds
contains the generators for the other.

◦ We can compute ζ8 = cos(2π/8) + i sin(2π/8) =
√

2/2 + i
√

2/2, and so since
√

2 = ( 8
√

2)4, we see that K
contains

√
2 · ζ8 − 1 = i.

◦ Then, since K contains i and 8
√

2, and because Q( 8
√

2, i) contains the generators of K, we in fact have
K = Q( 8

√
2, i).

◦ By the multiplicativity of �eld degrees, [K : Q] = [K : Q( 8
√

2)] · [Q( 8
√

2) : Q].

◦ Because x8 − 2 is irreducible over Q, it is necessarily the minimal polynomial of 8
√

2, and so [Q( 8
√

2) :
Q] = 8.

◦ To compute [K : Q( 8
√

2)], notice that Q( 8
√

2) is a sub�eld of R but K is not, since it contains the nonreal
number i. On the other hand, since K/Q( 8

√
2) is generated by i, the extension degree is at most the

degree of the minimal polynomial of i over Q, which is 2.

◦ Thus, the only possibility is to have [K : Q( 8
√

2)] = 2, and so [K : Q] = 16.

2.3.3 Algebraic Closures

• As we have shown, for any polynomial p ∈ F [x], there exists a �eld extension K/F with the property that K
contains all of the roots of p.

◦ A natural extension of this question is: does there exist a �eld extension K/F with the property that K
contains all of the roots of every polynomial p ∈ F [x]?

◦ One example of such an extension is C/R, since every polynomial in R[x] splits completely over C. (This
statement is equivalent to the fundamental theorem of algebra.)
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◦ Given an arbitrary �eld F , we would like to construct an analogous extension that contains all of the
roots of all polynomials in F [x]: this extension represents the closure of F under algebraic operations
(i.e., solving polynomials) and is called the algebraic closure of F .

• De�nition: If F is a �eld, the �eld F is an algebraic closure of F if F is algebraic over F and every polynomial
in F [x] splits completely over F .

◦ Initially, it seems natural that such an extension would exist (since we may construct towers of extensions
having roots of more and more polynomials of larger and larger degrees), but in fact this question is
substantially more delicate than it might seem.

◦ Intuitively, we would like to think of the algebraic closure of F as the composite of all of the splitting
�elds of the polynomials in F [x].

◦ However, the composite of two arbitrary �elds is not de�ned: we have only de�ned the composite of two
sub�elds of a larger �eld.

◦ Thus, saying that the algebraic closure is �the composite of all of the splitting �elds� presupposes the
existence of some larger �eld that contains all of these splitting �elds, and this is entirely circular since
this larger �eld is precisely what the algebraic closure would be!

• Let us instead examine another feature of C: not only is it the algebraic closure of R, it is the algebraic closure
of itself.

◦ This follows by the observation that every polynomial in C[x] splits completely over C (which is, again,
simply the fundamental theorem of algebra).

◦ This tells us that C has no nontrivial algebraic extensions: if L/C were an algebraic extension, any
element α ∈ L would be a root of its minimal polynomial in C[x], but the only irreducible polynomials
in C[x] are linear polynomials.

◦ In other words, C is �algebraically closed�. To be precise:

• De�nition: The �eld F is algebraically closed if every polynomial in F [x] has a root in F .

◦ By the factor theorem and a trivial induction, if every polynomial in F [x] has a root in F , then in fact
it must split completely over F .

◦ Equivalently, by the same logic as given above for C, a �eld is algebraically closed whenever it has no
nontrivial algebraic extensions.

◦ Based on the similarity of the names, and the fact that C is both an algebraic closure (namely, of R)
and is itself algebraically closed, it is reasonable to guess that algebraic closures are algebraically closed.
This is in fact true:

• Proposition (Algebraic Closures are Algebraically Closed): If F is any �eld, then any algebraic closure F is

algebraically closed. Symbolically, F = F .

◦ Proof: Suppose that p(x) ∈ F [x] is a polynomial and α is any root of p(x) in F . Then F (α) is an
algebraic extension of F , and F is an algebraic extension of F .

◦ We have previously shown that an algebraic extension of an algebraic extension is algebraic, so applying
it to F (α)/F and F/F shows that F (α)/F is algebraic, which is to say, α is algebraic over F .

◦ But since F contains all elements algebraic over F , we see α ∈ F , so F = F .

• One approach to showing that every �eld has an algebraic closure is to show that every �eld F is a sub�eld
of an algebraically closed �eld L: if we can do this, then the sub�eld of L consisting of all elements algebraic
over F is an algebraic closure of F . (Recall that we showed previously that the collection of all algebraic
elements is a sub�eld.)

• Theorem (Algebraic Closures): If F is a �eld, then F is a sub�eld of an algebraically closed �eld.

◦ The proof of this theorem requires invoking Zorn's lemma (equivalent to the axiom of choice) and
technically also uses colimits, so we will instead just sketch the argument.
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◦ First observe that in any commutative ring R with 1, if I is any ideal of R, then there exists a proper
ideal M (i.e., with M 6= R) containing I that is maximal under containment (i.e., so that there is no
other ideal J with M ( J ( R). This fact is a straightforward consequence of Zorn's lemma4.

◦ Furthermore, if M is a maximal ideal of R, then R/M is a �eld, because if r were any nonzero nonunit
in R/M , then the ideal of R generated by r and M would be strictly larger than M but still a proper
ideal of R, contradicting maximality of M .

◦ Next, take R to be a polynomial ring in in�nitely many variables Xf , indexed by the polynomials
f(x) ∈ F [x] of positive degree. (The elements of R are the polynomials involving �nitely many of the
Xf , with coe�cients from F .)

◦ Let I be the smallest ideal of R containing all of the elements fi(Xfi), for each polynomial fi ∈ F [x] of
positive degree.

◦ Then I is a proper ideal of R, because if not, 1 would be an element of I and so there would exist a
relation of the form r1f1(Xf1)+r2f2(Xf2)+ · · ·+rnfn(Xfn) = 1 for some irreducible fi ∈ F [x] of positive
degree and some elements ri ∈ R. If we take K to be the splitting �eld of f1f2 · · · fn and choose a root
αi ∈ K of each fi, then evaluating both sides of this relation at Xf1 = α1, ... , Xfn = αn yields 0 = 1,
which is impossible.

