
Cryptography (part 6): Modern Topics in Cryptography (by Evan Dummit, 2016, v. 1.00)

Contents

6 Modern Topics in Cryptography 1

6.1 Authentication, Trust, and Certi�cates . 1

6.1.1 Public Key Infrastructures . 2

6.1.2 X.509 Certi�cates . 3

6.1.3 PGP and SSL/TLS . 4

6.2 Quantum Computing and Cryptography . 6

6 Modern Topics in Cryptography

In this chapter, we discuss a few topics relevant to modern cryptography as currently implemented. We will discuss
internet security protocols (examples including PGP, SSL, and TLS) as well as trusted authorities and certi�cates.
We will also give a vague outline of the ideas behind quantum computing and explain how, if a su�ciently large
quantum computer could be built, it could be used to break many modern protocols.

6.1 Authentication, Trust, and Certi�cates

• When performing digital interactions (or even non-digital interactions), Alice and Bob want to ensure that
they are actually talking to each other and not some third party.

◦ We have developed the idea of a digital signature algorithm, using which Alice can verify that each
message in their conversation was signed by Bob, and vice versa.

◦ When designing signature algorithms, we generally made statements along the lines of �Bob publishes
his public key and Alice uses it to verify his signature is correct�.

◦ However, there is a di�culty that needs to be addressed here: how does Alice know that the public
signature key posted on �Bob's� website is actually from Bob?

◦ After all, Eve might have pretended to be Bob and directed Alice to a webpage that claims to contain
Bob's public key, but actually was created by Eve. Or perhaps Mallory hacked Bob's webpage to display
the wrong public key, and Bob has not noticed.

• One possible way to deal with this problem is if Alice trusts a third party, Trent, who is willing to vouch for
Bob's identity.

◦ Alice then does not need to believe Bob directly: she needs only to believe that Trent is telling the truth
when he says that Bob is who he claims to be (or in the case of a webpage, that Trent is telling the truth
that it really is Bob's webpage and not Eve's).

◦ Of course, if Alice lives in Argentina and Bob lives in Belarus, there may not be such a person who knows
both Alice and Bob well enough for the procedure to work. (Alice would need to trust that she is really
speaking to Trent, and Trent would need to trust that he is really speaking to Bob.)

◦ However, we can easily extend the procedure: if there is some chain of people starting with Alice and
ending with Bob such that each person trusts the next person in the chain, then Alice and Bob can
establish a communication channel through that trusted chain.

1

• One possibility is that Alice and Bob could rely on a �web of trust�: Alice trusts a small group of people,
each of whom in turn trusts a few others, and so on and so forth. With enough trusted intermediaries, the
principle is that any two people in the network can establish an initial authentication to one another, after
which they can employ digital signing to secure subsequent communications.

• Another possibility is that Alice and Bob could rely on a �hierarchal� model: Alice and Bob have a chain
of people leading to a centralized certi�cate authority that will eventually vouch for their identities to one
another.

6.1.1 Public Key Infrastructures

• If Alice wants to send Bob a message encrypted with Bob's public key, Alice wants some way of assuring
herself that the public key she is using really does belong to Bob.

• One way of ensuring this is to use a public key infrastructure (often abbreviated �PKI�), which is a scheme
whereby all of the parties can establish their identities to one another using digital certi�cates.

◦ Each certi�cate contains some amount of information whose contents are signed by a central authority
using a digital signature algorithm that is hard to forge.

◦ Certi�cates can indicate various things. We will primarily discuss identity certi�cates, which contain
information about a party's identity, such as a name or address, as well as their public keys. Another
type of certi�cate is an access certi�cate, which indicate the level of information a party is allowed to
access (i.e., whether they are allowed to view sensitive material).

• The infrastructure, in its simplest form, consists of the following components:

◦ A certi�cate authority (CA) that stores, issues, and signs certi�cates.

◦ A registration authority (RA) that veri�es the identities of new parties that want certi�cates.

◦ A public directory, containing a public index of certi�cates.

• So suppose Alice wants to send Bob a message using Bob's public key.

