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1 Integers, Polynomials, and Rings

Our goal in this chapter is to study the structure of polynomials, generalizing the idea of a �polynomial with real
coe�cients� familiar from elementary algebra. As motivation, we will begin by brie�y reviewing the arithmetic
of the integers (Z) and the integers modulo m (Z/mZ), and then describe many of the analogous properties of
polynomials, including the division algorithm, the Euclidean algorithm, and factorization into irreducibles. Then
we will discuss some additional features unique to polynomials, such as various criteria for irreducibility along with
polynomial modular arithmetic. Finally, we give a brief overview of rings and some of their basic properties, and
describe how rings yield a generalization of much of our discussion of integers and polynomials.

1.1 The Integers and Modular Arithmetic

• We are all quite familiar with the integers Z, consisting of the natural numbers N (1, 2, 3, 4, . . . ), along with
their negatives (−1, −2, −3, −4, . . . ) and zero (0). There are two natural binary arithmetic operations de�ned
on the integers, namely addition (+) and multiplication (·), along with the unary operation of negation (−).

• It is not quite so simple to prove things about the integers without a solid set of properties to work from. For
concreteness, one may give a completely explicit axiomatic description of the integers as follows:
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• �De�nition�: The integers are a set Z along with two (closed) binary1 operations + and ·, obeying the following
properties2:

[I1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any integers a, b, c.

[I2] The operation + is commutative: a+ b = b+ a for any integers a, b.

[I3] There is an additive identity 0 satisfying a+ 0 = a for all integers a.

[I4] Every integer a has an additive inverse −a satisfying a+ (−a) = 0.

[I5] The operation · is associative: a · (b · c) = (a · b) · c for any integers a, b, c.

[I6] The operation · is commutative: a · b = b · a for any integers a, b.

[I7] There is a multiplicative identity 1 6= 0 satisfying 1 · a = a for all integers a.

[I8] The operation · distributes over +: a · (b+ c) = a · b+ a · c for any integers a, b, c.

Furthermore, there is a subset of Z, called N, such that

[N1] For every a ∈ Z, precisely one of the following holds: a ∈ N, a = 0, or (−a) ∈ N.
[N2] N is closed under + and ·: for any a, b ∈ N, both a+ b and a · b are in N.
[N3] Every nonempty subset S of N contains a smallest element: that is, an element x ∈ S such that if y ∈ S,

then either y = x or y − x ∈ N.

• Remark: The axiom (N3) is called the well-ordering principle. It is the axiom that di�erentiates the integers
from other number systems such as the rational numbers or the real numbers (both of which obey all of the
other axioms).

◦ One may use the axiomatic description of the integers to establish all of the standard properties of
arithmetic: for example, we can de�ne the binary operation of subtraction by setting a− b = a+ (−b),
as well as the order relation �<� by saying a < b if and only if b − a ∈ N. (We de�ne b > a to be the
same thing.)

◦ Using the axioms, one can then establish results like the following: the elements 0 and 1 are unique,
additive inverses are unique, 1 is a positive integer, a + b = a + c implies b = c, 0 · a = 0 for any a,
a · b = a · c and a 6= 0 implies b = c, there are no integers between 0 and 1, and so forth.

• It is incredibly tedious to write proofs relying solely on axiomatic calculations, so from this point we will
simply work in standard notation.

1.1.1 Divisibility, GCDs, the Euclidean Algorithm, and Prime Factorization

• So far we have discussed addition, subtraction, and multiplication. Division is trickier, because it is not always
possible to divide one integer by another and obtain an integer quotient, so �rst we analyze the situation when
�division� is possible:

• De�nition: If a 6= 0, we say that a divides b (equivalently, b is divisible by a), written a|b, if there is an integer
k with b = ka.

◦ Examples: 2|4, (−7)|7, and 6|0.

• There are a number of basic properties of divisibility that follow immediately from the de�nition and properties
of arithmetic:

◦ If a|b, then a|bc for any c.
◦ If a|b and b|c, then a|c.
◦ If a|b and a|c, then a|(xb+ yc) for any x and y.

1The de�nition of a binary operation means that for any two integers a and b, the symbols a+ b and a · b are always de�ned and are
integers. Some authors list these properties explicitly as part of their list of axioms.

2To be a proper de�nition, we would also need to establish that there actually is a set with operations obeying these properties,
which turns out to be rather di�cult. But there are various constructions for Z using set theory, which we will not detail here.
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◦ If a|b and b|a, then a = b or a = −b.
◦ If a|b, and a, b > 0, then a ≤ b.
◦ For any m 6= 0, a|b is equivalent to (ma)|(mb).

• If 0 < b < a and b does not divide a, we can still attempt to divide a by b to obtain a quotient and remainder:
this is a less-explicit version of the long-division algorithm familiar from elementary school. Formally:

• Theorem (Division Algorithm): If a and b are positive integers, then there exist unique integers q and r such
that a = qb+ r with 0 ≤ r < b. Furthermore, r = 0 if and only if b|a.

◦ Example: For a = 18591 and b = 2291, we have 18591 = 8 · 2291 + 263, so that q = 8 and r = 263.

◦ The proof of the existence of q and r relies on the well-ordering principle, and can be shown using
induction. Uniqueness follows by rearranging qb + r = a = q′b + r′ to obtain r − r′ = b(q′ − q): since
−b < r − r′ < b, this means q′ − q is an integer between −1 and 1, and hence must be 0.

• De�nition: If d|a and d|b, then d is a common divisor of a and b. If a and b are not both zero, then there are
only a �nite number of common divisors: the largest one is called the greatest common divisor, or gcd, and
denoted by gcd(a, b).

◦ Warning: Many authors use the notation (a, b) to denote the gcd of a and b: this stems from the notation
used for ideals in ring theory. The author of these notes generally dislikes using this notation and will
write gcd explicitly, since otherwise it is easy to confuse the gcd with an ordered pair (a, b).

◦ Example: The positive divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. The positive divisors of 42 are 1, 2, 3,
6, 7, 14, 21, 42. The common (positive) divisors are 1, 2, 3, and 6, and the gcd is therefore 6.

• De�nition: If gcd(a, b) = 1, we say a and b are relatively prime. For example, 5 and 12 are relatively prime.

• Here are a few useful facts about greatest common divisors:

◦ If m > 0, then m · gcd(a, b) = gcd(ma,mb).

◦ If d > 0 divides both a and b, then gcd(a/d, b/d) = gcd(a, b)/d.

◦ If a and b are both relatively prime to m, then so is ab.

◦ For any integer x, gcd(a, b) = gcd(a, b+ ax).

◦ If c|ab and b, c are relatively prime, then c|a.

• It may seem di�cult to compute the gcd of two large integers, since the most natural procedure would be to
write down lists of all divisors of the two integers and then compare them. However, there is a much more
e�cient method for computing gcds:

• Theorem (Euclidean Algorithm): Given integers 0 < b < a, repeatedly apply the division algorithm as follows,
until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + rk+1

rk = qk+1rk+1.

Then gcd(a, b) is equal to the last nonzero remainder, rk+1.

◦ Proof: First observe that the algorithm will eventually terminate, because b > r1 > r2 > · · · ≥ 0, and
the well-ordering principle dictates that there cannot exist an in�nite decreasing sequence of nonnegative
integers.

◦ We now claim that gcd(a, b) = gcd(b, r1): this follows because gcd(b, r1) = gcd(b, a − q1b) = gcd(b, a)
from the gcd properties above.
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◦ Now we can repeatedly apply this fact to see that gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rk, rk+1) =
rk+1 since rk+1 divides rk.

• Corollary (GCD as a Linear Combination): If d = gcd(a, b), then there exist integers x and y with d = xa+yb.

◦ Proof: By rearranging each equation in the Euclidean algorithm, we see that the newest remainder is a
linear combination of the two previous terms.

◦ By an easy induction, we therefore see that every remainder can be written as an explicit linear combi-
nation of a and b (since the �rst two remainders clearly can be so written). In particular, rk+1 = xa+ yb
for some integers x and y.

• Example: Find the gcd of 1598 and 4879 using the Euclidean algorithm, and write the gcd explicitly as a
linear combination of 1598 and 4879.

◦ First, we use the Euclidean algorithm:

4879 = 3 · 1598 + 85

1598 = 18 · 85 + 68

85 = 1 · 68 + 17

68 = 4 · 17

and so the gcd is 17 .

◦ For the linear combination, we solve for the remainders:

85 = = 1 · 4879− 3 · 1598
68 = 1598− 18 · 85 = −18 · 4879 + 55 · 1598
17 = 85− 1 · 68 = 19 · 4879− 58 · 1598

so we obtain 17 = 19 · 4879− 58 · 1598 .

• The other fundamental fact about the integers is that they possess �unique prime factorization�.

• De�nition: If p > 1 is an integer, we say it is prime if there is no d with 1 < d < p such that d|p: in other
words, if p has no positive divisors other than 1 and itself. If n > 1 is not prime, meaning that there is some
d|n with 1 < d < n, we say n is composite. (The integer 1 is neither prime nor composite.)

◦ The �rst few primes are 2, 3, 5, 7, 11, 13, 17, 19, and so forth.

◦ Remark: In more advanced contexts, the following equivalent de�nition of a prime is often used instead:
the integer p > 1 is prime if and only if p|ab implies that p|a or p|b.

• The prime numbers are often called the �building blocks under multiplication�, because every positive integer
can be written as the product of prime numbers in an essentially unique way:

• Theorem (Fundamental Theorem of Arithmetic): Every integer n > 1 can be factored into a product of
primes, and this factorization is unique up to reordering of the factors.

◦ To save space, we group equal primes together when actually writing out the canonical prime factoriza-
tion: thus, 12 = 22 · 3, 720 = 22 · 32 · 5, and so forth.

◦ Proof: The existence of a prime factorization follows by induction on n: if n > 1 is prime, we are done,
and if n > 1 is not prime, then n is the product of two smaller positive integers, which in turn have
prime factorizations.

◦ Uniqueness also follows inductively, by showing that any two factorizations of n must have at least one
prime in common (cancelling it then allows an appeal to the inductive hypothesis).

• Prime factorizations yield an easy avenue for discussing divisibility and gcds:

• Proposition (Divisibility and Factorizations): If a =
∏j

i=1 p
ai
i and b =

∏j
i=1 p

bi
i for distinct primes pi, then

a|b if and only if ai ≤ bi for each i. In particular, gcd(a, b) =
∏j

i=1 p
min(ai,bi)
i .
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◦ Proof: We observe that if b = ak and k =
∏j

i=1 p
ki
i , then ai+ki = bi. Since all exponents are nonnegative,

saying that such an integer k exists is equivalent to saying that ai ≤ bi for all i.
◦ The statement about the gcd is immediate, since the exponent of pi in the gcd is the largest integer that
is ≤ ai and ≤ bi , which is simply the minimum of ai and bi.

1.1.2 Modular Congruences and Z/mZ

• De�nition: If m is a positive integer and m divides b − a, we say that a and b are congruent modulo m (or
equivalent modulo m), and write �a ≡ b (modulo m)�.

◦ Notation: As shorthand we usually write �a ≡ b (mod m)�, or even just �a ≡ b� when the modulus m is
clear from the context.

◦ The statement a ≡ b (mod m) can be thought of as saying �a and b are equal, up to a multiple of m�.

◦ Observe that if m|(b − a), then (−m)|(b − a) as well, so we do not lose anything by assuming that the
modulus m is positive.

◦ Example: 3 ≡ 9 (mod 6), since 6 divides 9− 3 = 6.

◦ Example: −2 ≡ 28 (mod 5), since 5 divides 28− (−2) = 30.

◦ Example: 0 ≡ −666 (mod 3), since 3 divides −666− 0 = −666.

◦ If m does not divide b− a, we say a and b are not congruent mod m, and write a 6≡ b (mod m).

◦ Example: 2 6≡ 7 (mod 3), because 3 does not divide 7− 2 = 5.

• Modular congruences share a number of properties with equalities:

• Proposition (Modular Congruences): For any positive integer m and any integers a, b, c, d, the following are
true:

1. a ≡ a (mod m).

2. a ≡ b (mod m) if and only if b ≡ a (mod m).

3. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

4. If a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).

5. If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

6. If a ≡ b (mod m), then ac ≡ bc (mod mc) for any c > 0.

7. If d|m, then a ≡ b (mod m) implies a ≡ b (mod d).

• The �rst three properties above demonstrate that modular equivalence is an equivalence relation3.

• We would now like to study �arithmetic modulo m�. To do this, we need to de�ne the underlying objects of
study:

• De�nition: If a is an integer, the residue class of a modulo m, denoted a, is the collection of all integers
congruent to a modulo m. Observe that a = {a+ km, k ∈ Z}.

• Example: The residue class of 2 modulo 4 is the set {. . . ,−6,−2, 2, 6, 10, 14, . . . }, while the residue class of 2
modulo 5 is the set {. . . ,−8,−3, 2, 7, 12, 17, . . . }.

• Here are a few fundamental properties of residue classes:

• Proposition (Properties of Residue Classes): Suppose m is a positive integer. Then

3A binary relation ∼ de�ned on a nonempty set S is called an equivalence relation if it obeys the following three axioms:

[E1] For any a ∈ S, a ∼ a.

[E2] For any a, b ∈ S, a ∼ b implies b ∼ a.

[E3] For any a, b, c ∈ S, a ∼ b and b ∼ c implies a ∼ c.

Example: Equality of elements in any set (e.g., equality of real numbers) is an equivalence relation.
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1. If a and b are integers with respective residue classes a, b modulo m, then a ≡ b (mod m) if and only if
a = b.

◦ Proof: If a = b, then by de�nition b is contained in the residue class a, meaning that b = a+ km for
some k. Thus, m divides b− a, so a ≡ b (mod m).

◦ Conversely, suppose a ≡ b (mod m). If c is any element of the residue class a, then by de�nition
c ≡ a (mod m), and therefore c ≡ b (mod m).

◦ Therefore, c is an element of the residue class b, but since c was arbitrary, this means that a is
contained in b.

◦ By the same argument with a and b interchanged, we see that b is also contained in a, and thus
a = b.

2. Two residue classes modulo m are either disjoint or identical.

◦ Proof: Suppose that a and b are two residue classes modulo m. If they are disjoint, we are done, so
suppose there is some c contained in both.

◦ Then c ≡ a (mod m) and c ≡ b (mod m), so a ≡ b (mod b). Then by property (1), we conclude
a = b.

3. There are exactly m distinct residue classes modulo m, given by 0, 1, . . . , m− 1.

◦ Proof: By the division algorithm, for any integer a there exists a unique r with 0 ≤ r < m such that
a = qm+ r with q ∈ Z.
◦ Then a ≡ r (mod m), and so every integer is congruent modulo m to precisely one of the m integers
0, 1, ... , m − 1, which is to say, every integer lies in precisely one of the residue classes 0, 1, . . . ,
m− 1.

• De�nition: The collection of residue classes modulo m is denoted Z/mZ (read as �Z modulo mZ�).

◦ Notation: Many other authors denote this collection of residue classes modulo m as Zm. We will avoid
this notation and exclusively use Z/mZ (or its shorthand Z/m), since Zm is used elsewhere in algebra
and number theory for a di�erent object.

◦ By our properties above, Z/mZ contains exactly m elements 0, 1, . . . , m− 1.

• We can now write down �addition and multiplication� modulo m using the residue classes of Z/mZ.

◦ The fact that a ≡ b (mod m) and c ≡ d (mod m) imply a+ c ≡ b+ d (mod m) and ac ≡ bd (mod m) tell
us that if we want to compute a+ c modulo m, then no matter which element b in the residue class of a
and which element d in the residue class of c we take, the sum b+ d will lie in the same residue class as
a+ c, and the product bd will lie in the same residue class as ac.

◦ Thus, everything makes perfectly good sense if we label the residue classes with the integers 0 through
m− 1 and simply do the arithmetic with those residue classes.

• De�nition: The addition operation in Z/mZ is de�ned as a + b = a+ b, and the multiplication operation is
de�ned as a · b = ab.