◦ Thus, I is a proper ideal of R so it is contained in some maximal ideal M . The quotient ring L = R/M
is then a �eld that is an extension of F (since F embeds in L as the images of the constant polynomials).
Every polynomial f(x) ∈ F [x] of positive degree then has a root in L since f(Xf ) = 0 in the quotient
ring (this is because f(Xf ) ∈M since it is in I).

◦ Unfortunately this is not quite enough to say that L is algebraically closed, because although every
polynomial in F [x] now has a root, there may exist polynomials in L[x] that have no roots.

◦ To deal with this issue, we iterate the construction to obtain an in�nite sequence of �elds F ⊆ L1 ⊆
L2 ⊆ L3 ⊆ · · · , where every polynomial in Li[x] has at least one root in Li+1.

◦ We may then take the union of this in�nite sequence of �elds (technically, we actually take a colimit) to
obtain a �eld F . Each element of this �eld is contained in some Li: thus, any polynomial with coe�cients
from F has all its coe�cients from some Li, and this polynomial has a root in Li+1 (hence in F ). Thus,
F is algebraically closed.

• Corollary: If F is a �eld, then there exists an algebraic closure F of F . Furthermore, the algebraic closure F
is unique up to isomorphism.

◦ Proof: By the previous theorem, F is a sub�eld of an algebraically closed �eld L. Then the collection of
all elements of L that are algebraic over F is a sub�eld of L, and is an algebraic closure of F .

◦ For the uniqueness, one may use an argument similar to the one we used to establish that splitting �elds
are unique up to isomorphism.

◦ More explicitly, by a similar argument as used for splitting �elds (along with an invocation of Zorn's
lemma), one may show that ifK/F is algebraic and L/K is also algebraic, then there exists an embedding
of K into F , and an embedding extending this one that embeds L into F . (By �an embedding of E into
F � we mean a map that is an isomorphism of E with a sub�eld of F .)

◦ Now suppose that E1 and E2 are both algebraic closures of F : by applying the above result, we obtain
an embedding of E1 into E2, and so E1 is isomorphic to a sub�eld of E2. But then E2 is an algebraic
extension of (a �eld isomorphic to) E1, but E1 has no nontrivial algebraic extensions: thus, the embedding
of E1 into E2 is actually an isomorphism.

• Since C is algebraically closed by the fundamental theorem of algebra, by the argument above it contains an
algebraic closure of any of its sub�elds.

◦ In particular, this means that we can always view any question about algebraic extensions of Q as taking
place inside of C (as, in fact, we have already implicitly been doing).

◦ Furthermore, we also see that the set Q of elements of C that are algebraic over Q is an algebraically
closed �eld.

4Speci�cally, if we let F be the set of all proper ideals of R containing I, then F is nonempty since I ∈ F . Also, for any chain C
with indexing set J , the union ∪jCj is an upper bound for C: this follows by noting that the union of a chain of ideals is also an ideal
(since it contains 0 and is closed under subtraction and R-multiplication) and that it is proper since it cannot contain 1, as otherwise
some Cj would contain 1 hence equal R, contradicting the assumption that each Cj is proper. Hence every chain has an upper bound,
so by Zorn's lemma, there exists a maximal element of F , as claimed.
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2.4 Separability and Transcendence

• In this section we discuss two additional topics related to the structure of general �eld extensions: separability
and transcendence.

◦ These topics arise frequently in the context of number theory and algebraic geometry.

2.4.1 Separable and Inseparable Polynomials

• As we have shown, for any �eld F and any polynomial p ∈ F [x], there exists an extension �eld K/F that
contains all the roots of p.

◦ In many cases, the roots of a polynomial will be distinct. However, there certainly exist cases in which
polynomials have �repeated roots�, such as p(x) = x3 or p(x) = x2(x− 1)2.

◦ None of these polynomials is irreducible, and it is di�cult (and as we will explain, with good reason!) to
�nd examples of irreducible polynomials with repeated roots.

• De�nition: If F is a �eld with q ∈ F [x], and the factorization of q(x) = c(x − r1)d1(x − r2)d2 · · · (x − rk)dk

with the di ≥ 1, we say that di is the multiplicity of ri. Furthermore, ri is a simple root if di = 1, and is a
repeated root (or multiple root) if di ≥ 2. If all of the roots of q are simple, then we say q is separable, and
otherwise q is inseparable.

◦ Example: The polynomial x2(x− 1)2(x2 + 1) has two repeated roots (0 and 1) and two simple roots (i
and −i) over Q, and is inseparable.

◦ Example: The polynomial x3 + 4x has three simple roots (0, 2i, and −2i) over Q, and is separable.

◦ Example: Over F = F2(t), the �eld of rational functions in t with coe�cients in F2, the polynomial
q(x) = x2 − t is irreducible (it has no roots in F since there is no rational function whose square is t).
Nonetheless, q has a repeated root t1/2, because in F the polynomial q(x) factors as q(x) = (x− t1/2)2,
and so q is inseparable.

• As a �rst goal, we can give a necessary condition for when a polynomial has repeated roots.

◦ Recall from calculus that we can test whether a polynomial has a �double root� at r by testing whether
q(r) = q′(r) = 0. By the factor theorem, this is equivalent to saying that q and q′ are both divisible by
x− r.
◦ We can formulate a similar test over any �eld, since we may give a purely algebraic de�nition of the
derivative:

• De�nition: If q(x) =

n∑
k=0

akx
k is a polynomial in F [x], its derivative is the polynomial q′(x) =

n∑
k=0

kakx
k−1.

◦ It is a straightforward calculation to verify that the standard di�erentiation rules apply: (f + g)′(x) =
f ′(x) + g′(x) and (fg)′(x) = f ′(x)g(x) + f(x)g′(x). (For the product rule, the easiest method is to check
it for products of monomials and then apply the distributive law, since both sides are additive.)

◦ Example: In C[x], the derivative of x6 − 4x2 + x is 6x5 − 8x+ 1.

◦ Example: In Fp[x], the derivative of xp
2 − x is p2xp

2−1 − 1 = −1. Notice here that although the degree
of the original polynomial is p2, the degree of its derivative is 0.

• Proposition (Derivatives and Separability): Let F be a �eld and q ∈ F [x]. Then r is a repeated root of q (in
a splitting �eld) if and only if q(r) = q′(r) = 0. Furthermore, the polynomial q(x) is separable if and only if
q(x) and q′(x) are relatively prime in F [x].

◦ Proof: First suppose that q(x) has a repeated root r in some extension K/F : then q(x) = (x− r)2s(x)
for some s(x) ∈ K[x].