◦ First, Bob needs to register himself with the registration authority, Reg. Reg will verify his identity and
hand him a digitally-signed document containing his identity information along with Reg's signature.

◦ Next, Bob takes his identity document and gives it to the certi�cation authority, Cert. Cert veri�es that
Bob's identity document has been correctly signed by Reg and creates an identity certi�cate for Bob
containing Bob's identity information along with Bob's public keys and Reg's signature.

◦ Cert then puts Bob's identity certi�cate into the public index.

◦ Now, if Alice wants to send Bob a message, she looks in the directory to �nd Bob's identity certi�cate
in the directory and decide whether she trusts Cert and Reg. If she does, she retrieves Bob's certi�cate
and extracts Bob's public keys from it, which she can then use to send him a message.

◦ Note of course that Alice does not interact with Bob when retrieving his public key, and it is not even
necessary for her to trust him directly.

• In actual real-world public key infrastructures, there are many certi�cate authorities and registration au-
thorities, since the scale of the record-keeping would be unreasonably large for any one individual group to
manage.

◦ In such a case, the certi�cate authorities would certify that the others are allowed to issue certi�cates,
and each certi�cate authority would accept registrations from any of the registration authorities.

◦ Of course, it could be the case that Cert thinks that Dave (another CA) is a little bit too lax in their
procedures, so Cert only certi�es Dave to issue certi�cates to individual people, not other CAs. On the
other hand, Dave thinks Cert is very scrupulous, and so Dave trusts any CA that is also certi�ed by
Cert.

◦ Likewise, Cert and Dave may only trust particular registration authorities: Cert trusts Reg and Sam,
while Dave trusts Reg and Taylor.

◦ One can quickly imagine how tangled such trust relationships can get with dozens or hundreds of CAs
and RAs, each of which has various kinds of trust in the others for particular certi�cations.

2

6.1.2 X.509 Certi�cates

• A commonly-used digital certi�cate is the X.509 certi�cate, which is used in the the SSL and TLS protocols.

◦ The protocol was initially deployed in 1988 and involves a hierarchy of certi�cate authorities: the top-
level authorities certify particular authorities that are one tier lower, and those authorities in turn certify
lower ones, and so forth.

◦ A certi�cate chain consists of a sequence of certi�cates, each signed by an authority higher on the list,
terminating in a top-level authority.

• If Alice wants to interact with Bob, she requests a copy of his certi�cate chain and checks the validity of each
certi�cate until she reaches an authority she trusts.

◦ Suppose that Bob's certi�cate is signed by Cert, and Cert's certi�cate is signed by Verisign (currently
one of the largest top-level certi�cate authorities).

◦ Alice �rst veri�es that Bob's certi�cate is valid. She sees that it is signed by Cert, but she does not
necessarily trust Cert. She then checks Cert's certi�cate and sees that it is properly signed by Verisign,
whom Alice does trust.

◦ Alice accepts Bob's certi�cate, since it is part of a trusted chain, and can now use it to send him messages.

• An X.509 certi�cate contains the following information:

◦ The version number of X.509 being used (to allow forward and backward compatibility if the protocol is
subsequently changed).

◦ A unique serial number, used to identify the certi�cate.

◦ Identity information for the party to whom the certi�cate belongs (e.g., Bob).

◦ The identity of the certi�cate authority, their signature attesting the validity of the certi�cate, and the
algorithm that can be used to verify the signature.

◦ The date range during which the certi�cate is valid.

◦ The public keys attached to the party to whom the certi�cate belongs, as well as their purposes (e.g.,
public-key encryption or digital signatures) and underlying algorithms (e.g., RSA, ElGamal, etc.).

◦ A hash of the certi�cate along with the algorithm used, to prevent a forgery of the certi�cate once the
certi�cate is issued.

• The most common use of certi�cates is to create secured internet connections (HTTPS connections), which
is done in the following way:

◦ Suppose that Alice wants to connect to Bob's website with her browser using an HTTPS connection.

◦ Bob has, ahead of time, obtained a valid X.509 certi�cate for his web server from a certi�cate authority.