◦ Here are the addition and multiplication tables for Z/5Z:
+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

◦ Note that, for example, the statement 2 + 4 = 1 is now perfectly acceptable (and correctly stated with
the equals sign): it says that if we take any element in the residue class 2 (modulo 5) and add it to any
element in the residue class 4 (modulo 5), the result will always lie in the residue class 1 (modulo 5).
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◦ Here are the addition and multiplication tables for Z/4Z:
+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

• Arithmetic modulo m is commonly described by ignoring residue classes entirely and only working with the
integers 0 through m− 1, with the result of every computation �reduced modulo m� to obtain a result lying
in this range.

◦ Thus, for example, to compute 3 + 10 modulo 12, we would add to get 13 and then �reduce�, yielding 1
modulo 12. Similarly, to �nd 3 · 10 modulo 12, we compute 3 · 10 = 30 and then reduce to obtain a result
of 6 modulo 12.

◦ However, this is a rather cumbersome and inelegant description. This de�nition is often used in pro-
gramming languages, where �a mod m�, frequently denoted �a%m�, is de�ned to be a function returning
the corresponding remainder in the interval [0,m− 1].

◦ Observe that with this de�nition, it is not true that (a + b)%m = (a%m) + (b%m), nor is is true that
ab%m = (a%m) · (b%m), since the sum and product may each exceed m. Instead, to obtain an actually
true statement, one would have to write something like ab%m = [(a%m) · (b%m)]%m.

◦ In order to avoid such horrible kinds of statements, the best viewpoint really is to think of the statement
a ≡ b (mod m) as a congruence that is a �weakened� kind of equality, rather than always reducing each
of the terms to its residue in the set {0, 1, . . . ,m− 1}.
◦ The other reason we adopt the use of residue classes is that they extend quite well to more general
settings where we may not have such an obvious set of �representatives�.

• The arithmetic in Z/mZ shares many properties with the arithmetic in Z (which should not be surprising,
since Z/mZ was constructed using Z):

• Proposition (Basic Arithmetic in Z/mZ): For any positive integer m the following properties of residue classes
in Z/mZ hold:

1. The operation + is associative: a+ (b+ c) = (a+ b) + c for any a, b, and c.

2. The operation + is commutative: a+ b = b+ a for any a and b.

3. The residue class 0 is an additive identity: a+ 0 = a for any a.

4. Every residue class a has an additive inverse −a satisfying a+ (−a) = 0.

5. The operation · is associative: a · (b · c) = (a · b) · c for any a, b, and c.
6. The operation · is commutative: a · b = b · a for any a and b.

7. The operation · distributes over +: a · (b+ c) = a · b+ a · c for any a, b, and c.
8. The residue class 1 is a multiplicative identity: 1 · a = a for any a.

◦ Proof: For (1), by de�nition we have a + (b + c) = a + b+ c = a+ (b+ c) and also (a + b) + c =

a+ b+ c = (a+ b) + c.

◦ But by the associative property [A1] in Z, we know that a+ (b+ c) = (a+ b) + c, so the associated
residue classes are also equal.

◦ The other properties follow in a similar way from the corresponding properties of the integers.

• The arithmetic in Z/mZ shares many properties with the arithmetic in Z. However, there are some very
important di�erences.

◦ For example, if a, b, c are integers with ab = ac and a 6= 0, then we can �cancel� a from both sides to
conclude that b = c.

◦ However, this does not always work in Z/mZ: for example, 2 · 1 = 2 · 4 modulo 6, but 1 6= 4 modulo 6.
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◦ The issue here is that 2 and the modulus 6 are not relatively prime: 6 divides 2(4 − 1), but 6 does not
divide 4− 1.

• We can explain the issue using modular congruences:

• Theorem (Invertible Elements in Z/mZ): If m > 0, then the residue class a has a multiplicative inverse in
Z/mZ if and only if a and m are relatively prime.

◦ Proof: First suppose that a and m are relatively prime. Then by our analysis of the Euclidean algorithm,
there exist integers x and y such that xa+ ym = 1: then xa ≡ 1 (mod m), which is to say x · a = 1, so
that a has a multiplicative inverse as claimed.

◦ Conversely, suppose a were invertible in Z/mZ with inverse x. Then we would have x · a = 1, or
equivalently xa ≡ 1 (mod m), and this is in turn equivalent to saying there exists an integer y with
xa+ ym = 1. But then the common divisor d would divide xa+ ym hence divide 1, and so a and m are
relatively prime.

• The proof above shows that we can compute the inverse of an invertible residue class using the Euclidean
algorithm.

• Example: Find the multiplicative inverse of 9 in Z/11Z.

◦ Using the Euclidean algorithm, we can obtain 1 = 5 · 11 − 6 · 9. Reducing both sides modulo 11 yields

1 = −6 · 9, and since −6 = 5, this shows that the multiplicative inverse of 9 in Z/11Z is 5 .

• The case where the modulus is prime is of particular importance:

• Corollary: If p is a prime number, then every nonzero residue class in Z/pZ has a multiplicative inverse.

◦ Proof: If p is prime, then p is relatively prime to each of 1, 2, ... , p − 1 and hence all of the nonzero
residue classes modulo p are invertible.

• Equivalently, this corollary states that Z/pZ is a �eld.

◦ We will discuss the structure of �elds at great length later, but to summarize: a �eld is a set F together
with two binary operations of addition (+) and multiplication (·) both of which are associative and
commutative and where · distributes over +, that also possesses an additive identity 0 and a multiplicative
identity 1 6= 0, and where every element has an additive inverse and every nonzero element has a
multiplicative inverse.

◦ Standard (and likely familiar) examples of �elds include the rational numbers Q, the real numbers R,
and the complex numbers C.
◦ Frequently, the �eld Z/pZ is also denoted Fp (�the �eld with p elements�), and sometimes in older
literature as GF (p) (�the Galois Field with p elements�) since these �elds were �rst extensively studied
by Évariste Galois. The uses of the word �the� are justi�ed, as we will show later in our study of �elds
that (up to relabeling the elements), there is only one �eld with p elements for any prime p.

1.2 Polynomials

• We begin by discussing the structure of polynomials whose coe�cients lie in a �eld.

◦ Polynomials with real coe�cients (like p(x) = 1+x2 or q(x) = 3+πx2) are likely familiar from elementary
algebra.

◦ Unlike in elementary algebra, however, our polynomials will be �formal symbols� rather than functions.
We will soon exploit the connection between polynomials and functions, but, as we will discuss, there
are very important reasons for us to take a more abstract approach to polynomials than simply viewing
them as functions.

• De�nition: Let F be a �eld and x be an indeterminate. A polynomial in x with coe�cients in F consists of
a formal sum anx

n + an−1x
n−1 + · · ·+ a1x+ a0, for an integer n ≥ 0 and where each element ai ∈ F .
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◦ The term �indeterminate� is deliberately unde�ned in the de�nition above. A more concrete4 (but vastly
less intuitive) de�nition of polynomials can be given using Cartesian products, but we will not use it.

◦ If an 6= 0, we say that the polynomial has degree n and if an = 1 we say the polynomial is monic. (By
convention, the degree of the zero polynomial 0 is −∞.)

◦ The leading term of the polynomial is its highest-degree term (i.e., anxn) and its leading coe�cient is
the corresponding coe�cient (i.e., an).

◦ We will employ the traditional �function� notation for polynomials (e.g., by writing a polynomial as
p(x) = x2 + 5), and also often drop the variable portion (e.g., by referring to �the polynomial p�) when
convenient. We reiterate, however, that our polynomials are not functions, but rather formal sums.

• As is familiar from elementary algebra, the polynomials with coe�cients in F have natural arithmetic opera-
tions:

• De�nition: The set of polynomials in x with coe�cients in F , denoted F [x], has the two operations of addition
and multiplication de�ned as follows:

◦ Addition is de�ned �termwise�:

(anx
n+an−1x

n−1+· · ·+a1x+a0)+(bnx
n+bn−1x

n−1+· · ·+b1x+b0) = (an+bn)xn+(an−1+bn−1)xn−1+· · ·+(a0+b0).

◦ Multiplication is de�ned �rst on �monomials� (polynomials with only one nonzero coe�cient), via (axn) ·
(bxm) = abxn+m, and then extended to arbitrary polynomials via the distributive laws. Explicitly,

(a0+a1x+a2x
2+· · ·+anxn)·(b0+b1x+b2x

2+· · ·+bmxm) = a0b0+(a1b0+a0b1)x+(a2b0+a1b1+a0b2)x2+· · ·+anbmxn+m

where the coe�cient of xj in the product is given by
∑j

k=0 akbj−k.

◦ It is tedious (but not di�cult) to verify the basic properties of arithmetic for F [x]: for example, that
polynomial addition and multiplication are commutative and associative, that multiplication distributes
over addition, that the polynomial 0 is an additive identity and the polynomial 1 is a multiplicative
identity, and so forth.

• Example: In Q[x], �nd p(x) + q(x) and p(x) · q(x) for p(x) = 2 + 3x and q(x) = 3 + 2x.

◦ We have p(x) + q(x) = 5 + 5x , while p(x)q(x) = 6 + (4 + 9)x+ 6x2 = 6 + 13x+ 6x2 .

• Example: In F5[x], �nd p(x) + q(x) and p(x) · q(x) for p(x) = 2 + 3x and q(x) = 3 + 2x.

◦ We have p(x) + q(x) = 5 + 5x = 0 , while p(x)q(x) = 6 + (4 + 9)x+ 6x2 = 1 + 3x+ x2 .

• Degrees behave quite well under addition and multiplication:

• Proposition (Properties of Degree): If p and q are any polynomials in F [x], then deg(p+q) ≤ max(deg p,deg q),
and deg(p · q) = deg p+ deg q.

◦ Proof: It is straightforward to verify that each claim holds if p or q is zero (in which case the left side of
each inequality is −∞). Now assume p and q are nonzero.

◦ For p + q, observe that if there are no terms of degree n or higher in p or q, then there are no terms of
degree n or higher in p+ q either.

◦ For p · q, observe that if the leading terms of p and q are anxn and bmxm respectively, then the leading
term of p · q is anbmxm+n, and anbm 6= 0 since F is a �eld.

4Speci�cally: inside the Cartesian product
∏

Z≥0
F = (a0, a1, a2, . . . ) indexed by the nonnegative integers, we de�ne the �polynomials�

to be the sequences all but �nitely many of whose entries are zero, and interpret the sequence (a0, a1, a2, . . . , an, 0, 0, . . . ) as the formal
sum a0 + a1x+ a2x2 + · · ·+ anxn. We can then de�ne the operations of polynomial addition and multiplication solely in terms of these
sequences.
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1.2.1 The Division Algorithm and Euclidean Algorithm in F [x]

• We can de�ne divisibility of polynomials in the same way as in Z:

• De�nition: If a, b ∈ F [x], we say that a divides b (written a|b), if there is a k ∈ F [x] with b = ka.

◦ Example: We see that x− 1 divides x2 − 1 in Q[x], since x2 − 1 = (x− 1)(x+ 1).

• Much like Z, F [x] also possesses a �long division� algorithm: the only di�erence is that we measure the �size�
of a polynomial via its degree.

• Theorem (Division Algorithm in F [x]): If F is any �eld, and a(x) and b(x) are any polynomials in F [x]
with b(x) 6= 0, then there exist unique polynomials q(x) and r(x) such that a(x) = b(x)q(x) + r(x), where
deg(r) < deg(b). Furthermore, b|a if and only if r = 0.

◦ The idea is simply to show the validity of �polynomial long division�. The reason we require F to be a �eld
is that we need to be able to divide by arbitrary nonzero coe�cients in order to perform the divisions.
(Over Z, for instance, we cannot divide x2 by 2x and get a remainder that is a constant polynomial.)

◦ For example, when we divide the polynomial x3 + x2 + 3x + 5 by the polynomial x2 + 3x + 1 in R[x],
we obtain the quotient q(x) = x− 2 and remainder r(x) = 8x+ 7: indeed, we have x3 + x2 + 3x+ 5 =
(x− 2)(x2 + 3x+ 1) + (8x+ 7).

◦ Proof: We prove this by induction on the degree n of a(x). The base case is trivial, as we may take
q = r = 0 if a = 0.

◦ Now suppose the result holds for all polynomials a(x) of degree ≤ n− 1. If deg(b) > deg(a) then we can
simply take q = 0 and r = a, so now also assume deg(b) ≤ deg(a).

◦ Write a(x) = anx
n + an−1x

n−1 + · · ·+ a0 and b(x) = bmx
m + · · ·+ b0, where bm 6= 0 since b(x) 6= 0.

◦ Observe that the polynomial a†(x) = a(x)− an
bm

xn−mb(x) has degree less than n, since we have cancelled

the leading term of a(x). (Here we are using the fact that F is a �eld, so that
an
bm

also lies in F .)

◦ By the induction hypothesis, a†(x) = q†(x)b(x)+r†(x) for some q†(x) and r†(x) with r† = 0 or deg(r†) <
deg(b).

◦ Then a(x) =

[
q†(x) +

an
bm

xn−m
]
b(x) + r†(x), so q(x) = q†(x) +

an
bm

xn−m and r(x) = r†(x) satisfy all of

the requirements.

◦ For the uniqueness, suppose that a = qb+ r = q′b+ r′: then r− r′ = b(q′− q) has degree less than deg(b)
but is also divisible by b, hence must be zero.

◦ Finally, by de�nition if r = 0 then b|a, and conversely if b|a then since r is unique we must have r = 0.

• The existence of this division algorithm in F [x] allows us to adapt many results that hold in Z into this
setting. First is the idea of a common divisor:

• De�nition: If a and b are polynomials in F [x], we say a polynomial d is a common divisor if d|a and d|b.

◦ Example: The polynomials x+ 1 and 2x+ 2 are both common divisors of x2− 1 and x2 + 3x+ 2 in R[x].

• We would naturally want to de�ne the greatest common divisor to be the polynomial of largest degree dividing
both a and b.

◦ However, this polynomial is not unique: in the example above, it is easy to see that x2−1 and x2 +3x+2
do not have a common divisor of degree 2 (or larger), so both x+ 1 and 2x+ 2 are common divisors of
maximal degree.

◦ Ultimately, x + 1 and 2x + 2 are essentially the same (as far as divisibility goes), since they only di�er
by a constant factor. This situation occurs often enough that we give it a name:

◦ De�nition: If p and q are polynomials in F [x] and there exists a nonzero constant c such that p = cq, we
say p and q are associate.
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• De�nition: If a and b are polynomials in F [x], not both zero, we say the polynomial d is a greatest common
divisor of a and b if it a common divisor of a and b with the property that if d′ is any other common divisor,
then d′|d.

◦ Under this de�nition, we can verify that both x+ 1 and 2x+ 2 are gcds of x2 − 1 and x2 + 3x+ 2.

• This de�nition does not immediately imply that a gcd actually exists. But by adapting the Euclidean algorithm
to this setting, we can give a procedure for computing the gcd (and in particular, implying that it exists and
is essentially unique) and for writing it as a linear combination:

• Algorithm (Euclidean Algorithm in F [x]): Given polynomials a and b in F [x], not both zero, repeatedly apply
the division algorithm as follows, until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qkrk + rk+1

rk = qk+1rk+1.

Then the last nonzero remainder rk+1 is a gcd of a and b. Furthermore, by successively solving for the
remainders and plugging in the previous equations, rk+1 can be explicitly written as a linear combination of
a and b.

◦ Proof: First observe that the algorithm will eventually terminate with a zero remainder, because deg(b) >
deg(r1) > deg(r2) > · · · , and the well-ordering principle dictates that there cannot exist an in�nite
decreasing sequence of nonnegative integers.

◦ By an easy induction, we can see that if d|a and d|b, then d|rj for each j ≥ 1: thus, any common divisor
of a and b must divide rk+1.

◦ Conversely, by another easy induction, rk+1 divides each rj for each j ≥ 1, and thus rk+1 divides both
a and b.