◦ Taking the derivative yields q′(x) = 2(x− r)s(x) + (x− r)2s′(x) = (x− r) · [2s(x) + (x− r)s′(x)]. Thus,
q′ is also divisible by x− r in K[x]. By the factor theorem, we conclude that q(r) = q′(r) = 0.
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◦ Conversely, if q(r) = q′(r) = 0, then by the factor theorem x − r divides q(x), so we may write q(x) =
(x− r)a(x). Then q′(x) = a(x) + (x− r)a′(x), so q′(r) = a(r). Thus a(r) = 0 and so x− r divides a(x):
then q(x) is divisible by (x− r)2 so r is a repeated root.

◦ For the second statement, any root of a common factor of q and q′ is a multiple root (by the above)
and conversely any repeated root of q yields a nontrivial common factor of q and q′ in F [x] (namely, the
minimal polynomial of the repeated root).

• In characteristic 0, this result implies that every irreducible polynomial is separable:

• Corollary (Separability in Characteristic 0): If F is a �eld of characteristic 0 and q(x) ∈ F [x] is irreducible,
then q(x) is separable.

◦ Proof: From the result above, we know that q is separable if and only if q and q′ have a common factor
in F [x]. Since q is irreducible in F [x], up to associates the only possible common factors are q and 1.

◦ In characteristic 0, if q has degree n then q′ has degree n − 1, so q cannot divide q′. Thus, the only
possibility is for q and q′ to be relatively prime, meaning that q is separable.

• In positive characteristic, as we have already noted, there can exist inseparable irreducible polynomials.

◦ As we noted earlier, over F = F2(t), the polynomial q(x) = x2 − t is irreducible and also inseparable,
because it has a repeated root t1/2 that is not in F . Note in this case that q′(x) = 2x = 0 is identically
zero, so indeed q and q′ have a common divisor of positive degree (namely, q itself).

◦ Indeed, by degree considerations, the case where q′ is the zero polynomial is the only case in which we
can have an inseparable irreducible polynomial, since if q′ 6= 0 then since deg q > deg q′, it is not possible
for q to divide q′.

◦ From the de�nition of derivative, we can see that if q(x) =

n∑
k=0

anx
n then q′(x) =

n∑
k=0

nanx
n−1 is zero if

and only if nan = 0 for each n, and this is true precisely when the only nonzero coe�cients of q are in
degrees that are divisible by p.

◦ Equivalently, this means that q(x) = s(xp) for some polynomial s ∈ F [x].

◦ Thus, there is an inseparable irreducible polynomial over F precisely when there is a polynomial s ∈ F [x]
with the property that s(xp) is irreducible.

• To examine this property in more detail requires a (very useful!) result on �eld arithmetic in characteristic p:

• Proposition (�Freshman� Binomial Theorem): If the �eld F has characteristic p > 0, then (a+ b)p = ap + bp

for any a, b ∈ F .

◦ Proof: By an induction argument, the binomial theorem holds in any �eld: thus, (a+b)p =

p∑
n=0

(
p

n

)
anbp−n.

◦ For each 0 < n < p, the binomial coe�cient
(
p
n

)
= p!

n!(p−n)! is an integer divisible by p (since there is a p

in the numerator but not in the denominator, and p is prime), so
(
p
n

)
= 0 in the �eld F .

◦ Therefore, all terms in the sum except those for n = 0 and n = p are zero, whence (a+ b)p = ap + bp for
any a, b ∈ F as claimed.

• De�nition: If F is a �eld of characteristic p, the Frobenius endomorphism is the map ϕ : F → F de�ned by
ϕ(a) = ap.

◦ It is easy to see that ϕ respects multiplication (i.e., ϕ(ab) = ϕ(a)ϕ(b)) and by the proposition above it
also respects addition.

◦ Furthermore, ϕ is injective, because ϕ(a) = ϕ(b) implies ap = bp so that (a− b)p = 0 (since ϕ distributes
over addition, and (−1)p = −1 in Fp for any prime p). Since F is a �eld, this is equivalent to saying
a− b = 0.

◦ By iterating the additivity of ϕ, we can see that (a0 + a1x+ · · ·+ anx
n)p = ap0 + ap1x

p + · · ·+ apnx
np.
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◦ Applying this in reverse, we can see that if all of the coe�cients of s(x) are pth powers in F , then s(xp)
is a pth power, and therefore cannot be irreducible. We give �elds with this property a name:

• De�nition: If F is a �eld of characteristic p, and every element of F is a pth power (i.e., F p = F ) then we say
F is a perfect �eld. (Fields of characteristic 0 are also considered perfect �elds.)

◦ Equivalently, F is a perfect �eld if the Frobenius endomorphism is surjective. But since it respects
addition and multiplication and is injective, this is the same as saying that the Frobenius map is an
isomorphism of F with itself.

◦ Example: If F is a �nite �eld, then F is perfect. This follows by the fact that the Frobenius map is an
injective map from a �nite set to itself, hence is also surjective.

• Proposition (Separability and Perfect Fields): If F is a perfect �eld, then every irreducible polynomial in F [x]
is separable. Inversely, if F is not perfect, then there exists an irreducible inseparable polynomial in F [x].

◦ Proof: As we showed above, every �eld of characteristic 0 is separable, so now assume F has characteristic
p.

◦ If q(x) is an irreducible inseparable polynomial in F [x], then as we have already discussed, q′ must be
the zero polynomial, so q(x) = s(xp) for some polynomial s ∈ F [x].

◦ If F is perfect, then every coe�cient of s is a pth power, so we may write s(x) = ap0 + ap1x+ · · ·+ apnx
n.

But then q(x) = s(xp) = ap0 + ap1x
p + · · ·+ apnx

np = (a0 + a1x+ · · ·+ anx
n)p is not irreducible, which is

a contradiction.

◦ For the inverse statement, suppose F is not perfect: then there exists some element α ∈ F that is not a
pth power in F .

◦ Now consider the polynomial q(x) = xp − α: if we set β = α1/p (inside a splitting �eld for q) then in
F (β) we may write q(x) = xp − βp = (x− β)p so q is inseparable.

◦ We claim that q is also irreducible in F [x]. To see this, suppose it had a factorization q(x) = c(x)d(x) in
F [x]: then from the factorization above, up to constant factors in F we must have c(x) = (x − β)d for
some 0 < d < p.

◦ Expanding out c(x) shows that c(x) = xd − dβxd−1 + · · · + (−1)dβd. In particular, we see that the
coe�cient dβ is in F , and because d 6= 0 in F (since 0 < d < p) we would have β ∈ F . But this
contradicts the assumption that α is not a pth power in F . Thus, q is an irreducible inseparable
polynomial over the non-perfect �eld F .