◦ Alice connects to Bob's server and the server sends Alice a copy of Bob's certi�cate.

◦ Alice (or rather, her browser) then checks whether the certi�cate is valid: she checks whether the certi-
fying authority of Bob's certi�cate is one that she trusts, she makes sure the identity of the party in the
certi�cate matches the identity of the server, she checks that the certi�cate has not expired, she checks
that the certi�cate has been correctly signed, and she checks whether the certi�cate has been revoked
after it was issued.

◦ If all of these things are valid, then Alice accepts the certi�cate.

◦ Alice can then use the public key in the certi�cate to send an encrypted message back to Bob's server:
in particular, she can generate a symmetric key for use in encrypting all subsequent communications and
send it to Bob.

◦ Now Alice has established an encrypted communication channel with Bob, and she can feel secure that
she is actually interacting with the owner of Bob's certi�cate, which (provided she trusts the certi�cate
authority) is Bob.

3

• We will also remark that it is possible for certi�cate authorities to revoke certi�cates after they have been
issued. (The only built-in way for a certi�cate to become invalid once it has been created is if its expiration
date passes.) However, the mechanism used by X.509 for revoking certi�cates is both ine�cient and insecure.

◦ Some instances in which a certi�cate should be revoked are if the certi�cate authority improperly issues
the certi�cate (either by accident or through a malicious act) or the certi�cate's public key is compromised
or lost.

◦ Revoked certi�cates are put on a �certi�cate revocation list�, which is published as part of a public
directory available to anyone who requests it.

◦ If Alice wants to ensure that Bob's certi�cate has not been revoked, she can then ask Bob's certi�cate
authority whether his certi�cate is still valid.

◦ This is quite ine�cient, since it negates the entire advantage of not requiring all authentication requests
to be processed by one of the central authorities.

◦ Furthermore, if a malicious attacker is able to hijack Alice's web tra�c, then it would be fairly easy to
disable Alice's ability to check certi�cate revocation lists.

• In actual practice there are a few additional practical weaknesses in the system, since the initial di�culty of
establishing a trusted authority still exists.

◦ Modern browsers are generally prepackaged with a list of trusted �root certi�cates�, which are automati-
cally accepted by the browser. This is done primarily for convenience, as most users do not need or want
to deal with the intricacies of how secured authentication actually works.

◦ Such root certi�cates are generally self-signed (i.e., signed by the certi�cate authority itself, rather than
another party) and serve as a �trust anchor�: any certi�cate that is signed by one of these authorities
will be accepted as valid.

◦ If the browser encounters a new certi�cate chain, it follows the chain until it reaches one of its root
certi�cates. If all of the certi�cates in the chain are correctly signed, it accepts the new chain.

◦ However, it is very unlikely that any user will actually be familiar with all of the certi�cate authorities
that their software implicitly trusts, meaning that the browser designers are essentially in charge of
deciding which certi�cate authorities are trusted.

• On the other hand, large certi�cate authorities may not be �trustworthy� in the traditional sense, but since
they charge money to create certi�cates, they have a strong economic incentive not to generate certi�cates
that do not have su�cient identity veri�cation.

6.1.3 PGP and SSL/TLS

• There are other mechanisms by which we can establish a trusted chain between Alice and Bob.

• Rather than relying on centralized certi�cate authorities, another option would be to rely on a decentralized
�web of trust�: each party has a certi�cate, and the trust in any party's certi�cate is certi�ed by other users
(who indicate their trust by signing the certi�cate).

◦ Suppose that Alice wants to decide whether she trusts Bob's certi�cate. She does not know Bob, but
she does trust Carol, who says Bob is completely trustworthy. Alice decides to accept Bob's certi�cate.

◦ Alternatively, suppose that Alice trusts Carol and Dave, each of whom say Bob is somewhat trustworthy.
She again decides that Bob has enough collective trust from people she trusts that she should accept
Bob's certi�cate.

◦ Alice then adds Bob to her list of �trusted parties� and adds her signature to his certi�cate, so that
anyone who trusts her can then trust Bob.