◦ Therefore, rk+1 divides both a and b, and any other common divisor also divides rk+1: thus, rk+1 is a
gcd of a and b.

◦ The correctness of the algorithm for computing the gcd as a linear combination follows by an easy
induction.

• If a and b are not both zero, we can make the gcd unique by additionally requiring that it be monic (i.e., have
leading coe�cient 1).

◦ Explicitly, if d1 and d2 are both greatest common divisors of a and b, then d1|d2 and d2|d1, so that
d1 = sd2 and d2 = td1 for some polynomials s and t.

◦ By comparing degrees, we see that deg(s) = deg(t) = 0, meaning that s and t must both be constants,
and thus d1 and d2 are associates. In particular, there is a unique gcd whose leading coe�cient is 1.

• Example: Find �the� greatest common divisor d(x) of the polynomials p = x6 + 2 and q = x8 + 2 in F3[x],
and then write the gcd as a linear combination of p and q.

◦ We apply the Euclidean algorithm: we have

x8 + 2 = x2(x6 + 2) + (x2 + 2)

x6 + 2 = (x4 + x2 + 1)(x2 + 2)

and so the last nonzero remainder is x2 + 2 .

◦ By back-solving, we see that x2 + 2 = 1 · (x8 + 2)− x2(x6 + 2) .
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• When performing the Euclidean algorithm in F [x], the coe�cients can often become quite large or complicated:

• Example: Find �the� greatest common divisor d(x) of the polynomials p = x3 + 7x2 + 9x− 2 and q = x2 + 4x
in R[x], and then write the gcd as a linear combination of p and q.

◦ We apply the Euclidean algorithm: we have

x3 + 7x2 + 9x− 2 = (x+ 3)(x2 + 4x) + (−3x− 2)

x2 + 4x = (−10

9
− 1

3
x)(−3x− 2) + (−20/9)

−3x− 2 =
27x+ 6

20
(−20/9)

and so the last nonzero remainder is −20/9. Thus, by rescaling, we see that the gcd is 1 .

◦ By back-solving, we see that

−3x− 2 = 1 · (x3 + 7x2 + 9x− 2)− (x+ 3) · (x2 + 4x)

−20/9 = x2 + 4x+ (
10

9
+

1

3
x)(−3x− 2)

= (
10

9
+

1

3
x) · (x3 + 7x2 + 9x− 2)− (

7

3
+

19

9
x+

1

3
x2) · (x2 + 4x)

and thus by rescaling, we obtain 1 = (−1

2
− 3

20
) · (x3 + 7x2 + 9x− 2) + (

21

20
+

19

20
x+

3

20
x2) · (x2 + 4x) .

1.2.2 Irreducible Polynomials and Unique Factorization

• We next develop the polynomial analogue of the prime factorization of an integer: namely, writing a polynomial
as a product of irreducible factors, and showing that this factorization is essentially unique.

• De�nition: A nonzero polynomial p ∈ F [x] is irreducible if it is not a constant, and for any �factorization�
p = bc with b, c ∈ F [x], one of b and c must be a constant polynomial. If p is not a constant and possesses a
factorization p = bc where neither b nor c is constant, then p is reducible.

◦ Equivalently, a polynomial is irreducible if it cannot be written as a product of two polynomials of smaller
positive degree, and is reducible if it can be so written.

◦ Example: Any polynomial of degree 1 is irreducible.

◦ Example: The polynomial x2 + x+ 1 is irreducible in F2[x], since the only possible factorizations would
be x · x, x · (x+ 1), or (x+ 1) · (x+ 1), and none of these is equal to x2 + x+ 1.

◦ Example: The polynomial x4+4 is reducible in Q[x], since we can write x4+4 = (x2+2x+2)(x2−2x+2).

◦ Example: The polynomial x2 + 1 is irreducible in R[x], since there is no way to write it as the product
of two linear polynomials with real coe�cients.

◦ Important Warning: Whether a given polynomial is irreducible in F [x] depends on the �eld F . For
example, x2 + 1 is irreducible in R[x] but not in C[x], since we can write x2 + 1 = (x+ i)(x− i) in C[x].

• The irreducible polynomials are the �building blocks under multiplication� in F [x], much like the primes are
in Z, because every nonzero polynomial can be written as the product of irreducibles:

• Proposition (Factorization into Irreducibles): Every polynomial of positive degree in F [x] can be written as a
product of irreducible polynomials (where a �product� is allowed to have only one term).

◦ Proof: We use strong induction on n = deg(p). The result clearly holds if n = 1, since any polynomial
of degree 1 is irreducible.

◦ Now suppose n ≥ 2. If p is irreducible, we are done, so otherwise assume that p is reducible.

◦ By de�nition, there exist polynomials a, b with 0 < deg(a),deg(b) < n with p = ab.
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◦ By the strong induction hypothesis, both a and b can be written as a product of irreducibles; multiplying
these two products then gives p as a product of irreducibles.

• In order to show that the factorization into irreducibles is unique, we need the analogous divisibility property
that we required in Z:

• Proposition (Irreducibles are Prime in F [x]): If p ∈ F [x] is irreducible and p|ab, then p|a or p|b.

◦ Proof: Suppose p|ab. If p|a, we are done, so suppose p - a, and let d be a gcd of p and a.

◦ By hypothesis, d divides p, so (since p is irreducible) either d is a constant, or d = up for some constant
u: however, the latter cannot happen, because then up (hence p) would divide a.

◦ Hence d is a constant, say with inverse e.

◦ By the Euclidean algorithm, we see that there exist x and y such that xp+ ya = d.

◦ Multiplying by be and regrouping the terms yields (bce)p + ey(ab) = (de)b = b. Since p divides both
terms on the left-hand side, we conclude p|b.

• Now we can prove that the factorization into irreducibles is essentially unique up to reordering.

◦ There is one additional wrinkle that we must address, however, which we illustrate with an example.

◦ In C[x], we can write x2 + 1 = (x+ i)(x− i) = (ix+ 1)(−ix+ 1).

◦ It would seem that these are two di�erent factorizations, but we should really consider them the same,
because all we have done is moved some units around: x+ i = i(−ix+ 1) and x− i = (−i)(ix+ 1).

◦ We should declare that two factorizations are equivalent if the only di�erences between them are by
reordering terms or moving constant factors around, which is equivalent to replacing elements with
associates.

• Theorem (Unique Factorization in F [x]): Every polynomial of positive degree in F [x] can be written as a
product of irreducible polynomials. Furthermore, this factorization is unique up to reordering and associates:
if p = r1r2 · · · rd = q1q2 · · · qk, then d = k and there is some reordering of the factors such that pi and qi are
associate for each 1 ≤ i ≤ k.

◦ Proof: We proved the existence of a factorization above. For the uniqueness, we induct on the number
of irreducible factors of p = r1r2 · · · rd.
◦ If d = 0, then p is a constant. If p had some other factorization p = rc with r irreducible, then q would
divide a constant, hence be a constant (impossible).

◦ Now suppose d ≥ 1 and that r = r1r2 · · · rk = q1q2 · · · qd has two factorizations into irreducibles.

◦ Since r1|(q1 · · · qd) and r1 is irreducible, repeatedly applying the fact that r1 irreducible and r1|ab implies
r1|a or r1|b shows that r1 must divide qi for some i.

◦ Then qi = r1u for some u: then since qi is irreducible (and r1 is not a constant), u must be a constant,
and thus qi and r1 are associates.

◦ Cancelling r1 from both sides then yields the equation r2 · · · rd = (uq2) · · · qk, which is a product of
fewer irreducibles. By the induction hypothesis, such a factorization is unique up to associates. This
immediately yields the desired uniqueness result for p as well.

1.2.3 Roots of Polynomials, Irreducibility

• In elementary algebra, polynomials are examples of functions. We would like to extend this idea of �plugging
values in� to a general polynomial in F [x].

• De�nition: If F is a �eld and p = a0 + a1x + · · · + anx
n is an element of F [x], for any r ∈ F we de�ne the

value p(r) to be the element a0 + a1r + · · ·+ anr
n ∈ F .

◦ Example: If p = 1 + x2 in C[x], then p(1) = 1 + 12 = 2, and p(i) = 1 + i2 = 0.

◦ Example: If p = 1 + x2 in F5[x], then p(0) = 1, p(1) = 2, p(2) = 0, p(3) = 0, and p(4) = 2.
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◦ In this way, we can view a polynomial p ∈ F [x] as a function p : F → F , with p(r) = a0+a1r+ · · ·+anrn.
◦ Warning: The �traditional� polynomial notation p(x) is somewhat ambiguous: we may be considering
p(x) as a ring element in F [x] (in which case �x� represents an indeterminate), or we may be viewing it
as a function from F to F (in which case �x� represents the variable of the function).

• Example: If p = x+ x2 in F2[x], observe that p(0) = p(1) = 0.

◦ Thus, although p is not the zero polynomial in F2[x] (since it has degree 2), as a function from F2 to F2

it is the identically zero function!

◦ More generally, if F is any �nite �eld with elements r1, r2, . . . , rn, then the polynomial p(x) = (x −
r1)(x− r2) · · · (x− rn) is the identically zero function from F to F .

◦ Thus, in general, we cannot always uniquely specify a polynomial p ∈ F [x] by describing its behavior as
a function p : F → F .

• To begin our study of polynomial functions, we start with a pair of observations that are likely familiar from
elementary algebra:

• Proposition (Remainder/Factor Theorem): Let F be a �eld. If p ∈ F [x] is a polynomial and r ∈ F , then the
remainder upon dividing p(x) by x − r is p(r). In particular, x − r divides p(x) if and only if p(r) = 0. (In
this case we say r is a zero or a root of p(x).)

◦ Proof: Suppose p(x) = a0 + a1x + · · · + anx
n. Observe �rst that (xk − rk) = (x − r)(xk−1 + xk−2r +

· · ·+ xrk−2 + rk−1), so in particular, x− r divides xk − rk for all k.

◦ Now we simply write p(x) − p(r) =

n∑
k=0

ak(xk − rk), and since x − r divides each term in the sum, it

divides p(x)− p(r).
◦ Since p(r) is a constant, it is therefore the remainder after dividing p(x) by x− r. The other statement
is immediate from the uniqueness of the remainder in the division algorithm.

• We can also bound the number of zeroes that a polynomial can have:

• Proposition: Let F be a �eld. If p ∈ F [x] is a polynomial of degree d, then p has at most d distinct roots in
F .

◦ Proof: We induct on the degree d. For d = 1, the polynomial is of the form a0 + a1x for a1 6= 0, which
has exactly one root, namely −a0/a1.
◦ Now suppose the result holds for all polynomials of degree ≤ d and let p be a polynomial of degree d+ 1.

◦ If p has no zeroes we are obviously done, so suppose otherwise and let p(r) = 0. We can then factor to
write p(x) = (x− r)q(x) for some polynomial q(x) of degree d.

◦ By the induction hypothesis, q(x) has at most d roots: then p(x) has at most d + 1 roots, because
(a− r)q(a) = 0 only when a = r or q(a) = 0 (since F is a �eld).

• In general, it is not easy to determine when an arbitrary polynomial is irreducible. If the degree is small,
however, this task can be performed by examining all possible factorizations. The following result is frequently
useful:

• Proposition (Irreducibility in Degrees 2 and 3): If F is a �eld and p ∈ F [x] has degree 2 or 3 and has no
zeroes in F , then p is irreducible.

◦ Proof: If p(x) = a(x)b(x), taking degrees shows deg(p) = deg(a) + deg(b). Since a and b both have
positive degree and deg(p) is 2 or 3, at least one of a and b must have degree 1. Then its root is also a
root of p(x). Taking the contrapositive gives the desired statement.

◦ Example: Over R, the polynomial x2 + 2x + 11 has no roots (it is always positive, as can be seen by
completing the square), so it is irreducible.

◦ Example: Over F2, the polynomial q(x) = x3 +x+ 1 is irreducible: it has no roots since q(0) = q(1) = 1.
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◦ Example: Over F5, the polynomial q(x) = x3 + x + 1 is irreducible: it has no roots since q(0) = 1,
q(1) = 3, q(2) = 1, q(3) = 1, and q(4) = 4.

◦ Note of course that a polynomial of larger degree can be reducible without having any zeroes: for example,
x4 + 3x2 + 2 has no zeroes in R, but it is still reducible: x4 + 3x2 + 2 = (x2 + 1)(x2 + 2).

• For polynomials of larger degree, determining irreducibility can be a much more di�cult task. For certain
particular �elds, we can say more about the structure of the irreducible polynomials.

• Theorem (Fundamental Theorem of Algebra): Every polynomial of positive degree in C[x] has at least one
root. Therefore, the irreducible polynomials in C[x] are precisely the polynomials of degree 1, and so every
polynomial in C[x] factors into a product of degree-1 polynomials.

◦ The �rst statement of this theorem is a standard result from analysis over the complex numbers, and we
take it for granted. (We will later be able to give a proof using other techniques from �eld and group
theory.)

◦ To deduce the second statement from the �rst, observe that if p(x) is any complex polynomial of degree
larger than 1, then by assumption it has at least one root r in C, so we can write p(x) = (x− r)q(x) for
some other polynomial q(x): then p is reducible.

◦ Therefore, the irreducible polynomials in C[x] are precisely the polynomials of degree 1. The �nal
statement follows from the characterization of irreducible polynomials, because every polynomial is a
product of irreducibles.

1.2.4 Factorization and Irreducibility in Q[x]

• It is more di�cult to test whether a polynomial is irreducible in Q[x]. A central idea is that we can reduce
the problem of factoring in Q[x] to one of factoring in Z[x], the set of polynomials with integer coe�cients,
by �clearing denominators�.

◦ Speci�cally, if p is any polynomial in Q[x], we may multiply p by the product of all the denominators of its
coe�cients (or their least common multiple) to obtain a polynomial in Z[x]. Since every nonzero integer
is invertible in Q, the factorization of this new polynomial, with integer coe�cients, will be essentially
the same as that of the original polynomial.

◦ As an example, consider the problem of factoring p(x) = 2x3 + x2 +
2

3
x+

1

3
in Q[x].

◦ Since 3 is an invertible constant in Q[x], we may equivalently ask about the factorization of 3p(x) =
6x3 + 3x2 + 2x+ 1 in Z[x].

• We start by proving the famous �rational root test�, which allows us to determine whether a given polynomial
in Z[x] has a rational root:

• Proposition (Rational Root Test): Suppose p(x) = anx
n + an−1x

n−1 + · · ·+ a0 is a polynomial in Z[x]. Then
any root r/s (in lowest terms) must have r|a0 and s|an.

◦ Proof: If r/s is a root of p(x), then an(r/s)n + an−1(r/s)n−1 + · · · + a0 = 0. Clearing denominators
yields anrn + an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n = 0.

◦ Thus, by rearranging, we see that anrn = s(−an−1rn−1 − · · · − a0sn−1), so s divides anrn. But since s
and r are relatively prime, this means s divides an.

◦ In a similar way, since a0sn = r(−anrn−1 − · · · − a1sn−1), we see that r divides a0sn hence a0.

• This test allows us to make a �nite list of possible rational roots for any polynomial with integer coe�cients.

• Example: Show that the polynomial p(x) = x3 + ax+ 1 is irreducible in Q[x] for any integer a 6= 0,−2.

◦ Since this polynomial has degree 3, we need only show that it has no roots in Q.
◦ By the rational root test, the only possible rational roots are ±1, and since p(1) = 2 + a and p(−1) = a,
the conditions on a imply that p has no rational roots. Thus, p is irreducible.
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• It is natural to think that factorization of polynomials in Z[x] and Q[x] are essentially �the same�, and this is
ultimately true (though not quite so easy to prove rigorously):

• Theorem (Gauss's Lemma): If p(x) ∈ Z[x] has positive degree and is reducible in Q[x], then p(x) = f(x)g(x)
for some f(x), g(x) ∈ Z[x] of positive degree.

◦ Proof: We say a polynomial in Z[x] is �primitive� if the gcd of its coe�cients is equal to 1.