• As an application of our results, we can show that there exists a �nite �eld with pn elements, and that it is
unique up to isomorphism:

• Theorem (Existence and Uniqueness of Finite Fields): For any prime p and any positive integer n, there exists
a �nite �eld of degree n over Fp, and this �eld has pn elements. Furthermore, any two �nite �elds with pn

elements are isomorphic.

◦ Proof: Consider the polynomial q(x) = xp
n − x over Fp, and let K be its splitting �eld.

◦ We see that q′(x) = pnxp
n−1 − 1 = −1: thus, q is separable and so it has precisely pn roots in K.

◦ If r and s are any two roots of q in K, then rp
n

= r and sp
n

= s. We can then see that (rs)p
n

= rp
n

sp
n

=
rs, and (r − s)pn = rp

n − spn = r − s, and if r 6= 0 then (r−1)p
n

= (rp
n

)−1 = r−1.

◦ These three calculations show that if r and s are roots of q, then so are rs, r−s, and r−1. Together with
the trivial observations that 0 and 1 are roots of q, this says that the set of roots of q is a sub�eld of K.

◦ But since K is generated (as a �eld) by the set of roots of q, this means that the set of roots is all of K.

◦ It is easy to see that if K/F has dimension n, then the number of elements of K/F is (#F )n = pn (since
each coe�cient for each element in a basis has #F = p possible choices), so this tells us that [K : Fp] = n.

◦ For the uniqueness, now suppose that [K : Fp] = n and let S = {u1, . . . , upn−1} be the set of nonzero
elements of K. For any nonzero r ∈ K, multiplication by r is an injective function on S (since r is
a unit) and hence is a bijection. Thus, the elements {ru1, . . . , rupn−1} are the same as the elements
{u1, . . . , upn−1}, though possibly in a di�erent order.

32



◦ In particular, the products of these collections of elements are equal: multiplying out and collecting terms
yields rp

n−1(u1 · · ·upn−1) = u1 · · ·upn−1 so cancelling the nonzero elements yields rp
n−1 = 1.

◦ We conclude that every element in K (including 0) is a root of the polynomial xp
n − x, and so K is

contained in the splitting �eld for this polynomial. But as we have just shown above, the splitting �eld
of xp

n − x over Fp already has pn elements, so it must be equal to K. Since splitting �elds are unique
up to isomorphism, we are done.

2.4.2 Separable and Inseparable Extensions

• We can also extend these notions of separability and inseparability to algebraic elements by considering their
minimal polynomials:

• De�nition: If K/F is a �eld extension, then α ∈ K is separable over F if α is algebraic over K and its minimal
polynomial m(x) over F is a separable polynomial. We say K/F itself is separable if every α ∈ K is separable
over F , and K/F is inseparable if it is not separable.

◦ Example: Any algebraic element in an extension of characteristic 0 is separable, so algebraic extensions
of characteristic-0 �elds are separable. More generally, any algebraic element in an extension K/F where
F is a perfect �eld is separable, so algebraic extensions of perfect �elds are separable.

◦ Example: The element t ∈ F2(t1/2) is not separable over F2(t), since its minimal polynomial is the
inseparable polynomial p(x) = x2 − t.
◦ Example: The element t ∈ F2(t1/3) is separable over F2(t), since its minimal polynomial is the separable
polynomial p(x) = x3 − t.

• The inverse notion to a separable element is of an inseparable element that is �as inseparable as possible�,
where all of the roots of its minimal polynomial are the same:

• De�nition: If K/F is a �eld extension, then α ∈ K is purely inseparable over F if α is algebraic over K and
its minimal polynomial m(x) over F has only α as a root. We say K/F itself is purely inseparable if every
α ∈ K is purely inseparable over F .

◦ Example: The element t1/2 ∈ F2(t1/2) is purely inseparable over F2(t): its minimal polynomial is the
inseparable polynomial m(x) = x2 − t, which factors as m(x) = (x − t1/2)2 over F2(t1/2), and this
polynomial has only t1/2 as a root.

◦ Example: The element t1/25 ∈ F5(t1/25) is purely inseparable over F5(t): its minimal polynomial is
the inseparable polynomial m(x) = x25 − t, which can be seen to factor as m(x) = (x − t1/25)25 over
F5(t1/25), and this polynomial has only t1/25 as a root. This factorization also shows whym is irreducible,
since no lower power (x − t1/25)k for 1 ≤ k ≤ 24 actually yields a polynomial with coe�cients in F5(t).
(Alternatively, this polynomial is Eisenstein-irreducible with prime t.)

• We have various properties of inseparability and purely inseparable extensions:

• Proposition (Properties of Inseparability): Let L/K and K/F be �eld extensions of characteristic p.

1. If q(x) ∈ F [x] is an irreducible inseparable polynomial, then q(x) = qsep(xp
k

) for a unique positive integer
k and a unique irreducible separable polynomial qsep(x) ∈ F [x].

◦ Proof: As we showed earlier, an irreducible polynomial q is inseparable if and only if its derivative q′ is
the zero polynomial. Equivalently, this means every monomial term in q must have the corresponding
power of x divisible by p: this means q(x) = q1(xp) for some polynomial q1 ∈ F [x].

◦ If q1 is separable, then it must necessarily be irreducible since otherwise any factorization of q1(x) =
f(x)g(x) would give a factorization of q(x) = q1(xp) = f(xp)g(xp).

◦ Otherwise, if q1 is inseparable, then by the argument above, we must have q1(x) = q2(xp) for some
q2(x) ∈ F [x]. By iterating this argument (or equivalently, by a trivial induction), eventually we must

obtain a polynomial qk(x) that is separable and irreducible. Then q(x) = qsep(xp
k

) as claimed.

2. The element α ∈ K/F is purely inseparable if and only if there exists some positive integer k such that

αp
k ∈ F .
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◦ Proof: First suppose α is purely inseparable and let m(x) ∈ F [x] be the minimal polynomial of α
over F .

◦ Then m(x) is an irreducible purely inseparable polynomial, so m(x) = qsep(xp
k

) for some separable
polynomial qsep by (1).

◦ If qsep had two distinct roots r1 and r2, then (in an appropriate splitting �eld) m would have roots

s1 and s2 satisfying sp
k

1 = r1 and sp
k

2 = r2. But since the pth-power map is injective and r1 6= r2,
this would mean that s1 6= s2 and thus that m has two distinct roots, contradicting the assumption
that m was purely inseparable.