◦ As more users join the network and sign one another's certi�cates, the probability that any two people
will share enough signatures in common to trust one another grows.

• This web-of-trust model was �rst promulgated by the Pretty Good Privacy (PGP) software, which was created
by Phil Zimmermann in 1991 and is commonly used for encrypting email.

4

◦ The name is a reference to the name of a grocery store, Ralph's Pretty Good Grocery, in Garrison
Keillor's �ctional town Lake Wobegon.

◦ The early history of PGP is rather interesting: it, along with its source code, were freely distributed by
its creator inside the United States (which in 1991 was a more substantial undertaking), and it provided
quite strong encryption capabilities.

◦ It rapidly spread outside the United States (it was after all distributed on the internet) and acquired a
substantial international userbase, a number of whom were dissidents in authoritarian states who used
the software to prevent the government from intercepting their communications.

◦ The international distribution of the software in turn caused Zimmermann to be formally investigated
by the FBI for tra�cking in �munitions� to foreign countries: at the time, exporting cryptosystems using
a key strength of 40 bits or larger without a license was a violation of US export regulations.

◦ We will remark that the lowest encryption standard supported by PGP, in 1991, was 128-bit symmetric
encryption (which is considered to be reasonably secure even in 2016). In contrast, 40-bit encryption
was weak even by 1991's computing standards.

◦ Although the investigation of PGP did not land in court, the restrictions on exporting cryptography
eventually did in 1995 and 1996. The US circuit courts eventually held that the publication of software
source code is protected by the First Amendment, and the government eventually loosened the restrictions
substantially.

• PGP, as with most of the other authentication and encryption protocols, operates using a combination of
public-key encryption, symmetric encryption, and hashing and signing protocols.

◦ As with the systems that use certi�cates in a hierarchal system, if Alice wants to communicate securely
with Bob, Alice �rst requests Bob's identity certi�cate.

◦ If his certi�cate is signed by enough people that Alice trusts, and the signatures are valid, she accepts
the certi�cate and extracts Bob's public key from it.

◦ Alice then generates a random symmetric-encryption key and sends it to Bob using the public key she
obtained from his certi�cate. Alice and Bob can now communicate securely using Alice's symmetric key.

• The Secure Sockets Layer (SSL) protocol, also equivalently known as the Transport Layer Security (TLS)
protocol, operate on the same principle: a public key from a certi�cate is used to transmit a �session key�
that will be used for symmetric encryption of subsequent communications.

• The details, however, are what make the protocols secure (or not).

◦ The various versions of SSL/TLS and PGP support many di�erent authentication, key exchange, and
encryption protocols, including RSA, Di�e-Hellman, elliptic-curve Di�e-Hellman, and various digital
signature algorithms.

◦ The wide range of supported algorithms allows for better compatibility between di�erent software that
needs to use the protocol (e.g., if some programs using the protocol are older and have not been updated
to use the newest algorithms or do not support the largest key sizes).

◦ As part of a protocol, Alice and Bob must agree which algorithms and key sizes to use: for example, Bob
may want to use 4096-bit RSA, but if Alice's software can only support 2048-bit RSA, Bob may have to
revert to the lower key size.

◦ There is a potential downside to this �exibility: various exploits applying to older versions of SSL/TLS
were discovered that allowed for a man-in-the-middle attack to force two parties to downgrade to weaker
algorithms than either would normally try to use.

◦ Also included as part of these protocols are data integrity algorithms, which (roughly speaking) use hash
functions like MD5 and SHA-1 to ensure that messages are not altered from their original form.

◦ Our interest is primarily in the cryptography, rather than the implementation details, but we will note
that there are a number of technical issues that require some care to deal with in order to prevent
insecurities in the protocols.

5

6.2 Quantum Computing and Cryptography

• In this section we will give a super�cial outline of quantum computing and its applications to cryptography.

• Very roughly speaking, a general principle of quantum mechanics is that any system exists as a superposition
of all of its possible states (weighted with some probabilities) rather than a particular individual state1.