◦ First, we observe that, in Q[x], any nonzero polynomial a(x) is associate to a primitive polynomial in
Z[x].

◦ To see this, let d be the least common multiple of the denominators of a(x): then d ·a(x) is a polynomial

in Z[x]. Now let e be the greatest common divisor of the coe�cients of d ·a(x): then
d

e
·a(x) is a primitive

polynomial in Z[x]; since
d

e
is invertible in Q, this primitive polynomial is associate to a(x).

◦ Next, we claim that the product of two primitive polynomials is also primitive.

◦ To see this, suppose that a(x)b(x) is not primitive for some a(x), b(x) ∈ Z[x], with a(x) = a0 + a1x +
· · · + anx

n and b(x) = b0 + · · · + bmx
m: then since a(x)b(x) is not primitive, all of its coe�cients are

divisible by some prime s.

◦ If there is at least one coe�cient of each of a(x) and b(x) not divisible by s, suppose that ai and bj are the
lowest-degree such coe�cients. Then the degree-(i+j) term of a(x)b(x) is a0bi+j + · · ·+ai−1bj+1+aibj +
ai+1bj−1 + · · ·+ai+jb0, but by hypothesis each term except aibj is divisible by s. This is a contradiction,
since this coe�cient of a(x)b(x) would then not be divisible by s.

◦ Now, returning to the original problem, suppose that p(x) is reducible in Q[x], say as p(x) = f0(x)g0(x)
with f0 and g0 both of positive degree.

◦ By our �rst observation, both f0 and g0 are associate to a primitive polynomial: say, f , and g respectively.

◦ Then (by rearranging the corresponding unit factors) we see that d · p(x) = e · f(x) · g(x) for some
relatively prime integers d and e.

◦ Now notice that since d and e are relatively prime, dmust divide all coe�cients of f(x)g(x). But f(x)g(x)
is primitive by our second observation, so we must have d = ±1.

◦ Then p(x) = [ed−1 · f(x)] · g(x) is a nontrivial factorization of p(x) over Z[x], as required.

• As we can see from the proof above, roughly speaking (i.e., up to shu�ing around constant factors), factoring
in Q[x] is the same as factoring in Z[x].

◦ The advantage to working in Z[x], however, is that we can exploit properties of Z to establish that
factorizations cannot exist.

• Example: Show that the polynomial p(x) = x4 + x3 − 2x2 + x+ 1 is irreducible in Q[x].

◦ First, by the rational root test, the only possible roots of this polynomial are ±1, neither of which is a
root.

◦ Thus, if p(x) were reducible, it would factor as a product of two quadratics. By moving factors of −1
around (as needed) such a factorization would have the form p(x) = (x2 + ax+ b)(x2 + cx+ d).

◦ By expanding and comparing coe�cients, we see that a+ c = 1, b+ac+d = −2, ad+ bc = 1, and bd = 1.

◦ The last equation gives (b, d) = (1, 1) or (−1,−1).

◦ If b = d = 1 then we obtain the equations a+ c = 1 and ac = −4, which has no integer solutions.

◦ If b = d = −1 then we obtain a + c = 1, ac = 0, and a + c = −1, which has no solutions at all (integer
or otherwise).

◦ Therefore, p(x) is irreducible, as claimed.

• Note, however, that a similar sort of analysis becomes very di�cult in larger degree (and also becomes more
di�cult when the coe�cients are large).
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◦ For example, to show in this manner that a polynomial of degree 7 is irreducible, one would need to
verify that it has no roots, as well as no factorization into a product of polynomials of degree 2 and 5,
or 3 and 4.

• For this reason, other irreducibility criteria have been developed. Here is one:

• Theorem (Eisenstein-Schönemann Criterion): Let q(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be a polynomial in

Z[x]. If each coe�cient a0, a1, . . . , an−1 is divisible by a prime p, and a0 is not divisible by p2, then q(x) is
irreducible in Z[x] and Q[x].

◦ Proof: Suppose that q(x) = b(x)c(x) were reducible in Z[x], with b(x) = xs + bs−1x
s−1 + · · · + b0 and

c(x) = xt + ct−1x
t−1 + · · ·+ c0.

◦ Since p divides a0 = b0c0, p divides at least one of these coe�cients: without loss of generality, suppose
p|b0.
◦ Now let bi be the lowest-degree coe�cient of b(x) not divisible by p (there must be one, since bs = 1 is
not divisible by p): then we have ai = b0ci + b1ci−1 + · · ·+ bi−1c1 + bic0.

◦ Since p divides ai and also divides the terms b0ci, b1ci−1, ... , bi−1c1, it must divide bic0. But since p
does not divide bi, we see that p divides c0.

◦ But then p divides both b0 and c0, meaning that p2 divides b0c0 = a0. This is a contradiction, so there
cannot exist any such factorization of q(x).

◦ Thus, q(x) is irreducible in Z[x], and then by Gauss's lemma, q is irreducible in Q[x] as well.

• Example: By Eisenstein's criterion with p = 2, the polynomial xn − 2 is irreducible in Z[x] for any positive
integer n.

• Example: Show that the polynomial q(x) = x4 + x3 − 3x2 + x+ 7 is irreducible in Q[x].

◦ We cannot apply Eisenstein's criterion to this polynomial directly.

◦ However, notice that q(x − 1) = x4 − 3x3 + 6x + 3, and this polynomial is irreducible by Eisenstein's
criterion with p = 3.

◦ It is then easy to see that any factorization of q(x− 1) would give a factorization of q(x), and vice versa:
therefore, the original polynomial q(x) must also have been irreducible.

• We can also use calculations in Fp[x] to show that a polynomial is irreducible in Z[x].

◦ Speci�cally, if a polynomial factors in Z[x], then reducing the factorization modulo p yields a factorization
in Fp[x], as long as the degrees of the factors do not change, which will be the case whenever the leading
coe�cient of the polynomial is not divisible by p.

◦ By taking the contrapositive of the observation above, we see that if q(x) is irreducible in Fp[x] and has
leading coe�cient not divisible by p, then it must also be irreducible in Z[x] (and thus by Gauss's lemma,
also in Q[x]).

• Example: Show that q(x) = x3 + 12x2 + 27x+ 345 is irreducible in Z[x].

◦ Notice that q(x) ≡ x3 + x + 1 modulo 2, and so q has no roots modulo 2. Since q has degree 3, this
means q is irreducible in F2[x], and hence also in Z[x].

1.2.5 Polynomial Modular Arithmetic

• We now turn our attention to discussing modular congruences (and modular arithmetic) in F [x].

• Our underlying de�nition of modular congruences and residue classes are exactly the same as over Z:

• De�nition: Let F be a �eld. If a, b, p ∈ F [x], we say that a is congruent to b modulo p, written a ≡ b (mod
p), if p|(b− a).

◦ Example: In R[x], it is true that x2 ≡ x modulo x− 1, because x− 1 divides x2 − x = x(x− 1).
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◦ Example: In F2[x], it is true that x3 + x ≡ x + 1 modulo x2 + x + 1, because (x2 + x + 1) divides
(x3 + x)− (x+ 1) = (x+ 1)(x2 + x+ 1).

• Most of the basic properties of modular congruences in Z extend to F [x] with little or no change:

• Proposition (Modular Congruences): Let F be a �eld. If a, b, c, d, p ∈ F [x] and p 6= 0, then the following are
true:

1. a ≡ a (mod p).

2. a ≡ b (mod p) if and only if b ≡ a (mod p).

3. If a ≡ b (mod p) and b ≡ c (mod p), then a ≡ c (mod p).

4. If a ≡ b (mod p) and c ≡ d (mod p), then a+ c ≡ b+ d (mod p).

5. If a ≡ b (mod p) and c ≡ d (mod p), then ac ≡ bd (mod p).

◦ Each of these is a straightforward calculation using the de�nition of congruence.

• We can now construct residue classes, again in exactly the same way:

• De�nition: If a, r ∈ F [x], the residue class of a modulo r, denoted a, is the set S = {a+ dr : d ∈ F [x]} of all
elements in F [x] congruent to a modulo r.

◦ Example: The residue class of 1 modulo x in F2[x] is {1, 1 + x, 1 + x2, 1 + x+ x2, 1 + x3, . . . }.

• Here are a few fundamental properties of residue classes:

• Proposition (Properties of Residue Classes): Let F be a �eld and suppose p ∈ F [x] is nonzero. Then

1. If a and b are polynomials in F [x], then a ≡ b (mod p) if and only if a = b.

◦ Proof: Identical to the proof over Z.

2. Two residue classes modulo p are either disjoint or identical.

◦ Proof: Identical to the proof over Z.

3. The residue classes modulo p are precisely those of the form r where deg(r) < deg(p).

◦ Proof: By the division algorithm, for any polynomial a there exists a unique r with deg(r) < deg(p)
such that a = qm+ r with q ∈ F [x].
◦ Then a ≡ r (mod p), and so every polynomial is congruent modulo p to precisely one polynomial r
with deg(r) < deg(p).
◦ In other words, every polynomial is contained in exactly one of the residue classes r where deg(r) <

deg(p).
◦ By property (2), we conclude that these are all the residue classes, and that they are disjoint.

• If F is an in�nite �eld, then if deg(p) > 0, there will always be in�nitely many residue classes in F [x] modulo
p(x).

◦ However, when F is a �nite �eld of cardinality |F |, then the residue classes are each represented by a
unique polynomial in F [x] of degree less than deg(p).

◦ Such a polynomial has exactly deg(p) coe�cients (for the terms of degree 0, 1, ... , deg(p)− 1), and each
coe�cient has |F | possible choices: thus, there are precisely |F |deg(p) residue classes modulo p(x).

• Example: List the residue classes in F2[x] modulo x2.

◦ Each coe�cient is either 0 or 1, and by the above result, the residue classes are precisely the polynomials
of degree less than 2.

◦ Thus, there are four residue classes in F2[x] modulo x2: 0, 1, x, and x+ 1.

• De�nition: If F is a �eld and p ∈ F [x] is nonzero, the set of residue classes modulo p is denoted as F [x]/p
(read as �F [x] modulo p�).
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• Like in Z/mZ, we have natural addition and multiplication operations in F [x]/p:

• De�nition: The addition operation in Z/mZ is de�ned as a + b = a+ b, and the multiplication operation is
de�ned as a · b = ab.

◦ In order for this de�nition to make sense, we need to verify that these operations are well-de�ned: that
is, if we choose di�erent elements a′ ∈ ā and b′ ∈ b̄, the residue class of a′ + b′ is the same as that of
a+ b, and similarly for the product.

◦ To see this, if a′ ∈ ā then a′ ≡ a (mod p), and similarly if b′ ∈ b then b′ ≡ b (mod p).

◦ Then a′ + b′ ≡ a+ b (mod p), so a′ + b′ = a+ b. Likewise, a′b′ ≡ ab (mod p), so a′b′ = ab.

◦ Thus, the operations are well-de�ned.

• Proposition (Basic Arithmetic in F [x]/p): Let F be a �eld and p ∈ F [x] be nonzero. Then the following
properties hold for residue classes in F [x]/p :

1. The operation + is associative: a+ (b+ c) = (a+ b) + c for any a, b, and c.

2. The operation + is commutative: a+ b = b+ a for any a and b.

3. The residue class 0 is an additive identity: a+ 0 = a for any a.

4. Every residue class a has an additive inverse −a satisfying a+ (−a) = 0.

5. The operation · is associative: a · (b · c) = (a · b) · c for any a, b, and c.
6. The operation · is commutative: a · b = b · a for any a and b.

7. The operation · distributes over +: a · (b+ c) = a · b+ a · c for any a, b, and c.
8. The residue class 1 is a multiplicative identity: 1 · a = a for any a.

◦ Proof: All of these follow immediately from the corresponding properties of arithmetic in F [x].

• Like in Z, we can (and will!) abuse notation and drop the bar notation, with the understanding that all of
our calculations are to be considered �modulo p�.

• When F is an in�nite �eld, there will be in�nitely many residue classes in F [x]/p , so we cannot sensibly write
down addition and multiplication tables. However, we can certainly construct such tables when F is �nite.

• Example: Here are the addition and multiplication tables for F2[x]/p with p = x2 + x+ 1:
+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

◦ As an example of the computations, we have x + (x + 1) = 2x + 1 = 1 since 2 = 0 in F2, and also
x · (x+ 1) = x2 + x ≡ (x+ 1) + x = 1 (because x2 ≡ x+ 1 which follows from rearranging the statement
p ≡ 0 mod p).

◦ We can see that F2[x]/p is a �eld in this case, since every nonzero residue class has a multiplicative
inverse.

◦ Observe also that the polynomial p(x) = x2 + x + 1 is irreducible in F2[x], since it has degree 2 but no
roots.

• Example: Here are the addition and multiplication tables for F2[x]/q with q = x2:
+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x 0 x

x+ 1 0 x+ 1 x 1

◦ We can see that F2[x]/q is not a �eld, because the element x does not have a multiplicative inverse
(although 1 and x+ 1 do).
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◦ Notice that q(x) = x2 is reducible in F2[x], and has the factorization x2 = x · x.

• Example: Here is the multiplication table for F3[x]/r with r = x2 + 1:
· 0 1 2 x x+ 1 x+ 2 2x 2x+ 1 2x+ 2

0 0 0 0 0 0 0 0 0 0
1 0 1 2 x x+ 1 x+ 2 2x 2x+ 1 2x+ 2
2 0 2 1 2x 2x+ 2 2x+ 1 x x+ 2 x+ 1
x 0 x 2x 2 x+ 2 2x+ 2 1 x+ 1 2x+ 1

x+ 1 0 x+ 1 2x+ 2 x+ 2 2x 1 2x+ 1 2 x
x+ 2 0 x+ 2 2x+ 1 2x+ 2 1 x x+ 1 2x 2

2x 0 2x x 1 2x+ 1 x+ 1 2x+ 2 2x+ 1 x+ 2
2x+ 1 0 2x+ 1 x+ 2 x+ 1 2 2x 2x+ 2 x 1
2x+ 2 0 2x+ 2 x+ 1 2x+ 1 x 2 x+ 2 1 2x

◦ Notice that F3[x]/r is a �eld, since every nonzero residue class is invertible.

◦ Observe also that the polynomial p(x) = x2 + 1 is irreducible in F3[x], since it has degree 2 but no roots.

• As suggested by the examples above (and by the analogy between Z and F [x]), we can characterize the
invertible classes in F [x]/p:

• Theorem (Invertible Elements in F [x]/p): Let F be a �eld and p ∈ F [x] be nonzero. Then the residue class r
in F [x]/p has a multiplicative inverse if and only if r and p are relatively prime.

◦ Proof: First suppose that r and p are relatively prime. Then by the Euclidean algorithm, we can write
1 = crr + cpp for some polynomials cr, cp. Then cr · r = 1, meaning that r is invertible in F [x]/p.

◦ Conversely, suppose that r is invertible in F [x]/p with multiplicative inverse cr. Then cr · r = 1 so that
crr ≡ 1 (mod p), meaning that there exists some polynomial cp with crr + cpp = 1. But any common
divisor of r and p must then divide crr + cpp = 1, and thus we see that r and p are relatively prime.

• Per the proof of the theorem above, we can use the Euclidean algorithm in F [x] to compute multiplicative
inverses when they exist:

• Example: Find the multiplicative inverse of x2 + 2 in F5[x] modulo x3 + 1.

◦ First we apply the Euclidean algorithm in F5[x]:

x3 + 1 = x · (x2 + 2) + (3x+ 1)

x2 + 2 = (2x+ 1) · (3x+ 1) + 1

3x+ 1 = (3x+ 1) · 1

and so the gcd of x2 + 2 and x3 + 1 is 1.

◦ By back-solving, we obtain

3x+ 1 = (x3 + 1)− x · (x2 + 2)

1 = (x2 + 2)− (2x+ 1)(3x+ 1) = (2x2 + x+ 1)(x2 + 2)− (2x+ 1)(x3 + 1)

and thus by reducing modulo x3 + 1, we see that the multiplicative inverse of x2 + 2 is 2x2 + x+ 1 .