◦ Conversely, if αp
k ∈ F , then α is a root of the polynomial q(x) = xp

k − αpk = (x− α)p
k

in K[x].

◦ Then the minimal polynomial of α over F must therefore divide q, but since q has only one root α,
that means m also has only one root α. Thus, α is purely inseparable.

◦ Remark: This result shows that the examples we gave of inseparable elements above are essentially
the only possible ones.

3. The extension K/F is purely inseparable if and only if the minimal polynomial of each α ∈ K over F is

of the form mα(x) = xp
k − d for some nonnegative integer k and some d ∈ F .

◦ Proof: The forward direction follows immediately from (2) above. The reverse direction follows from

the observation above that mα(x) = (x− α)p
k

inside K, so mα has only the single root α.

4. The extension K/F is purely inseparable if and only if K/F is algebraic and the only elements of K
separable over F are the elements of F .

◦ Proof: If K/F is purely inseparable, then by (3) above any α ∈ K has minimal polynomial of the

form mα(x) = xp
k − d = (x − α)p

k

in K. Such a polynomial cannot be separable unless k = 0, in
which case it has the form mα(x) = x− d, implying α ∈ F .
◦ Conversely, suppose K/F is algebraic the only elements of K separable over F are the elements of
F .

◦ For any α ∈ K consider its minimal polynomial, which by hypothesis must be inseparable: then by

(1) it has the form q(x) = qsep(xp
k

) for some positive integer k, where qsep is separable.

◦ But then the minimal polynomial of αp
k

is qsep(x), which is separable. Therefore, αp
k

must be an
element of F , and then α is purely inseparable by (2).

◦ Remark: This result is the reason for the terminology of �purely inseparable�: all elements of the
extension, other than the elements of the ground �eld F themselves, are inseparable over F .

5. The extension L/F is purely inseparable if and only if L/K and K/F are purely inseparable.

◦ Proof: If L/F is purely inseparable, then by (2), for any α ∈ L\F we have αp
k ∈ F for some positive

integer k.

◦ In particular this holds for any α ∈ K\F , so K/F is purely inseparable.

◦ Furthermore, if α ∈ L\F then since αp
k ∈ F we have αp

k ∈ K, so L/K is purely inseparable by (2).

◦ Conversely, suppose L/K and K/F are purely inseparable.

◦ Then by (2), for any α ∈ L we have αp
k1 ∈ K for some k1, and also if β = αp

k1
we have βp

k2 ∈ F
for some k2.

◦ But then αp
k1+k2

= βp
k1 ∈ F , so by (2) again, this means α is purely inseparable, so L/F is purely

inseparable.

6. The composite of purely inseparable extensions over F is also purely inseparable over F .

◦ Proof: Suppose K is a composite of purely inseparable extensions of F .

◦ Then any γ ∈ K is of the form γ =
p(α1, . . . , αi)

q(αi+1, . . . , αi+j)
∈ K where α1, . . . , αi, αi+1, . . . , αi+j are

purely inseparable elements over F and p, q are polynomials with coe�cients in F .

◦ Then by (2), there exist integers k1, . . . , ki+j such that αp
kl

l ∈ F for each 1 ≤ l ≤ i + j. If

M = max(kl), then α
pM

l ∈ F for each l.

◦ Then γp
M

is a rational function with coe�cients from F in the elements αp
M

l ∈ F , so γpM ∈ F .
◦ Hence by (2), γ is purely inseparable over F , and so K/F is purely inseparable.
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7. If K/F has �nite degree and K = F (α1, . . . , αk), then K/F is purely inseparable if and only if each αi
is purely inseparable over F .

◦ Proof: If K/F is purely inseparable, then by (5) each of the extensions F (αi) is purely inseparable,
so each αi is inseparable.

◦ Conversely, if each of the F (αi) is purely inseparable, then by (6) so is their composite �eld K =
F (α1, . . . , αk).

8. Every �nite-degree purely inseparable extension has degree equal to a power of p.

◦ Proof: This follows from applying the degree tower formula to (7) and by noting that any simple
purely inseparable extension has degree equal to a power of p by (3).

• Most of these properties also hold analogously for separable extensions, although in order to prove them we
must use some facts about embeddings of �elds into their algebraic closures:

• Proposition (Properties of Separability): Let L/K and K/F be �eld extensions of characteristic p.

1. If α is algebraic over F , then α is separable over F if and only if there are [F (α) : F ] di�erent embeddings
of F (α)/F into F/F .

◦ Note that an embedding of F (α)/F into F/F is an injective ring homomorphism σ : F (α)→ F such
that σ �xes F (i.e., σ(x) = x for all x ∈ F ).
◦ The idea of this result is that the embeddings of F (α)/F into F/F count the number of di�erent
roots that the minimal polynomial of α has inside F .

◦ Proof: Suppose α is separable over F , let its minimal polynomial be m(x) of degree n, and let L be
the splitting �eld of m over F .

◦ First observe that σ(α) must also be a root of m(x) inside F : this follows simply by noting that
m(σ(α)) = σ(m(α)) = σ(0) = 0.

◦ Now let β be any root of m(x). By the theorem on the uniqueness of splitting �elds, the identity
map on F extends to an isomorphism of L with itself that maps α to β, since the identity map sends
the minimal polynomial of α to the minimal polynomial of β (since they have the same minimal
polynomial m(x)).

◦ In particular, restricting this isomorphism to F (α) yields an embedding of F (α) into F whose image
is F (β).

◦ Since any map σ : F (α) → F �xing F is completely determined by the value of σ(α), we see that
this correspondence yields a bijection between embeddings of F (α)/F into F/F with the distinct
roots β of m(x).

◦ The result then follows immediately, since α is separable if and only if m(x) has deg(m) = [F (α) : F ]
distinct roots.

2. If K/F has �nite degree, then there are at most [K : F ] di�erent embeddings of K/F into F/F .

◦ Our goal is to prove, in a moment, that equality holds if and only if K/F is separable.

◦ Proof: Induct on the number n of generators of K/F . The case n = 1, where K = F (α1), was shown
above, since in this situation the embeddings are in bijection with the distinct roots of the minimal
polynomial of the generator α1.

◦ For the inductive step, suppose the result holds for extensions having k generators and suppose
K = F (α1, . . . , αk+1), and set E = F (α1, . . . , αk), so that K = E(αk+1).