◦ By modeling the state of a system mathematically, we can then compute the probabilities of obtaining
particular outcomes when we make an observation of the system.

◦ To illustrate the contrast with a particular example: in the classical (�wrong�) model, an electron is a
discrete particle that exists in a particular location in space at particular times.

◦ In the quantum-mechanical model, an electron is essentially a �probability cloud�: it is not in any one
particular place unless it is observed, and, if we make an observation, we are more likely to observe in in
some places than others.

◦ The �probability cloud� interpretation allows one to explain the fact that light behaves both as a wave
and as a particle (e.g., as in the famous double-slit experiment): until an observation is made, the system
exists in an appropriate superposition of states that is consistent with wave-like behavior, and after an
observation is made, the behavior is forced to be particle-like.

◦ The entire system can be thought of as a �wave function� (essentially, a function that keeps track of
all the possible states of the system and their associated probabilities), which can change over time as
components of the system interact with one another.

◦ Under one of the standard interpretations of quantum mechanics, making an observation of the system
will �collapse� the wave function into one of the possible states that are consistent with the result of the
observation.

◦ Once we make a measurement, then the superposition collapses and the other information will disappear
(meaning that we cannot make two measurements of the system, nor can we �copy� the system and make
separate measurements).

• The philosophy of quantum computing is essentially that, unlike bits on a classical computer that only come
in two �avors (0 and 1), a quantum bit (or qubit) has many more possible states.

◦ More precisely, a qubit can be thought of as a superposition of a 0 bit and a 1 bit with some probability
attached to each possibility.

◦ Using bra-ket notation, one would write a qubit as a |0〉+ b |1〉, where the normalizations are chosen so

that |a|2 + |b|2 = 1. The interpretation of the qubit a |0〉 + b |1〉 is that, if we observe the qubit, the

probability that it is 0 is |a|2 and the probability that it is 1 is |b|2.
◦ The rough idea of quantum computing is that, by performing appropriate operations on our inputs,
stored as qubits, we can change the state of the system so that it has a large probability of returning the
result we are interested in.

◦ The advantage over a classical computer is that a quantum computer is able to perform a potentially
unbounded number of classical computations �simultaneously� and in parallel, and then return the single
result that is the desired one.

• We will now brie�y outline how Shor's algorithm for fast integer factorization works on a quantum computer.

• The idea is essentially to try to compute the order of an element a modulo N = pq: for a particular a such as
a = 2, we look for an exponent k for which the sequence 1, a, a2, a3, . . . has period k.

◦ The smallest such k is likely to be a fairly large divisor of ϕ(N) = (p− 1)(q − 1), since if a is a random
residue class then a has a decent chance of being a primitive root modulo p and modulo q.

◦ If u is the closest integer to N/k, then ϕ(N) has a good chance of being equal to ku. We can then
compute the divisors p and q by solving the system pq = N , (p− 1)(q − 1) = ϕ(N), which is equivalent
to a quadratic equation in p.

1Essentially every non-technical explanation of quantum mechanics requires a footnote saying �this description is not completely

accurate�. Ergo: this description is not completely accurate.

6

◦ We also note that there are ways to improve this procedure using continued fractions (which have the
advantage of not needing us to �nd the smallest possible k).

• So we are reduced to needing to �nd the period of a particular sequence of integers modulo N . A good tool
for this is the discrete Fourier transform.

◦ Given a sequence a0, a1, a2, . . . , al of (positive) real numbers, we de�ne the Fourier transform to be the

function F (x) =
1√
l

k−1∑
t=0

e(2πitx)/lat for integers 0 ≤ x ≤ l.

◦ If the sequence is periodic with period k dividing l, then F (x) will be zero whenever x does not divide
l/k (the �frequency� of the sequence), and F (x) will be nonzero at multiples of l/k.

◦ These statements are a straightforward computation using the roots of unity e(2πitx)/l: essentially the
idea is that the sums of the roots of unity all cancel one another when x does not divide l/k, but all have
large sum when x does divide l/k. (We omit further details.)