• In analogy with the fact that Z/mZ is a �eld precisely when m is prime, we also see that F [x]/p is a �eld
precisely when p is irreducible:

• Corollary: Let F be a �eld and p ∈ F [x] have positive degree. Then F [x]/p is a �eld if and only if p is
irreducible.

◦ Proof: By the previous theorem, we see that if p is irreducible then every nonzero residue class modulo
p is invertible. Furthermore, if deg(p) > 0, then 1 6= 0, so F [x]/p is a �eld.

◦ Inversely, if p is reducible, then (again as above) there are non-invertible residue classes in F [x]/p.
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• By �nding irreducible polynomials in Fp[x], we can use the corollary above to construct additional �nite �elds.

• Example: Construct a �nite �eld with 27 elements.

◦ Since 27 = 33, we can construct a �nite �eld with 27 elements as F3[x]/p where p is an irreducible
polynomial of degree 3.

◦ One possible choice is the polynomial p(x) = x3 + 2x+ 1: it has no roots, since p(0) = p(1) = p(2) = 1,
so (since it has degree 3) it is irreducible.

◦ Therefore, F3[x]/p is a �eld with 33 = 27 elements, as required.

1.3 Survey of Rings

• Many of the properties of Z, Z/mZ, F [x], and F [x]/p can be abstracted and generalized to a broader class of
objects known as rings. In this section we give a brief survey of some basic aspects of ring theory, with the
ultimate aim to illustrate how to perform and compute with �modular arithmetic� in general rings.

1.3.1 The Formal De�nition of a Ring

• De�nition: A ring is any set R having two (closed) binary operations + and · that satisfy the six axioms
[R1]-[R6]:

[R1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any elements a, b, c in R.

[R2] The operation + is commutative: a+ b = b+ a for any elements a, b in R.

[R3] There is an additive identity 0 satisfying a+ 0 = a for all a in R.

[R4] Every element a has an additive inverse −a satisfying a+ (−a) = 0.

[R5] The operation · is associative: a · (b · c) = (a · b) · c for any elements a, b, c in R.

[R6] The operation · distributes over +: a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for any elements
a, b, c in R.

• Certain rings will also possess additional properties, which arise often enough that we give them names:

• De�nition: If a ring satis�es axiom [R7], we say it is a commutative ring.

[R7] The operation · is commutative: a · b = b · a for any elements a, b in R.

• De�nition: If a ring satis�es axiom [R8], we say it is a ring with identity (or a �ring with 1�).

[R8] There is a multiplicative identity 1 6= 0, satisfying 1 · a = a = a · 1 for all a in R.

• De�nition: If a ring with identity further satis�es the axiom [D], it is called a division ring. A commutative
division ring is called a �eld.

[D] Every nonzero a in R has a multiplicative inverse a−1 satisfying a · a−1 = 1 = a−1 · a.

1.3.2 Examples of Rings

• Here is a list of examples (and non-examples) of rings5:

• Example: The integers Z are a commutative ring with identity.

• Example: The set of even integers is a commutative ring that does not have an identity.

◦ The properties [R1]-[R7] all follow from their counterparts in Z: [R3] follows because 0 is an even integer,
and [R4] follows because n is an even integer if and only if −n is an even integer.

5For brevity, when we do not specify the operations + and ·, they are always assumed to be the standard addition and multiplication
operations on the corresponding sets.
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◦ This ring does not have a multiplicative identity because there is no solution to 2n = 2 inside the set of
even integers.

• Non-Example: The set of odd integers is not a ring.

◦ The problem is that, although multiplication of two odd integers does return an odd integer, the sum of
two odd integers is not odd: thus, the operation + is not de�ned on the set of odd integers.

• Example: The set Z/mZ of residue classes modulo m form a commutative ring with identity.

◦ Furthermore, if p is a prime, we know that all of the nonzero residue classes modulo p are invertible,
meaning that Z/pZ is a �eld.

◦ Indeed, the only residue classes that are invertible modulo m are those relatively prime to m, so if m is
not prime, then Z/mZ is not a �eld.

• Example: The rational numbers Q, the real numbers R, and the complex numbers C are all examples of �elds.

◦ Recall that C is the set of numbers of the form a+ bi, where a and b are real numbers and i2 = −1.

◦ Addition and multiplication in C are as follows: (a+bi)+(c+di) = (a+c)+(b+d)i, and (a+bi)·(c+di) =
ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

• Example: If F is a �eld, the set F [x] of polynomials in x with coe�cients from F forms a commutative ring
with identity.

◦ More generally, if R is any ring, we can consider the ring R[x] of polynomials with coe�cients from R
(we have already implicitly done this when discussing polynomials with integer coe�cients).

◦ Warning: When R is not commutative, the polynomial ring R[x] can have unintuitive properties. Even
the case where R is commutative can carry complications, if (for example) R possesses zero divisors, as
there are examples where factorizations are not unique.

• Example: The set of complex numbers of the form a+ bi where a, b ∈ Z are a commutative ring with identity.

◦ This ring is denoted Z[i] (read as: �Z adjoin i�) and is also often called the Gaussian integers.

◦ The properties [R1]-[R8] all follow from their counterparts in C: [R3] follows because 0 = 0 + 0i, and
[R4] follows because we have −(a+ bi) = (−a) + (−b)i.

• Example: The set of real numbers of the form a+ b
√

2 where a, b ∈ Z are a commutative ring with identity.

◦ This ring is denoted Z[
√

2]. The addition and multiplication are de�ned in a similar way as for the complex
numbers and Gaussian integers: (a+ b

√
2) + (c+d

√
2) = (a+ c) + (b+d)

√
2, and (a+ b

√
2) · (c+d

√
2) =

ac+ ad
√

2 + bc
√

2 + 2bd = (ac+ 2bd) + (ad+ bc)
√

2.

• We can also see the structure of a ring in collections of functions:

• Example: If S is any set and A is any ring, the collection R of functions f : S → A, with operations
(f + g)(x) = f(x) + g(x) and (f · g)(x) = f(x)g(x), forms a ring.

◦ Thus, for example, if A is the set of real numbers, with f(x) = x2 and g(x) = 3x2, then (f + g)(x) = 4x2

and (fg)(x) = 3x4.

◦ Ultimately, each of the properties [R1]-[R6] follows from the corresponding property of A. The additive
identity is the �identically-zero function� 0S that is 0 on each element of S, and the additive inverse −f
of f is de�ned as (−f)(x) = −f(x) for each x in S.

◦ If A is commutative, then it is easy to see that R will also be commutative. Likewise, if A has a 1, then
the �identically-1 function� 1S that is 1 on each element of S, is a multiplicative identity in R.

• Example: The collection R of continuous real-valued functions f : R → R, with operations (f + g)(x) =
f(x) + g(x) and (f · g)(x) = f(x)g(x), forms a commutative ring.
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◦ The operations are well-de�ned because the sum and product of two continuous functions is continuous.

◦ The remaining properties [R1]-[R6] follows from the same observations as in the example above.

• So far, all of the rings we have listed are commutative. Here are a few that are not:

• Example: The set of 2× 2 matrices

[
a b
c d

]
with real number entries, denoted M2×2(R), forms a noncom-

mutative ring with identity.

◦ Explicitly, the operations in this ring are

[
a b
c d

]
+

[
e f
g h

]
=

[
a+ e b+ f
c+ g d+ h

]
and

[
a b
c d

]
·[

e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
.

◦ It is a straightforward algebraic computation to verify axioms [R1]-[R6]: the additive identity is the zero

matrix

[
0 0
0 0

]
, and the additive inverse of

[
a b
c d

]
is of course

[
−a −b
−c −d

]
.

◦ The multiplicative identity is the famous �identity matrix�

[
1 0
0 1

]
.

◦ However, the 2×2 matrices are not a commutative ring, since (for example) we have

[
0 1
0 0

]
·
[

0 0
1 0

]
=[

1 0
0 0

]
while

[
0 0
1 0

]
·
[

0 1
0 0

]
=

[
0 0
0 1

]
.

◦ Remark: More generally, for any integer n ≥ 2, the set of n× n matrices with entries from any �eld F ,
denoted Mn×n(F ), forms a noncommutative ring with identity.

• Example: The set H of real quaternions a + bi + cj + dk, for real numbers a, b, c, d and �imaginary units�
i, j, k satisfying the relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j, form a
noncommutative ring with identity.

◦ This ring was �rst characterized by William Rowan Hamilton in 1843 (whence the name H), and is,
historically speaking, one of the �rst examples of a noncommutative ring.

◦ The addition and multiplication operations are de�ned similarly to those in the complex numbers: ad-
dition works �componentwise�, so that (a+ bi+ cj + dk) + (a′ + b′i+ c′j + d′k) = (a+ a′) + (b+ b′)i+
(c+ c′)j + (d+ d′)k.

◦ Multiplication is de�ned using the distributive law and the relations listed above, taking care to keep the
terms in the proper order when multiplying. (The real number coe�cients commute with the �imaginary
units� i, j, and k.)

◦ Thus, for example, we have

(1 + i− k) · (2 + 3i+ j) = (1 + i− k) · 2 + (1 + i− k) · 3i+ (1 + i− k) · j
= (2 + 2i− 2k) + (3i− 3− 3j) + (j + k + i)

= −1 + 6i− 2j − k.

◦ In fact, the real quaternions are a division ring: one may verify that (a+ bi+ cj+dk)(a− bi− cj−dk) =

a2+b2+c2+d2, and so the nonzero quaternion a+bi+cj+dk has a multiplicative inverse
a− bi− cj − dk
a2 + b2 + c2 + d2

.

◦ The quaternions originally arose in the study of 3-dimensional geometry. As a hint of this connection, we
will note that under the standard notation for the coordinate vectors in 3-space, namely with i = 〈1, 0, 0〉,
j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉, then i× j = k = −j× i, and similarly for the other possible cross products.

• Example: If V is a vector space of dimension larger than 1, the set L(V, V ) of linear transformations from V
to V is a noncommutative ring with 1 under the operations of function addition and function composition:
(S + T )(v) = Sv + Tv and (ST )v = S(Tv).
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◦ This ring is not commutative because ST 6= TS in general (since linear transformations generally do not
commute with one another, in the same way that matrices do not). The multiplicative identity is the
�identity transformation� with I(v) = v for every v in V .

• As a �nal observation, we remark that if we have a set with an addition operation, we can make it into a ring
in a trivial way. Two examples are as follows:

• Example: If S is Z, Q, or R, with + taken to be normal addition, and · de�ned so that a · b = 0 for every a
and b, then S is a commutative ring.

◦ All of the multiplicative axioms immediately reduce to the true statement 0 = 0. Of course, this ring
has no multiplicative identity.

• Example: The set R = {0}, with operations 0 + 0 = 0 and 0 · 0 = 0, is a commutative ring.

◦ All of the axioms follow trivially. In fact, this ring even has a multiplicative identity! (But it is not a
ring with 1 because we require 1 6= 0.)

◦ This ring is known as the trivial ring, and is the only ring where 1 = 0.

1.3.3 Basic Properties of Rings

• Our immediate goal in discussing rings is to study properties of arithmetic in Z and Z/mZ that generalize to
arbitrary rings. To this end, we begin by establishing a number of basic properties of ring arithmetic.

◦ As in Z, we de�ne the binary operation of subtraction by setting a − b = a + (−b). We also often use
implicit multiplication, and drop the · notation.
◦ We can de�ne scaling of a ring element a by a positive integer as repeated addition: na = a+ a+ a+ · · ·+ a︸ ︷︷ ︸

n terms

.

By associativity of addition, this notation is well-de�ned. In a ring with 1, this notation coincides with
the product of ring elements n · a, but (as we would desire) it is true that n · a = na.

◦ We can also de�ne exponentiation of a ring element a as ak = a · a · a · · · · · a︸ ︷︷ ︸
k terms

, for any positive integer k.

By associativity of multiplication, this notation is well-de�ned.

• Proposition (Basic Arithmetic): Let R be any ring. The following properties hold in R:

1. The additive identity 0 is unique, as is the multiplicative identity 1 (if R has a 1).

2. Addition has a cancellation law: for any a, b, c ∈ R, if a+ b = a+ c, then b = c.

3. Additive inverses are unique.

4. For any a ∈ R, 0 · a = 0 = a · 0.
5. For any a ∈ R, −(−a) = a.

6. For any a ∈ R, (−1) · a = −a = a · (−1).

7. For any a, b ∈ R, −(a+ b) = (−a) + (−b).
8. For any a, b ∈ R, (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.
9. For any positive integers m and n and any a ∈ R, ma+ na = (m+ n)a, m(na) = (mn)a, am+n = aman,

and amn = (am)n.

◦ Each of these is a fairly straightforward calculation from the ring axioms.

• An important property of Z that does not hold in general rings is the statement that ab = 0 implies a = 0 or
b = 0.

◦ Indeed, we have already seen examples of situations in Z/mZ where m is not prime where ab = 0 but
a, b 6= 0: for example, in Z/6Z, we have the equality 2 · 3 = 0.
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• Inversely, it is also possible for a general ring to contain many elements that have multiplicative inverses
(unlike in Z, where the only elements with multiplicative inverses are 1 and −1).

• De�nition: In a ring R, we say that an element a is a zero divisor if a 6= 0 and there exists a nonzero b ∈ R
such that ab = 0 or ba = 0. (Note in particular that 0 is not a zero divisor!)

• De�nition: In a ring R with 1 6= 0, we say that an element a is a unit if there exists a b ∈ R such that
ab = 1 = ba. The set of units in R is denoted R×.

◦ Example: In Z, there are no zero divisors, and the units are ±1.

◦ Example: In Z/mZ, the units are the residue classes relatively prime to m, while the zero divisors are
the nonzero classes having a nontrivial common divisor with m. In particular, every nonzero residue is
either a unit or a zero divisor.

◦ Example: In a �eld, every nonzero element is a unit. Indeed, a commutative ring with 1 is a �eld precisely
when every nonzero element is a unit.

◦ Example: In the ring Z[
√

2], the integers 1 and −1 are units, but the element
√

2 + 1 is also a unit,
because (

√
2 + 1) · (

√
2− 1) = 1. Note that Z[

√
2] is not a �eld, however, because

√
2 is not a unit.

• Here are a few basic properties of units and zero divisors:

• Proposition (Units and Zero Divisors): Let R be a ring with 1 6= 0.

1. The multiplicative inverse of a unit is unique.

◦ Proof: If a is a unit with ab = 1 = ba and also ac = 1 = ca, then b = b(ac) = (ba)c = c.

2. The product of two units is a unit, as is the multiplicative inverse of a unit.

◦ Proof: If a is a unit with ab = 1 = ba, then by de�nition b is also a unit.

◦ If c is another unit with cd = 1 = dc, then (ac)(db) = a(cd)b = a1b = ab = 1 and likewise (db)(ac) = 1
as well, so the inverse of ac is db.

3. A unit can never be a zero divisor in R.

◦ Proof: Suppose �rst that a is a unit and that xa = 0 for some x 6= 0.

◦ Then by assumption, there is a b such that ab = 1, so then x = x(ab) = (xa)b = 0b = 0, contradicting
the assumption that x 6= 0.

◦ In the same way, if ax = 0 for some x 6= 0, then if ba = 1 then x = (ba)x = b(ax) = b0 = 0, again a
contradiction.

• We give a special name to the class of commutative rings having no zero divisors, attesting to their similarity
to Z:

• De�nition: A commutative ring with 1 6= 0 having no zero divisors is called an integral domain (or often, just
a �domain�). Equivalently, R is an integral domain if R is commutative with 1 6= 0, and where ab = 0 implies
a = 0 or b = 0.

◦ The integers are an integral domain, as is any �eld.

◦ More generally, any ring that is a subset of a �eld (such as the Gaussian integers Z[i]) is an integral
domain. In fact, the converse turns out to be true as well: any integral domain arises naturally as a
subset of a �eld.

• Integral domains possess various fundamental properties:

• Proposition (Cancellation in Domains): Suppose R is an integral domain. Then multiplication in R has a
cancellation law: if a 6= 0 and ab = ac, b = c.