◦ Then any embedding of K/F into E = F is determined by the image of E, which has at most [E : F ]
possible choices by the induction hypothesis, and the image of αk+1, which has at most [K : E], the
degree of the minimal polynomial of αk+1 over E, possible choices once the image of E is determined.

◦ Therefore, the number of embeddings is at most [K : E] · [E : F ] = [K : F ], as claimed.

3. If α is algebraic over F , then α is separable over F if and only if F (α) is separable over F .

◦ Proof: Trivially, if F (α)/F is separable then α is separable over F .

◦ Now suppose α is separable over F and suppose there were an inseparable element β ∈ F (α).

◦ Then by (1), the number nF (β)/F of embeddings of F (β)/F is strictly less than [F (β) : F ].
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◦ Also, by (2), the number of embeddings nF (α)/F (β) of F (α)/F (β) into F (β) = F is at most [F (α) :
F (β)].

◦ Therefore, since any embedding of F (α)/F is determined uniquely by the embeddings of F (β)/F
and F (α)/F (β), the number of embeddings nF (α)/F of F (α)/F is at most nF (α)/F (β) · nF (β)/F <
[F (α) : F (β)] · [F (β) : F ] = [F (α) : F ].

◦ This is a contradiction, since F (α)/F is separable and so by (1), the total number of embeddings
equals [F (α) : F ].

4. If L/F is separable, then L/K and K/F are separable.

◦ Proof: First suppose that L/F is separable, so that every element of L is separable over F . Then
because K is a subset of L, this means every element of K is separable over F , so K/F is separable.

◦ Furthermore, for any α ∈ L, if mF (x) is the minimal polynomial of α over F , then the minimal
polynomial mK(x) of α over K divides it, since mF (α) = 0 in K. All roots of mF (x) are distinct
since α is separable, so all roots of mK(x) are also distinct. Thus, L/K is separable.

5. If K/F has �nite degree, then K/F is separable if and only if there are exactly [K : F ] di�erent
embeddings of K/F into F/F .

◦ Proof: Suppose K = F (α1, . . . , αk), and let Ei = F (α1, . . . , αi) for each 0 ≤ i ≤ k.
◦ By (2), the total number of di�erent embeddings of K/F into F/F is at most [K : F ] by (2).

◦ If K is separable, then by (4), each subextension E(αi+1)/E is separable, and then by (3), the
argument in (1), and a trivial induction, this means the number of embeddings of E(αi+1)/F into
F/F is equal to [E(αi+1) : E] · [E : F ] = [E(αi+1) : F ], since each embedding of E(αi+1)/F is
realized by an embedding of E/F along with an embedding of E(αi+1)/E.

◦ Thus, taking i = k yields that the number of embeddings of K/F into F/F is equal to [K : F ], as
required.

◦ Inversely, if K is not separable, then it contains some inseparable element β.

◦ Then F (β)/F has fewer than [F (β) : F ] embeddings into F/F by (1). Since the number of embed-
dings of K/F (β) is at most [K : F (β)] by (2), by the same argument as above, the total number of
embeddings of K/F into F is strictly fewer than [K : F (β)] · [F (β) : F ] = [K : F ].

6. If K/F is separable, then α is separable over K if and only if α is separable over F .

◦ Proof: If α is separable over F then by the argument in (4), it is separable over K.

◦ First suppose K/F has �nite degree. Suppose α is separable over K and consider the tower
K(α)/K/F .

◦ By (3), K(α)/K is separable, and then by (5), the number of embeddings of K(α)/K into K = F
is equal to [K(α) : K]. Also by (5), the number of embeddings of K/F into F is [K : F ].

◦ Furthermore, it is easy to see by composing the appropriate maps that if we have an embedding
of K/F into F and an embedding of K(α)/K into K = F , then it yields a unique embedding of
K(α)/F into F .

◦ Therefore, the total number of embeddings ofK(α)/F into F equals [K(α) : K]·[K : F ] = [K(α) : F ].
Hence by (5) again, K(α)/F is separable, so α is separable over F .

◦ The general case follows from the �nite-degree case by noting that if the minimal polynomial for
α over K is m(x) = bdx

d + · · · + b0 for bi ∈ K, then α is separable over F (b0, . . . , bd) since it is
separable over K and has the same minimal polynomial over both �elds, and F (b0, . . . , bd)/F has
�nite degree.

7. If K/F has �nite degree and K = F (α1, . . . , αk), then K/F is separable if and only if each αi is separable
over F .

◦ Proof: This follows by repeatedly applying (6) to the tower K/F (α1, . . . , αk−1)/ · · · /F (α1)/F .

8. If L/K and K/F are separable, then L/F is separable.

◦ Proof: If L/K has �nite degree then this follows by writing L = K(α1, . . . , αk) and applying (7).
The general case follows from the �nite-degree case because for each α ∈ L, α is separable over F if
and only if K(α)/F is separable over L by (3).

9. The composite of separable extensions is separable.

36



◦ Proof: If the extensions have �nite degree then this follows from (7) by writing K1 = F (α1, . . . , αk)
and K2 = F (β1, . . . , βl) and noting that K1K2 = F (α1, . . . , αk, β1, . . . , βl).

◦ The general case follows from the �nite-degree case since any element of a composite extension is a
rational function in �nitely many elements from the given �elds.

• Using the properties of separable extensions we can de�ne the �separable closure� of F inside K/F :

• De�nition: If K/F is a �eld extension, we de�ne the maximal separable extension F sep of F inside K to be
the composite of all separable extensions of F inside K.

◦ The elements of F sep consist of all α ∈ K that are separable over F : all such elements are in this
composite since F (α)/F is separable by property (3) of separable extensions.

◦ From this observation, we can see that F sep is indeed the largest sub�eld of K that is separable over F ,
whence the name.

◦ Also, any element of K not in F sep is inseparable over F hence also over F sep: by property (4) of purely
inseparable extensions, this means K/F sep is purely inseparable.

◦ Indeed, F sep is the only sub�eld E of K that is separable over F such that K/E is purely inseparable:
any proper sub�eld of F sep will not have the property that K/E is purely inseparable, since there exist
elements of K not in E that are not purely inseparable over E (namely, any element of F sep not in E).

• Using the separable closure, we can de�ne a notion of separable and inseparable degree for extensions:

• De�nition: If K/F is algebraic, the separable degree [K : F ]sep is de�ned to be the degree [F sep : F ], while
the inseparable degree [K : F ]insep is de�ned to be the degree [K : F sep].

◦ The product of the separable degree and the inseparable degree is the regular degree [K : F ].

◦ Also, since composites and separable extensions of separable extensions are separable, the separable
degree (and hence also the inseparable degree) is multiplicative in towers.

◦ From our properties of purely inseparable extensions, the inseparable degree [K : F ]insep is either ∞ or
a power of the characteristic.

• For simple extensions, we can calculate the separable and inseparable degree using the minimal polynomial
of a generator:

• Proposition (Separable Degree of Simple Extension): Suppose α is algebraic over F with minimal polynomial

m(x) = msep(xp
k

) where k is a nonnegative integer and msep(x) is a separable polynomial. Then F sep =

F (αp
k

), so that [F (α) : F ]sep = deg(msep) and [F (α) : F ]insep = pk.

◦ Proof: Observe that αp
k

is a root of msep since msep(αp
k

) = m(α) = 0, so αp
k

is separable over F . Thus,

F (αp
k

) is separable over F by property (3) of separable extensions.

◦ Furthermore, since K/F (αp
k

) is generated by α, and αp
k ∈ F (αp

k

), by properties (3) and (7) of purely

inseparable extensions we see that K/F (αp
k

) is purely inseparable.

◦ But this means F (αp
k

) must be F sep by the uniqueness property we noted above.

◦ For the degree calculations we have [F (αp
k

) : F ] = deg(msep) since msep is the minimal polynomial of

αp
k

over F , and also [F (α) : F (αp
k

)] = pk since xp
k − αpk is the minimal polynomial of α over F (αp

k

).

• Example: For F = Fp(t) and K = F (α) where α is a root of the irreducible polynomial q(x) = x2p − txp + t,
we have [K : F ]sep = 2 and [K : F ]insep = p.

◦ Note that q is irreducible in F [x] since it is Eisenstein at t. Explicitly, F sep is generated by a root of
msep(x) = x2 − tx+ t.
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2.4.3 Transcendental Extensions and Transcendence Degree

• We now discuss in more detail the structure of transcendental extensions.

◦ If K/F is any �eld extension, let E be the �eld of elements algebraic over F inside K. Then, since
algebraic extensions of algebraic extensions are algebraic, any element of K/E not in E must be tran-
scendental over F .

◦ Our goal is to describe how to analyze this �transcendental part� of the extension.

◦ To describe the elements of K, the idea is to identify a minimal set of independent generators for K/E,
in analogy with the situation in vector spaces.

◦ Here, we do not merely need the generators to be linearly independent, but rather algebraically indepen-
dent:

• De�nition: Let K/F be a �eld extension. We say a subset S of K is algebraically dependent over F if there
exists a �nite subset {s1, . . . , sn} ∈ S and a nonzero polynomial p ∈ F [x1, . . . , xn] such that p(s1, . . . , sn) = 0.
If there exists no such p for any �nite subset of S, we say S is algebraically independent.

◦ The general idea here is that a set of elements is algebraically dependent if they satisfy some algebraic
(i.e., polynomial) relation over F .

◦ Example: Over Q, the set {π, π2} is algebraically dependent, since p(x, y) = x2 − y has p(π, π2) = 0.

◦ Example: Over Q, the set { 3
√

2} is algebraically dependent, since p(x) = x3 − 2 has p( 3
√

2) = 0.

◦ More generally, the set {α} is algebraically independent over F if and only if α is transcendental over F .

◦ Example: Over R, the set {x+ y, x2 + y2} is algebraically independent.

◦ Example: Over R, the set {x+y, x2+y2, x3+y3} is algebraically dependent, since p(a, b, c) = a3−3ab+2c
has p(x+ y, x2 + y2, x3 + y3) = 0.

◦ Example: If x1, . . . , xn are indeterminates inside F (x1, . . . , xn), the function �eld in n variables, then
the set {x1, . . . , xn} is algebraically independent over F .

• The notion of algebraic independence generalizes the notion of linear independence, and as such the two
concepts are related in various ways.

◦ It is easy to see that any subset of an algebraically independent set is algebraically independent, while
any set containing an algebraically dependent set is algebraically dependent.

◦ Also, we observe that linear dependence is a special type of algebraic dependence; namely, a set is linearly
dependent precisely when it is algebraically dependent where the polynomial p is linear.

◦ We have already de�ned the algebraic notion of the span of a set S: it is simply the sub�eld generated
by S.

◦ We might therefore hope to de�ne a �transcendence basis� to be an algebraically independent set that
generates the extension K/F .

◦ Unfortunately, such a set need not exist: for example, Q(
√

2)/Q has no such set, because there are no
transcendental elements at all.

◦ The correct analogy is instead to observe that a basis for a vector space is a maximal linearly independent
set:

• De�nition: Let K/F be a �eld extension. A transcendence base for K/F is an algebraically independent
subset S of K that is maximal in the set of all algebraically independent subsets of K.

◦ Remark: The term �transcendence basis� is also used occasionally. We will prefer to use the word �base�
to keep a distinction between a basis of a vector space and a transcendence base of a �eld extension.

◦ By a straightforward Zorn's lemma argument, every extension has a transcendence base.

◦ Example: The empty set ∅ is a transcendence base for Q(
√

2)/Q. More generally, K/F is algebraic if
and only if ∅ is a transcendence base.

◦ Example: The set {x} is a transcendence base for F (x) over F .
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• Here are some of the fundamental properties of transcendence bases, many of which are analogous to properties
of vector spaces:

• Proposition (Transcendence Bases): Suppose K/F is a �eld extension and S is a subset of K.

1. If S is algebraically independent and α ∈ K, then S ∪ {α} is algebraically independent over F if and
only if α is transcendental over F (S).

◦ Proof: This is the algebraic analogue of the statement that if S is linearly independent, then S∪{α}
is linearly independent if and only if α is not in the span of S.

◦ Suppose S∪{α} is algebraically dependent. Then there exists si ∈ S and p ∈ F [x] with p(α, s1, . . . , sn) =
0 and p 6= 0. View p as a polynomial in its �rst variable with coe�cients in F [s1, . . . , sn]: there must
be at least one term involving α, as otherwise p would give an algebraic dependence in S. Then α
is the root of a nonzero polynomial with coe�cients in F [s1, . . . , sn] ⊆ F (s1, . . . , sn) ⊆ F (S), so it
is algebraic over F (S).

◦ Conversely, suppose that α is algebraic over F (S). Then α is the root of some nonzero polynomial
with coe�cients in F (S). Each coe�cient of this polynomial is an element of F (S); clearing denom-
inators yields a nonzero polynomial p with coe�cients in F [s1, . . . , sn] for the elements si ∈ S that
appear in these coe�cients. This polynomial yields an algebraic dependence in S ∪ {α}.