◦ Proof: Suppose that ab = ac: then a(b− c) = 0, so since R is a domain we either have a = 0 or b− c = 0.
Thus, if a 6= 0, we have b− c = 0 so that b = c.

• Corollary: If R is a �nite integral domain, then R is a �eld.
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◦ Proof: Let a be any nonzero element of R, and consider the set {a, a2, a3, . . . , an, . . . }. Since R is �nite,
two of the elements of this set must be equal: say aj = aj+k for some positive integers j and k.

◦ Then aj = aj+k implies aj(ak − 1) = 0, and then since a 6= 0, we see aj 6= 0. Thus, ak − 1 = 0, so that
a · ak−1 = 1, meaning that ak−1 is the multiplicative inverse of a.

• A number of the examples of rings we described earlier arise naturally as subsets of other rings. We can easily
describe this phenomenon in general:

• De�nition: If R is a ring, we say a subset S of R is a subring if it also possesses the structure of a ring, under
the same operations as R.

◦ Observe that if S is a subset of a ring, in order for the operations + and · to be well-de�ned binary
operations on S, it must be the case that a+ b and a · b are elements of S, for any a and b in S.

◦ Next, observe that axioms [R1], [R2], [R5], and [R6] in S automatically follow from the corresponding
properties of R.

◦ In order for [R3] to hold, we must have an additive identity 0S in S with the property that a + 0S = a
for every a in S. However, by the additive cancellation law in R, since a+ 0R = a = a+ 0S , we see that
0S = 0R: in other words, S must contain the zero element of R.

◦ Finally, in order for [R4] to hold, we require that for every a ∈ S, its additive inverse (−a) must also be
in S.

• By employing subtraction, we can in fact combine two of these veri�cations:

• Proposition (Subring Criterion): A subset S of R is a subring if only if S contains the zero element of R and,
for any a, b ∈ S, the elements a− b and ab are also in S.

◦ Proof: If S is a subring, then as noted above S must contain the zero element of R and for any a, b ∈ S,
we must have a− b and ab in S.
◦ Conversely, suppose S contains 0 and that a− b and ab are also in S for any a, b ∈ S. By setting a = 0
we see that 0− b = −b is in S, and then by setting b = −c we see that a− (−c) = a+ c is in S.

◦ Therefore, S contains 0 and is closed under addition, multiplication, and taking additive inverses. By
the observations above, S is therefore a subring.

• Using the subring criterion, we can construct many more examples of rings.

• Example: Z is a subring of Q, which is a subring of R, which is a subring of C.

• Example: The trivial ring {0} is a subring of any ring.

• Example: The even integers 2Z are a subring of Z, as are (more generally) the integer multiples of n, written
nZ.

◦ In fact, every subring of Z is of the form nZ for some integer n (the �trivial� subring {0} corresponds to
the case n = 0).

◦ To see this, suppose S is a subring of Z, and let T be the set of positive elements in this subring. If T is
empty, then S = {0}, and otherwise, T must have a minimal element n by the well-ordering principle.
Then S contains nZ.
◦ We claim any element of S must be a multiple of n, so that S = nZ: by the division algorithm, if S
contained an integer not divisible by n, the remainder upon dividing a by n would be a positive element
of S smaller than n, contradiction. Thus, S = nZ.

• Example: The set of rational numbers having denominator equal to a power of 2 (i.e., that are of the form
n/2k for an integer n and nonnegative integer k), forms a subring of Q.

• Example: The set of upper-triangular 2× 2 matrices with real entries (i.e., those of the form

[
a b
0 c

]
) forms

a subring of M2×2(R).
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• Example: The set of di�erentiable real-valued functions is a subring of the ring of continuous real-valued
functions, which is in turn a subring of the ring of all real-valued functions.

• We can also construct new rings using Cartesian products.

◦ Recall that if S and T are sets, the Cartesian product S×T is the set of ordered pairs (s, t) where s ∈ S
and t ∈ T .

• Proposition (Cartesian Products of Rings): If A and B are rings, then the Cartesian product A×B is also a
ring, with operations performed componentwise: (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) and (a1, b1) · (a2, b2) =
(a1a2, b1b2).

◦ Proof: Each of the properties [R1]-[R6] follows from the corresponding properties of A and B. The
additive identity is (0, 0), and additive inverses are given by −(a, b) = (−a,−b).
◦ Note that if A and B are commutative, then so is A×B; likewise, if A and B have a 1, then (1A, 1B) is
the multiplicative identity in A×B.

• Example: The ring (Z/2Z)× (Z/3Z) is a commutative ring with 1.

◦ This ring has six elements: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), and (1, 2). The additive identity is (0, 0) and
the multiplicative identity is (1, 1).

◦ Operations are performed �modulo 2� in the �rst coordinate and �modulo 3� in the second coordinate,
so for example we have (1, 1) + (0, 2) = (1, 0) and (1, 2) · (0, 2) = (0, 1).

1.3.4 Ideals

• Our next task is to generalize the idea of �modular arithmetic� into general rings.

◦ To motivate our discussion, recall the ideas behind the construction of Z/mZ and R/pR where R = F [x]:
we �rst de�ned modular modular congruences and studied their properties, and then we constructed
residue classes and showed that the collection of all residue classes had a ring structure.

• In both Z and F [x], we de�ned modular congruences using divisibility, but let us take a broader approach:
if I is a subset of R (whose properties we intend to characterize in a moment) let us say that two elements
a, b ∈ R are �congruent modulo I� if a− b ∈ I.

◦ This is a generalization of both types of congruence we have described thus far: for Z/mZ, the set I
consists of the multiples of m, while for R/pR, the set I consists of the multiples of p.

◦ We would like �congruence modulo I� to be an equivalence relation: this requires a ≡ a (mod I), a ≡ b
(mod I) implies b ≡ a (mod I), and a ≡ b (mod I) and b ≡ c (mod I) implies a ≡ c (mod I).

◦ It is easy to see that these three conditions require 0 ∈ I, that I be closed under additive inverses, and
that I be closed under addition. (Thus, I is in fact closed under subtraction.)

◦ Furthermore, we would like the congruences to respect addition and multiplication: if a ≡ b (mod I) and
c ≡ d (mod I), then we want a+ c ≡ b+ d (mod I) and ac ≡ bd (mod I).

◦ In terms of ring elements, this is equivalent to the following: if b = a+ r and d = c+ s for some r, s ∈ I,
then we want (b+d)−(a+c) = r+s to be in I, and we also want bd−ac = (a+r)(c+s)−ac = as+rc+rs
to be in I.

◦ The �rst condition clearly follows from the requirement that I is closed under addition. It is a bit less
obvious how to handle the second condition, but one immediate implication follows by setting a = c = 0:
namely, that rs ∈ I.

◦ Thus, I must be closed under multiplication, so it is in fact a subring of R.

◦ But the well-de�nedness of multiplication actually requires more: since 0 ∈ I, we can set r = 0 to see
that as ∈ I, and we can also set s = 0 to see that rc ∈ I.

◦ So in fact, I must be closed under (left and right) multiplication by arbitrary elements of R, in addition
to being a subring. It is then easy to see that this condition is also su�cient to ensure that a ≡ b (mod
I) and c ≡ d (mod I) imply a+ c ≡ b+ d (mod I) and ac ≡ bd (mod I).
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◦ Our last task is to de�ne residue classes and then the ring operations: we de�ne the residue class a
(modulo I) to be the set of ring elements b congruent to a modulo I, which is to say, a = {a+ r : r ∈ I}.
◦ Then we take the operations on residue classes to be a + b = a+ b and a · b = a · b: then from our
properties of congruences, we can verify that these operations are well-de�ned and that the collection of
residue classes forms a ring.

• Now that we have established the basic properties of the classes of the sets I we can use to construct congru-
ences, we can run through the discussion more formally.

• De�nition: A subset I of a ring R that is closed under arbitrary left and right multiplication by elements of
R is called an ideal of R (or, for emphasis, a two-sided ideal).

◦ Explicitly, I is an ideal if I contains 0 and for any x, y ∈ I and any r ∈ R, the elements x − y, rx, and
xr are all in I.

◦ There are �one-sided� notions of ideals as well (a left ideal is closed under arbitrary left multiplication,
while a right ideal is closed under arbitrary right multiplication). If R is commutative, then left ideals,
right ideals, and two-sided ideals are the same.

• Here are a few basic examples of ideals:

◦ Example: The subrings nZ are ideals of Z, since they are clearly closed under arbitrary multiplication
by elements of Z.
◦ Example: If R = F [x] and p is any polynomial, the subring pR of multiples of p is an ideal of F [x], since
it is closed under arbitrary multiplication by polynomials in F [x].

◦ Non-example: The subring Z of Q is not an ideal of Q, since it is not closed under arbitrary multiplication

by elements of Q, since for example if we take r =
1

3
∈ Q and x = 4 ∈ Z, the element rx =

4

3
is not in Z.

◦ Example: For any ring R, the subrings {0} and R are ideals of R. We refer to {0} as the trivial ideal
(or the �zero ideal�) and refer to any ideal I 6= R as a proper ideal (since it is a proper subset of R).

• Here are a few more examples (and non-examples) of ideals.

• Example: In the polynomial ring Z[x], determine whether the set S of polynomials with even constant term
(i.e., the polynomials of the form 2a0 + a1x+ a2x

2 + · · ·+ anx
n for integers ai) forms an ideal.

◦ It is easy to see that 0 ∈ S and that S is closed under subtraction.

◦ Furthermore, if q(x) is any other polynomial, and p(x) ∈ S, then p(x)q(x) also has even constant term,
so it is also in S.

◦ Thus, S is closed under multiplication by elements of Z[x], so it is an ideal .

• Example: Determine whether the set S = {0, 2, 4, 6} of �even� residue classes is an ideal of Z/8Z.

◦ We have 0 ∈ S, and it is a straightforward calculation to see that S is closed under subtraction, since
the sum of two �even� residue classes modulo 8 will still be even.

◦ Furthermore, the product of any residue class with an even residue class will again be an even residue class
(since 8 is even), so S is closed under multiplication by arbitrary elements of R. Thus, S is an ideal .

• Example: Determine whether the set S = {(2a, 3a) : a ∈ Z} is an ideal of Z× Z.

◦ We have 0 ∈ S, and (2a, 3a)− (2b, 3b) = (2(a− b), 3(a− b)) so S is closed under subtraction.

◦ But, for example, we can see that (1, 2) · (2, 3) = (2, 6) is not in S, even though (2, 3) is, so S is not
closed under arbitrary multiplication by elements of Z× Z. Thus, S is not an ideal .

• Several of the examples above are particular instances of a general class of ideals:

• Proposition (Principal Ideals): If R is a commutative ring with 1, the set (a) = {ra : r ∈ R} of all R-multiples
of a forms a (two-sided) ideal of R, known as the principal ideal generated by a.
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◦ Proof: Since 0a = 0 we see 0 ∈ (a). Furthermore, since ra− sa = (r− s)a we see that (a) is closed under
subtraction.

◦ Furthermore, if t ∈ R then we have t(ra) = (tr)a, so since R is commutative, (a) is closed under
multiplication by arbitrary elements of R. Thus, (a) is an ideal.

1.3.5 Quotient Rings

• Now that we have discussed ideals, we can use them to study residue classes, and thereby discuss construct
�quotient rings�.

• De�nition: If I is an ideal of the ring R, then we say a is congruent to b modulo I, written a ≡ b (mod I), if
a− b ∈ I.

◦ As in Z and F [x], congruence modulo I is an equivalence relation that respects addition and multi-
plication. The proofs are the same as in Z and F [x], once we make the appropriate translations from
�divisibility� to �containment in I�.

• Proposition (Ideal Congruences): Let I be an ideal of R and a, b, c, d ∈ R. Then the following are true:

1. a ≡ a (mod I).

2. a ≡ b (mod I) if and only if b ≡ a (mod I).

3. If a ≡ b (mod I) and b ≡ c (mod I), then a ≡ c (mod I).

4. If a ≡ b (mod I) and c ≡ d (mod I), then a+ c ≡ b+ d (mod I).

5. If a ≡ b (mod I) and c ≡ d (mod I), then ac ≡ bd (mod I).

◦ Each of these is a straightforward calculation using the de�nition of an ideal.

• Now we can de�ne residue classes:

• De�nition: If I is an ideal of the ring R, then for any a ∈ R we de�ne the residue class of a modulo I to be
the set a = a+ I = {a+ x : x ∈ I}. This set is also called the coset of I represented by a.

◦ We will use the notation a and a+I interchangeably. (The latter is intended to evoke the idea of �adding�
a to the set I.)

◦ We observe, as with our previous examples of residue classes, that any two residue classes are either
disjoint or identical and that they partition R: speci�cally, a = b if and only if a ≡ b (mod I) if and only
if a− b ∈ I.

• All that remains is to verify that the residue classes form a ring, in the same way as in Z and F [x]:

• Theorem (Quotient Rings): Let I be an ideal of the ring R. Then the collection of residue classes modulo I
forms a ring, denoted R/I (read as �R mod I�), under the operations a+ b = a+ b and a · b = ab. (This ring
is called the quotient ring of R by I.) If R is commutative then so is R/I, and likewise if R has a 1 then so
does R/I.

◦ Remark: The notation R/I is intended to emphasize the idea that I represents a single element (namely,
0) in the quotient ring R/I, and the other elements in R/I are �translates� of I. In this way, R/I is the
ring obtained from R by �collapsing� or �dividing out� by I, whence the name �quotient ring�.

◦ The proof of this fact is exactly the same as in the cases of Z and F [x], and only requires showing that
the operations are well-de�ned.

◦ Proof: First we must show that the addition and multiplication operations are well-de�ned: that is, if
we choose di�erent elements a′ ∈ ā and b′ ∈ b̄, the residue class of a′ + b′ is the same as that of a + b,
and similarly for the product.

◦ To see this, if a′ ∈ ā then a′ ≡ a (mod I), and similarly if b′ ∈ b then b′ ≡ b (mod I).

◦ Then a′ + b′ ≡ a+ b (mod I), so a′ + b′ = a+ b. Likewise, a′b′ ≡ ab (mod I), so a′b′ = ab.

◦ Thus, the operations are well-de�ned.
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◦ For the ring axioms [R1]-[R6], we observe that associativity, commutativity, and the distributive laws
follow immediately from the corresponding properties in R: the additive identity in R/I is 0̄ and the
additive inverse of a is −a.
◦ Finally, if R is commutative then so will be the multiplication of the residue classes, and if R has a 1
then the residue class 1 is easily seen to be a multiplicative identity in R/I.

• This general description of �quotient rings� generalizes the two examples we have previously discussed: Z/mZ
and F [x]/p.

◦ To be explicit, Z/mZ is the quotient of Z by the ideal mZ, while F [x]/p is the quotient of the polynomial
ring F [x] by the principal ideal (p) consisting of all multiples of p.

◦ It is not hard to see that the integer congruence a ≡ b (mod m), which we originally de�ned as being
equivalent to the statement m|(b− a), is the same as the congruence a ≡ b (mod I) where I is the ideal
mZ, since b− a ∈ mZ precisely when b− a is a multiple of m.

• Here are some additional examples of quotient rings:

• Example: If R is any ring, the quotient ring of R by the zero ideal, namely R/0, has the same structure as R
itself, while the quotient ring of R by itself, namely R/R, has the same structure as the trivial ring {0}.

• Example: In R = Z[x], with I consisting of all multiples of x2 + 1, describe the structure of the quotient ring
R/I.

◦ It is easy to see that I is an ideal of R, since it is a subring that is closed under arbitrary multiplication
by elements of R.

◦ From our discussion of polynomial rings, we know that the residue classes in R/I are represented uniquely
by residue classes of the form a+ bx where a, b ∈ Z. Note that in this quotient ring, we have x2 + 1 = 0,
which is to say, x2 = −1.