2. S is a transcendence base of K/F if and only if K is algebraic over F (S).

◦ Proof: This follows from (1) and the maximality of transcendence bases: if S is transcendence base
if and only if no elements in K can be adjoined to S while preserving algebraic independence, and
by (1) this is equivalent to saying that all elements in K are algebraic over F (S).

3. If T is a subset of K such that K/F (T ) is algebraic, then T contains a transcendence base of K/F .

◦ Proof: Apply Zorn's lemma to the collection of all algebraically independent subsets of T , partially
ordered by inclusion.

◦ A maximal element M in this collection must then be a transcendence base for K/F : if β ∈ K then
β must be algebraic over K/F (M) by the maximality of M , and then M is a transcendence base by
(2).

4. If T is an algebraically independent subset of K, then T can be extended to a transcendence base of
K/F .

◦ Proof: This is the analogue of the fact that every linearly independent subset can be extended to a
basis, and the proof follows from a similar Zorn's lemma argument.

5. If S = {s1, . . . , sn} is a transcendence base for K/F and T = {t1, . . . , tm} is any algebraically inde-
pendent set, then there is a reordering of S, say {a1, . . . , an}, such that for each 1 ≤ k ≤ m, the set
{t1, t2, . . . , tk, ak+1, . . . , an} is a transcendence base for K/F .

◦ Proof: This is the analogue of the replacement theorem, and the proof proceeds inductively in
essentially the same way. (We will omit the details.)

6. If S is a (�nite) transcendence base for K/F , then any subset T of K having larger cardinality than S
must be algebraically dependent.

◦ Proof: If S = {s1, . . . , sn} is �nite, apply the replacement theorem (5) to S and T . At the end of the
replacement, the result is that {t1, . . . , tn} is a transcendence base. But then by (2), any additional
element of T would be algebraic over {t1, . . . , tn}, contradicting the algebraic independence of T .

7. Any two transcendence bases S and T for K/F have the same cardinality.

◦ Proof: If the bases are in�nite the result is immediate. If S has �nite cardinality n, then the result
follows by applying (6), since then T 's cardinality m must satisfy m ≤ n (since T is algebraically
independent and S is a transcendence base) and also n ≤ m (since S is algebraically independent
and T is a transcendence base).

• The result of the last part of the proposition shows that any two transcendence bases have the same cardinality,
and in analogy with the situation for vector spaces, this cardinality behaves somewhat like an extension degree:

• De�nition: Let K/F be a �eld extension. The transcendence degree of K/F , denoted trdeg(K/F ), is the
cardinality of any transcendence base of K/F .
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• The key property of transcendence degree is that it is additive in towers:

• Theorem (Transcendence in Towers): If L/K/F is a tower of extensions, then trdeg(L/F ) = trdeg(L/K) +
trdeg(K/F ).

◦ The idea here is quite simple: we want to show that the union of transcendence bases for K/F and L/K
gives a transcendence base for L/F .

◦ Proof: First suppose that both trdeg(K/F ) and trdeg(L/K) are �nite, and let S = {s1, . . . , sn} and
T = {t1, . . . , tm} be transcendence bases forK/F and L/K. Then S∩T = ∅ since each ti is transcendental
over K.

◦ Furthermore, K is algebraic over F (S), so K(T ) is algebraic over F (T )(S) = F (S ∪ T ) by our results on
algebraic extensions.

◦ Then since L is algebraic over K(T ), we deduce that L is algebraic over F (S ∪T ), also by our results on
algebraic extensions.

◦ Thus, by property (3) above, S ∪ T contains a transcendence base of L/F .

◦ Finally, we claim S ∪ T is algebraically independent over F , so suppose that p(s1, . . . , sn, t1, . . . , tm) = 0
for some p ∈ F [x1, . . . , xn, y1, . . . , ym].

◦ Separate monomial terms to write p(s1, . . . , sn, t1, . . . , tm) = 0 as a sum
∑
fi(s1, . . . , sn)gi(t1, . . . , tm) = 0

with fi ∈ F [x1, . . . , xn] and gi ∈ F [y1, . . . , ym].

◦ Now, since T is algebraically independent over F (S) ⊆ K, all of the fi(s1, . . . , sn) must be zero (as
elements of K). But since S is algebraically independent over F , that means all of the polynomials
fi(x1, . . . , xn) must be zero (as polynomials).

◦ This means p is the zero polynomial, and so S ∪ T is algebraically independent.

• Fields that are generated by a transcendence base are particularly convenient:

• De�nition: The extension K/F is purely transcendental if K = F (S) for some transcendence base S of K/F .

◦ Equivalently, K/F is purely transcendental when it is generated (as a �eld extension) by an algebraically
independent set.

◦ If S = {s1, . . . , sn}, then the purely transcendental extensionK = F (S) is ring-isomorphic to the function
�eld F (x1, . . . , xn) in n variables: it is not hard to check that the map sending si to xi is an isomorphism.

◦ If K/F has transcendence degree 1 or 2 and E/F is an intermediate extension, then in fact E is also
purely transcendental: the degree-1 case is a theorem of Lüroth, while the degree-2 case is a theorem of
Castelnuovo. In higher degrees, there do exist extensions that are not purely transcendental, but it is
not easy to verify this fact.

• Since any extension K/F has a transcendence base S, property (2) of transcendence bases implies that K/F
is an algebraic extension of the purely transcendental extension F (S)/F .

◦ This shows that any �eld extension can be written as an algebraic extension of a purely transcendental
extension.

◦ One might wonder whether it is possible to reverse the order and put the algebraic piece �rst: the answer
turns out to be no, for reasons related to algebraic geometry.

◦ For example, if F is algebraically closed (e.g., C) any example of a transcendental extension that is not
purely transcendental cannot have the order reversed, since there are no algebraic extensions of C.
◦ One example of such a �eld is the elliptic function �eld C(t,

√
t3 + t), which arises as the function

�eld of the elliptic curve y2 = x3 + x; the relationship between these two follows from the fact that
C(t,
√
t3 + t) ∼= C[x, y]/(y2 − x3 − x).

◦ We have barely scratched the surface of what can be said here, but as a closing remark we note that much
of elementary algebraic geometry is concerned with understanding these connections between algebraic
properties of function �elds and geometric properties of varieties.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2020. You may not reproduce or distribute this
material without my express permission.
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