◦ The addition in this quotient ring is given by a+ bx+c+ dx = (a+ c) + (b+ d)x while the multiplication
is given by a+ bx · c+ dx = (ac− bd) + (ad+ bc)x, which follows from the distributive law and the fact
that x2 = −1.

• Example: In R = Z/8Z, with I = {0, 4}, describe the structure of the quotient ring R/I.

◦ It is easy to see that I is an ideal of R, since it is a subring that is closed under arbitrary multiplication
by elements of R. (Indeed, it is the principal ideal generated by 4.)

◦ Since each residue class contains 2 elements, and R has 8 elements in total, there are four residue classes.
With this observation in hand, it is not hard to give a list: 0 = I = {0, 4}, 1 = 1 + I = {1, 5},
2 = 2 + I = {2, 6}, and 3 = 3 + I = {3, 7}.
◦ Notice, for example, that in the quotient ring R/I, we have 1 + 3 = 0, 2 · 2 = 0, and 2 · 3 = 2: indeed,
we can see that the structure of R/I is exactly the same as Z/4Z (the labelings of the elements are even
the same).

• Example: In the polynomial ring R = Z[x], with I consisting of the polynomials with even constant term
(i.e., the polynomials of the form 2a0 + a1x+ a2x

2 + · · ·+ anx
n for integers ai), describe the structure of the

quotient ring R/I.

◦ We observe that there are only two residue classes, namely 0 and 1: to see this observe that p(x) ∈ 0
when the constant term of p is even, and p(x) ∈ 1 when the constant term of p is odd.

◦ Then one can verify that the structure of this quotient ring is �the same� as Z/2Z (with, for example,
1 + 1 = 0).
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1.3.6 Ring Isomorphisms

• We have encountered several examples of rings with very similar structures.

• For example, consider the two rings R = Z/6Z and S = (Z/2Z)× (Z/3Z).

◦ Here are the addition and multiplication tables in R:
+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

◦ Now compare those tables to the tables in S:
+ (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)

(0, 0) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(1, 1) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2) (0, 0)
(0, 2) (0, 2) (1, 0) (0, 1) (1, 2) (0, 0) (1, 1)
(1, 0) (1, 0) (0, 1) (1, 2) (0, 0) (1, 1) (0, 2)
(0, 1) (0, 1) (1, 2) (0, 0) (1, 1) (0, 2) (1, 0)
(1, 2) (1, 2) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1)

· (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 1) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 2) (0, 0) (0, 2) (0, 1) (0, 0) (0, 2) (0, 1)
(1, 0) (0, 0) (1, 0) (0, 0) (1, 0) (0, 0) (1, 0)
(0, 1) (0, 0) (0, 1) (0, 2) (0, 0) (0, 1) (0, 2)
(1, 2) (0, 0) (1, 2) (0, 1) (1, 0) (0, 2) (1, 1)

◦ Notice that these tables look quite similar (especially given the artful reordering of the labels of the
elements in S).

◦ Indeed, if we relabel each entry n in the �rst set of tables with the ordered pair corresponding to its
reduction modulo 2 and 3 (so that 1 becomes (1, 1), 2 becomes (0, 2), and so forth) we will obtain the
second set of tables!

• For another example, consider the rings R = (Z/2Z)× (Z/2Z) and S = F2[x]/(x2 + x).

◦ Here are the addition and multiplication tables in R:
+ (0, 0) (1, 1) (1, 0) (0, 1)

(0, 0) (0, 0) (1, 1) (1, 0) (0, 1)
(1, 1) (1, 1) (0, 0) (0, 1) (1, 0)
(1, 0) (1, 0) (0, 1) (0, 0) (1, 1)
(0, 1) (0, 1) (1, 0) (1, 1) (0, 0)

· (0, 0) (1, 1) (1, 0) (0, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 1) (0, 0) (1, 1) (1, 0) (0, 1)
(1, 0) (0, 0) (1, 0) (1, 0) (0, 0)
(0, 1) (0, 0) (0, 1) (0, 0) (0, 1)

◦ Now compare those tables to the tables in S:
+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x 0

x+ 1 0 x+ 1 0 x+ 1

◦ Here, if we relabel (0, 0) as 0, (1, 1) as 1, (1, 0) as x, and (0, 1) as x+ 1, the �rst pair of tables becomes
the second set of tables.

• Let us formalize the central idea in the examples above: in each case, we see that there is a way to �relabel�
the elements of R using the elements of S in a way that preserves the ring structure.

◦ The desired �relabeling� is a function ϕ : R → S with the property that ϕ is a bijection (so that each
element of R is �labeled� with a unique element of S) and that ϕ respects the ring operations.

◦ Explicitly, we require ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2) for all r1, r2 ∈ R.

• De�nition: Let R and S be rings. A ring isomorphism ϕ from R to S is a bijective6 function ϕ : R→ S such
that ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2) for all elements r1 and r2 in R.

6Recall that a function ϕ : R→ S is injective (one-to-one) if ϕ(x) = ϕ(y) implies x = y, and ϕ is surjective (onto) if for every s ∈ S
there exists an r ∈ R with ϕ(r) = s. A bijective function is one that is both injective and surjective. Equivalently, ϕ is a bijection if it
possesses a two-sided inverse function ϕ−1 : S → R with ϕ(ϕ−1(s)) = s and ϕ−1(ϕ(r)) = r for every r ∈ R and s ∈ S.
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◦ We remark here that in both of the conditions ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2),
the operations on the left are performed in R while the operations on the right are performed in S.

◦ Note: Isomorphisms arise in a variety of contexts (e.g., isomorphisms of vector spaces, isomorphisms of
groups, etc.), and in some cases the rings we are considering may carry additional structure. We will
simply say �isomorphism� when the particular type of isomorphism is clear from the context.

• Example: For R = Z/6Z and S = (Z/2Z) × (Z/3Z), the map ϕ : R → S de�ned via ϕ(n mod 6) =
(n mod 2, n mod 3) is an isomorphism.

◦ Note that �reducing� a residue class in Z/6Z modulo 2 or modulo 3 makes sense because 2 and 3 both
divide 6, so ϕ is well-de�ned.

◦ We can then appeal to the calculations above (or simply redo the calculations) to see that ϕ is a bijection
and that ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) = ϕ(r1) · ϕ(r2) for any residue classes r1, r2 ∈ Z/6Z.

• Example: For S =

{[
a b
−b a

]
∈M2×2(R) : a, b ∈ R

}
, the map ϕ : C→ S de�ned via ϕ(a+bi) =

[
a b
−b a

]
is an isomorphism.

◦ First, we see that ϕ is a bijection since it has a two-sided inverse; namely, the map ϕ−1 : S → C de�ned

by ϕ−1
([

a b
−b a

])
= a+ bi.

◦ Furthermore, if z = a+ bi and w = c+ di, then ϕ respects addition and multiplication:

ϕ(z + w) = ϕ((a+ c) + (b+ d)i) =

[
a+ c b+ d
−(b+ d) a+ c

]
=

[
a b
−b a

]
+

[
c d
−d c

]
= ϕ(z) + ϕ(w)

ϕ(zw) = ϕ((ac− bd) + (ad+ bc)i) =

[
ac− bd ad+ bc
−(ad+ bc) ac− bd

]
=

[
a b
−b a

]
·
[

c d
−d c

]
= ϕ(z) · ϕ(w).

• De�nition: If there is an isomorphism ϕ : R→ S, we say R and S are isomorphic, and write R ∼= S. Isomorphic
rings share the same structure, except that the elements and operations may be labeled di�erently.

• Proposition (Properties of Isomorphisms): If R,S, T are any rings, the following hold:

1. The identity map I : R→ R de�ned by I(r) = r for all r ∈ R is an isomorphism from R to R.

◦ Proof: I is clearly a bijection and respects the ring operations.

2. If ϕ : R→ S is an isomorphism, then the inverse map ϕ−1 : S → R is also an isomorphism.

◦ Proof: Essentially by de�nition, ϕ−1 is also a bijection.
◦ Now suppose ϕ−1(s1) = r1 and ϕ−1(s2) = r2, so that ϕ(r1) = s1 and ϕ(r2) = s2.
◦ Then ϕ(r1 +r2) = ϕ(r1)+ϕ(r2) = s1 +s2, meaning that ϕ−1(s1 +s2) = r1 +r2 = ϕ−1(s1)+ϕ−1(s2),
and likewise for multiplication. Thus, ϕ−1 is also an isomorphism.

3. If ϕ : R→ S and ψ : S → T are isomorphisms, then the composition ψϕ : R→ T is also an isomorphism.

◦ Proof: It is straightforward to see that the composition of two bijections is a bijection.
◦ Furthermore, we have (ψϕ)(r1 + r2) = ψ(ϕ(r1 + r2)) = ψ(ϕ(r1) + ϕ(r2)) = ψϕ(r1) + ψϕ(r2), and
likewise for multiplication. Thus ψϕ is an isomorphism.

4. If ϕ : R→ S is an isomorphism, then ϕ(0R) = 0S , and if R has a 1, then so does S, and ϕ(1R) = 1S .

◦ Proof: Let s ∈ S and de�ne r = ϕ−1(s). Then s + ϕ(0R) = ϕ(r) + ϕ(0R) = ϕ(r + 0R) = ϕ(r) = s,
so ϕ(0R) is an additive identity in S.
◦ Similarly, if R has a 1, then s ·ϕ(1R) = ϕ(r)ϕ(1R) = ϕ(r ·1R) = ϕ(r) = s, so ϕ(1R) is a multiplicative
identity in S.

5. If ϕ : R → S is an isomorphism, then r ∈ R is a unit in R if and only if ϕ(r) ∈ S is a unit in S, and if
so, ϕ(r)−1 = ϕ(r−1).

◦ Proof: If r ∈ R is a unit in R with inverse t, we have 1R = rt, so 1S = ϕ(1R) = ϕ(rt) = ϕ(r)ϕ(t) so
ϕ(r) is a unit in S with inverse ϕ(t). The converse implication is equivalent, by (2).
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6. If ϕ : R→ S is an isomorphism, then R is a �eld if and only if S is a �eld.

◦ Proof: Every nonzero r ∈ R is a unit if and only if every nonzero s ∈ S is a unit by (5), and clearly
R is commutative i� S is commutative.

• Our primary interest in ring isomorphisms is that we can use them to establish that a given ring R is a �eld,
if we can show that R is ring-isomorphic to some other �eld F .

1.3.7 Ring Homomorphisms

• We �nally give a brief discussion of maps that respect the ring operations without the requirement that they
be bijections.

• De�nition: A function ϕ : R → S is a ring homomorphism if ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) =
ϕ(r1) · ϕ(r2) for all elements r1 and r2 in R.

◦ Note of course that any isomorphism is a homomorphism, but the reverse is not typically true.

• Example: If m > 1, show that the map ϕ : Z→ Z/mZ de�ned by ϕ(a) = a, so that ϕ maps the integer a to
its associated residue class a modulo m, is a ring homomorphism.

◦ From our results on residue classes, we see ϕ(a + b) = a+ b = a + b = ϕ(a) + ϕ(b), and likewise
ϕ(a · b) = a · b = a · b = ϕ(a) · ϕ(b). Thus, ϕ is a homomorphism.

◦ Notice that this map is surjective but not injective (since for example ϕ(0) = ϕ(m)), so it is not an
isomorphism.

• In essentially the same way, we see that the reduction modulo p map inside F [x] is also a homomorphism:

• Example: Let F be a �eld with R = F [x] and let p(x) ∈ R be nonzero. Then the map ϕ : R → R/pR given
by ϕ(a) = a, mapping the polynomial a to its associated residue class a modulo p, is a ring homomorphism.

◦ From our results on residue classes, we see ϕ(a + b) = a+ b = a + b = ϕ(a) + ϕ(b), and likewise
ϕ(a · b) = a · b = a · b = ϕ(a) · ϕ(b). Thus, ϕ is a homomorphism.

• Example: Let R be a commutative ring and a ∈ R. Show that the �evaluation at a map� ϕa : R[x] → R
de�ned by ϕa(p) = p(a) is a ring homomorphism.

◦ We have ϕa(p+ q) = (p+ q)(a) = p(a) + q(a) = ϕa(p) + ϕa(q) by the de�nition of polynomial addition.

◦ Likewise, we have ϕa(rbx
b · rcxc) = rbrca

b+c = (rba
b)(rca

c) = ϕa(rbx
b)ϕa(rcx

c) because R is commuta-
tive.

◦ Then for any polynomials p and q we see ϕa(pq) = ϕa(p)ϕa(q) by applying distributivity and the fact
that ϕa respects multiplication of individual terms and addition.

• Example: Let R and S be any rings. The �zero map� Z : R→ S given by Z(r) = 0S for every r ∈ R is a ring
homomorphism.

• Example: If S is a subring of R, the map ι : S → R given by ι(s) = s is a ring homomorphism. This map is
called the inclusion map (since it simply re�ects the set inclusion of S inside R).

• There exist numerous examples of maps that satisfy only one of the two requirements for being a homomor-
phism.

◦ Non-Example: The function f : Z→ Z given by f(n) = 2n is not a homomorphism. Explicitly, although
it satis�es f(m + n) = 2(m + n) = f(m) + f(n), it is not multiplicative since f(1 · 1) = 2 while
f(1) · f(1) = 4.

◦ Non-Example: The function f : R→ R given by f(x) = x2 is not a homomorphism. Explicitly, although
it satis�es f(xy) = (xy)2 = f(x)f(y), it is not additive since f(1 + 1) = 4 while f(1) + f(1) = 2.

• Here are a few more examples (and non-examples) of homomorphisms:
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• Example: Determine whether the map ϕ : (Z/15Z)→ (Z/15Z) given by ϕ(a) = 10a is a ring homomorphism.

◦ We have ϕ(a+ b) = 10(a+ b) = 10a+ 10b = ϕ(a) + ϕ(b).

◦ Likewise, ϕ(ab) = 10ab = 100ab = (10a)(10b) = ϕ(a)ϕ(b), since 10 ≡ 100 (mod 15).

◦ Therefore, ϕ is a homomorphism .

• Example: Let R be the ring of in�nitely di�erentiable real-valued functions on R. Determine whether the
derivative map D : R→ R given by D(f) = f ′ is a ring homomorphism.

◦ We have D(f + g) = (f + g)′ = f ′ + g′ = D(f) +D(g), so D is additive.

◦ However, D does not respect ring multiplication, since for example D(x ·x2) = 3x2 while D(x) ·D(x2) =

2x. Therefore, ϕ is not a homomorphism .

• Example: Let R be any ring. Determine whether the map ϕ : R → R × R given by ϕ(r) = (r, r) is a ring
homomorphism.

◦ We have ϕ(r + s) = (r + s, r + s) = (r, r) + (s, s) = ϕ(r) + ϕ(s).

◦ Likewise, ϕ(rs) = (rs, rs) = (r, r)(s, s) = ϕ(r)ϕ(s), so ϕ is a homomorphism .

• Like with isomorphisms, homomorphisms have a number of basic properties.

• Proposition (Properties of Homomorphisms): If R,S, T are any rings, the following hold:

1. If ϕ : R → S and ψ : S → T are homomorphisms, then the composition ψϕ : R → T is also a
homomorphism.

◦ Proof: Follows from the analogous calculation for isomorphisms.

2. If ϕ : R → S is a homomorphism, then ϕ(0R) = 0S , ϕ(−r) = −ϕ(r) for every r ∈ R, and ϕ(r1 − r2) =
ϕ(r1)− ϕ(r2) for every r1, r2 ∈ R.
◦ Proof: For any r ∈ R, we have ϕ(r) = ϕ(r + 0R) = ϕ(r) + ϕ(0R): thus, by additive cancellation in
S we see ϕ(0R) = 0S .
◦ Then 0S = ϕ(0R) = ϕ(r + (−r)) = ϕ(r) + ϕ(−r) so by the uniqueness of additive inverses in S we
conclude ϕ(−r) = −ϕ(r).
◦ Finally, ϕ(r1 − r2) = ϕ(r1) + ϕ(−r2) = ϕ(r1)− ϕ(r2) by the above calculation.

3. If ϕ : R → S is a surjective homomorphism and R has a 1, then S also has a 1 and ϕ(1R) = 1S .
Furthermore, for any unit u ∈ R, the value ϕ(u) is a unit in S whose inverse is ϕ(u−1).

◦ Proof: Let s ∈ S: then since ϕ is surjective there exists some r ∈ R with ϕ(r) = s. Then
sϕ(1R) = ϕ(r)ϕ(1R) = ϕ(r1R) = ϕ(r) = s, and likewise ϕ(1R)s = s, so ϕ(1R) is a multiplicative
identity in S.

◦ For the other part, if u is a unit in R then 1S = ϕ(1R) = ϕ(u · u−1) = ϕ(u)ϕ(u−1), so ϕ(u) is a unit
in S with inverse ϕ(u−1).

• Associated to a homomorphism are two fundamental objects: the kernel and image.

• De�nition: If ϕ : R → S is a ring homomorphism, the kernel of ϕ, denoted kerϕ, is the set of elements in R
mapped to 0S by ϕ. In other words, kerϕ = {r ∈ R : ϕ(r) = 0}.

◦ Intuitively, the kernel measures how close ϕ is to being the zero map: if the kernel is large, then ϕ sends
many elements to zero, while if the kernel is small, ϕ sends fewer elements to zero.

◦ Example: The kernel of the reduction homomorphism ϕ : Z→ Z/mZ with ϕ(a) = a is the subring mZ.
◦ Example: The kernel of the evaluation map ϕa : F [x]→ F given by ϕa(p) = p(a) is the set of polynomials
in F [x] with p(a) = 0, which is (equivalently) the set of polynomials divisible by x− a.

• De�nition: If ϕ : R → S is a ring homomorphism, the image of ϕ, denoted imϕ, is the set of elements in S
of the form ϕ(r) for some r ∈ R.
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◦ In the context of general functions, the image is often called the range of ϕ.

◦ Intuitively, the image measures how close ϕ is to being surjective: indeed (by de�nition) ϕ is surjective
if and only if imϕ = S.

• The kernel and image of a homomorphism are subrings of R and S respectively:

• Proposition (Kernel and Image): Let ϕ : R→ S be a ring homomorphism. Then

1. The image imϕ is a subring of S.

◦ Proof: Since ϕ(0R) = 0S , the image contains 0. Furthermore, if s1 and s2 are in imϕ so that
ϕ(r1) = s1 and ϕ(r2) = s2 for some r1, r2 ∈ R, then s1 − s2 = ϕ(r1 − r2) and s1s2 = ϕ(r1r2) are
also in imϕ.
◦ Thus, imϕ contains 0 and is closed under subtraction and multiplication, so it is a subring.

2. The kernel kerϕ is an ideal of R.

◦ Proof: Since ϕ(0R) = 0S , the kernel contains 0. Furthermore, if r1 and r2 are in kerϕ then
ϕ(r1 − r2) = ϕ(r1)− ϕ(r2) = 0 and ϕ(r1r2) = ϕ(r1)ϕ(r2) = 0 · 0 = 0

◦ Thus, kerϕ contains 0 and is closed under subtraction and multiplication, so it is a subring.
◦ Moreover, if x ∈ kerϕ then ϕ(rx) = ϕ(r)ϕ(x) = ϕ(r)0 = 0 and likewise ϕ(xr) = ϕ(x)ϕ(r) = 0ϕ(r) =

0, so it is an ideal.

3. The kernel is zero (i.e., kerϕ = {0}) if and only if ϕ is injective. In particular, ϕ is an isomorphism if
and only if kerϕ = {0} and imϕ = S.

◦ Proof: If ϕ(a) = ϕ(b), then ϕ(a− b) = ϕ(a)− ϕ(b) = 0, so a− b ∈ kerϕ. Thus, if the only element
in kerϕ is 0, then we must have a− b = 0 so that a = b.
◦ Conversely, if x ∈ kerϕ and ϕ is injective, then ϕ(x) = 0 = ϕ(0) implies x = 0.
◦ The second statement follows from the facts that kerϕ = {0} is equivalent to ϕ being injective and

imϕ = S is equivalent to ϕ being surjective.

1.3.8 Ideals and Homomorphisms

• Although homomorphisms and quotient rings may not immediately appear to be connected, in fact they are
quite deeply related.

◦ To begin, observe that if ϕ : R→ S is a ring homomorphism, then the kernel of ϕ is an ideal of R. Thus,
we can use homomorphisms to construct new ideals.

◦ Equally importantly, we can also do the reverse: we can use ideals to construct homomorphisms.

◦ The key observation in this direction is that the map ϕ : R → R/I associating a ring element to its
residue class (i.e., with ϕ(a) = a) is a ring homomorphism.

◦ Indeed, the two parts of the de�nition of homomorphism were precisely the properties we arranged for
the residue classes modulo I to possess: ϕ(a + b) = a+ b = a + b = ϕ(a) + ϕ(b) and ϕ(a · b) = a · b =
a · b = ϕ(a) · ϕ(b).

◦ Furthermore, the kernel of this map ϕ is, by de�nition, the set of elements in R with ϕ(r) = 0, which is
to say, the set of elements r ∈ I.
◦ Thus, we see that kernels of homomorphisms and ideals are precisely the same things!

• Let us summarize these observations:

• Proposition (Projection Homomorphisms): If I is an ideal of R, then the map ϕ : R → R/I de�ned by
ϕ(a) = a = a+ I is a surjective ring homomorphism called the projection homomorphism from R to R/I.

◦ Proof: We have ϕ(a+ b) = a+ b = a+ b = ϕ(a) +ϕ(b) and ϕ(a · b) = a · b = a · b = ϕ(a) ·ϕ(b), so ϕ is a
homomorphism.

◦ Furthermore, ϕ is surjective, essentially by de�nition: any residue class in R/I is of the form a for some
a ∈ R, and then ϕ(a) = a.
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• The next natural question to ask is: if ϕ : R → S is a homomorphism with kernel I, what can we say about
the structure of R/I?

◦ For example, if R = Q[x] and ϕ : R → R is de�ned by ϕ(p) = p(0), then it is easy to see that ϕ is a
homomorphism.

◦ Furthermore, the kernel of ϕ is the ideal I of Q[x] consisting of the polynomials divisible by x, while the
image of ϕ is the set of rational numbers.

◦ Then it is easy to see (from our description of the kernel) that R/I is precisely the same as R/xR, and
from the division algorithm for polynomials we know that the residue classes are represented by the
polynomials of degree 0 in Q[x]; namely, the constant polynomials c for c ∈ Q.
◦ But now notice that the structure of R/I (namely, of Q) is exactly the same as the structure as the
image of ϕ. More formally, these two rings are isomorphic, with an isomorphism given by identifying a
residue class c with the rational number c.

◦ This relabeling can, equivalently, be thought of as being done via the homomorphism ϕ: we associate
the residue class c in R/I with the rational number ϕ(c) = c.

◦ In other words: ϕ gives an isomorphism between R/ kerϕ and the image imϕ.

• Theorem (First Isomorphism Theorem): If ϕ : R→ S is a homomorphism of rings, then R/ kerϕ is isomorphic
to imϕ.

◦ Intuitively, ϕ is a surjective homomorphism ϕ : R → imϕ. To turn it into an isomorphism, we must
�collapse� its kernel to a single element: this is precisely what the quotient ring R/ kerϕ represents.

◦ Proof: Let I = kerϕ. We use ϕ to construct a map ψ : R/I → imϕ, and then show that it is injective
and surjective.

◦ The map is de�ned as follows: for any residue class r ∈ R/I, we de�ne ψ(r) = ϕ(r).

◦ We must verify that this map ψ is well-de�ned, so suppose that r′ is some other representative of the
residue class r: then r′ − r ∈ I, so ϕ(r′ − r) = 0 and thus ϕ(r′) = ϕ(r).

◦ Thus, ψ(r′) = ϕ(r′) = ϕ(r) = ψ(r), so the map ψ is well-de�ned.

◦ It is then easy to see ψ is a homomorphism, since ψ(r + s) = ϕ(r + s) = ϕ(r) + ϕ(s) = ψ(r) + ψ(s) and
likewise ψ(r · s) = ϕ(r · s) = ϕ(r) · ϕ(s) = ψ(r) · ψ(s).

◦ Next, we see that ψ(r) = 0 precisely when ϕ(r) = 0, which is to say r ∈ ker(ϕ), so that r = 0. Thus, the
only element in kerψ is 0, so ψ is injective.

◦ Finally, if s is any element of imϕ, then by de�nition there is some r ∈ R with ϕ(r) = s: then ψ(r) = s,
meaning that ψ is surjective.

◦ Since ψ is a homomorphism that is both injective and surjective, it is an isomorphism.

• By using the �rst isomorphism theorem, we can construct isomorphisms of rings.

◦ In order to show that R/I is isomorphic to a ring S, we search for a surjective homomorphism ϕ : R→ S
whose kernel is I.

• Example: If R is any commutative ring, show that R[x]/(x) is isomorphic to R.

◦ Let ϕ : R[x] → R be the �evaluation at 0� homomorphism ϕ(p) = p(0). This map is clearly surjective
since for any r ∈ R we have ϕ(r) = r.

◦ Furthermore, the kernel of this homomorphism is precisely the collection of polynomials p(x) = a0 +
a1x + · · · + anx

n with p(0) = 0, which is easily seen to be the ideal I = (x) consisting of polynomials
divisible by x.

◦ Thus, by the �rst isomorphism theorem, for I = (x) we have R[x]/I ∼= R.

• Example: Show that Z/12Z is isomorphic to (Z/3Z)× (Z/4Z).

◦ We seek a surjective homomorphism ϕ : Z→ (Z/3Z)× (Z/4Z) whose kernel is 12Z.
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◦ Once this idea is suggested, it is not hard to come up with a candidate, namely, ϕ(a) = (a mod 3, a mod 4).

◦ It is easy to verify that map is a homomorphism (since the individual maps of reduction mod 3 and
reduction mod 4 are homomorphisms) and it is likewise fairly easy to see that the map is surjective by
checking that the images of 0, 1, ... , 11 represent all of the elements in (Z/3Z)× (Z/4Z).

◦ Finally, the kernel of the map consists of all integers a with ϕ(a) = (0, 0), which is equivalent to saying
a ≡ 0 (mod 3) and a ≡ 0 (mod 4), so that 3|a and 4|a: thus, the kernel is precisely 12Z.
◦ Therefore, by the �rst isomorphism theorem applied to this map ϕ, we conclude that Z/12Z is isomorphic
to (Z/3Z)× (Z/4Z).

◦ Remark: In fact, we could have avoided checking surjectivity explicitly by instead observing that the
�rst isomorphism theorem yields an injective homomorphism ψ : Z/12Z→ (Z/3Z)× (Z/4Z), which must
therefore also be surjective since there are 12 elements in both sets.

• We can use the �rst isomorphism theorem to establish several other related theorems collectively known as
the �isomorphism theorems�, which characterize how isomorphisms relate to the various ring operations:

• Theorem (Second Isomorphism Theorem): If A is a subring of R and B is an ideal of R, then A+B = {a+b :
a ∈ A, b ∈ B} is a subring of A, A ∩B is an ideal of A, and (A+B)/B is isomorphic to A/(A ∩B).

◦ Proof: Clearly A + B contains 0 and (a + b) − (a′ + b′) = (a − a′) + (b − b′) so it is also closed under
subtraction. For multiplication, we observe (a+ b)(a′ + b′) = aa′ + ba′ + ab′ + bb′: the �rst term is in A
since A is a subring, while the other three terms are in B (hence so is their sum) since B is an ideal.

◦ For the last statement, consider the map ϕ : A → (A + B)/B de�ned by ϕ(a) = a + B. This map is
well-de�ned and a homomorphism by the basic properties of quotient rings, and it is surjective since for
any class r +B in (A+B)/B for some r = a+ b ∈ A+B, we have ϕ(a) = a+B = r +B.

◦ The kernel of the map ϕ consists of all a ∈ A with a+B = 0 +B, which is (by de�nition) equivalent to
saying a ∈ B: thus, kerϕ = A∩B. In particular, A∩B is an ideal since it is a kernel of a homomorphism.

◦ Thus, by applying the �rst isomorphism theorem to ϕ, we see that the rings A/(A ∩B) and (A+B)/B
are isomorphic, as claimed.

• Theorem (Third Isomorphism Theorem): If I and J are ideals of R with I ⊆ J , then J/I is an ideal of R/I
and (R/I)/(J/I) is isomorphic to R/J .

◦ Proof: De�ne the map ϕ : R/I → R/J given by setting ϕ(r + I) = r + J . This map is well-de�ned
because if r′ + I = r + I, then since J contains I, we also have r′ + J = r + J , and it is also surjective
since for any class r + J in R/J , we clearly have ϕ(r + I) = r + J .

◦ Furthermore, ϕ is a homomorphism by the basic properties of quotient rings, since for example ϕ((r1 +
r2) + I) = (r1 + r2) + J = (r1 + J) + (r2 + J) = ϕ(r1 + I) + ϕ(r2 + I), which shows that ϕ is additive
because (r1 + I) + (r2 + I) = (r1 + r2) + I.

◦ Likewise, since (r1 + I)(r2 + I) = r1r2 + I, we see that ϕ(r1r2 + I) = r1r2 + J = (r1 + J)(r2 + J) =
ϕ(r1 + I)ϕ(r2 + I) and so ϕ is multiplicative.

◦ The kernel of the map ϕ consists of all r + I in R/I with the property that r + J = 0 + J , which is
equivalent to saying r ∈ J : thus, kerϕ consists of the classes of the form r + I for r ∈ J ; this is simply
another way of saying that kerϕ = J/I.

◦ Finally, by applying the �rst isomorphism theorem to ϕ, we see that the rings (R/I)/(J/I) and R/J are
isomorphic, as claimed.

• Example: Inside R = Z[x], let I be the ideal of all polynomials with zero constant term and J be the ideal of
all polynomials with even constant term. Verify the third isomorphism theorem for R, I, and J .

◦ As we have already mentioned, both I and J are ideals of R, and clearly I ⊆ J .
◦ Furthermore, R/I is isomorphic to Z (per the division algorithm), and J/I is isomorphic to 2Z (the
residue classes are represented by the even integers). Also, R/J is isomorphic to Z/2Z (since the residue
classes are 0 and 1).

◦ Then indeed (R/I)/(J/I) ∼= Z/2Z ∼= R/J , as claimed.
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• Theorem (Fourth/Lattice Isomorphism Theorem): If I is an ideal of R, then there is an inclusion-preserving
bijection between subrings A of R containing I and the subrings A = A/I of R/I. Furthermore, a subring A
of R containing I is an ideal of R if and only if A/I is an ideal of R/I.

◦ Proof: We showed during the proof of the second isomorphism theorem that if A contains I then I is an
ideal of A, so the association of A with A = A/I is well-de�ned. Conversely, if S is a subring of R/I,
then A = {r ∈ R : r + I ∈ S} is the unique subring of R containing I with the property that A/I = S.

◦ Furthermore, if B is a subring containing A, then B = B + I contains A = A + I, so the association
preserves containment.

◦ For the statements about ideals, we showed during the proof of the third isomorphism theorem that if J
is an ideal containing I then J/I is an ideal of R/I. Conversely, if J/I is an ideal of R/I, then for any
r ∈ R and x ∈ J we have r(x+ I) ∈ J/I, and this is equivalent to saying that rx ∈ J : thus, J is an ideal
of R (since it is already a subring, per the above).

• Example: For R = Z and I = 10Z, identify the ideals of R containing I and verify they all yield ideals of R/I.

◦ The ideals of R containing I are Z, 2Z, 5Z, and 10Z.
◦ The corresponding ideals of R/I = Z/10Z are Z/10Z, 2Z/10Z = {0, 2, 4, 6, 8}, 5Z/10Z = {0, 5}, and

10Z/10Z = {0}. As claimed, each of these is indeed an ideal of Z/10Z.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2020. You may not reproduce or distribute this
material without my express permission.
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