◦ As an example, if we have the sequence 1, 2, 3, 1, 2, 3 modulo N = 6, we can compute F (1) = F (3) =

F (5) = 0, while F (2) =
4− 2i

√
3√

6
, F (4) =

−4 + 2i
√
3√

6
, and F (6) =

14√
6
.

◦ In general if the period is a divisor of l, we can use the peaks of the Fourier transform to �nd it. If the
period is not an exact divisor of l, then we will not get complete cancellation : however, the Fourier
transform will still have large peaks near the multiples of l/k, the spacing of which we can use to get a
reasonable close estimate of l/k.

• Shor's algorithm operates by computing the discrete Fourier transform of the sequence of residues 1, a, a2, . . .
modulo N and searching for the distance between two peaks.

◦ Explicitly, let N = pq be the integer we wish to factor. Choose m so that N2 ≤ 2m ≤ 2N2 and also
choose a random residue a modulo N .

◦ We begin by constructing a superposition of m qubits each of which is equally distributed between 0 and

1, which corresponds to the state
1√
2m

[|0000〉+ |0001〉+ |0010〉+ · · ·+ |1111〉] (where we have written

all of the values of the bits together in order), and we view the sequence of m bits as an integer written
in base 2.

◦ We then compute the function f(x) = ax mod N on this system, which yields the state
1√
2m

[∣∣a0〉+ ∣∣a1〉+ ∣∣a2〉+ · · ·+ ∣∣a2m−1
〉]
.

◦ At this stage, we have not actually done anything useful yet: if we measure the state, then we will
obtain a single value aj (mod N) for some random 0 ≤ j ≤ 2m − 1, and we would lose all of the other
information. (We could just as well have done this on a classical computer.)

◦ The idea now is to compute the �quantum Fourier transform� of our superposition: given a state |x〉,

it computes the value QF (x) = F (x) =
1√
2m

k−1∑
t=0

e(2πitx)/2
m

|t〉, and is computed on a superposition of

states by linearity.

◦ We would then like to search for peaks of the quantum Fourier transform, which would correspond to
multiples of the frequency 2m/k of the element a. (Since 2m was chosen so that N2 < 2m, there will be
a reasonably large number of peaks.)

◦ This is where the magic of the quantum computation comes in: when we make an observation, the
superposition collapses and will return the result x with probability equal to the square of the absolute
value of the coe�cient of |x〉 in the quantum Fourier transform. Thus, we are extremely likely to observe
a value that is in one of the peaks, which will be very close to a multiple of the frequency 2m/k .

◦ Suppose (for sake of argument) that we landed in the peak near 2m/k: we would then have a small range
of values of k to test, each of which would give a small number of possible values of ϕ(N) and hence of
p. We can then quickly check whether any of them give an integral value for p, and if so we have found
the factorization.

7

◦ If we land in one of the other peaks, then by using a continued fraction computation, we likewise generate
a short list of candidate values for ϕ(N), one of which will be correct with reasonably large probability.

• Roughly speaking, the amount of data needed to perform Shor's algorithm is on the order of m ≈ 2 log2 N ,
and it can be shown that computing the quantum Fourier transform can be done in polynomial time.

◦ In fact, the slowest portion of Shor's algorithm is the modular exponentiation.

◦ More speci�cally, the running time of Shor's algorithm is known to be bounded above by a constant
multiple of (logN)2(log logN)(log log logN).

◦ Thus, if a suitable quantum computer could actually be built, Shor's algorithm would give a polynomial-
time factoring algorithm that succeeds with high probability on any given attempt.

◦ Such an algorithm would vastly outpace all of the others we have developed, and would essentially break
all of the algorithms that rely on the slowness of integer factorization such as RSA.

◦ The algorithm can also be adapted to compute discrete logarithms (which are quite obviously a direct
question about evaluating the period of a sequence), and so would also break Di�e-Hellman and ElGamal
encryption.

◦ Likewise, the elliptic curve cryptosystems are equally susceptible (though some modi�cation is required
to compute point addition using a quantum computer), since they too boil down to an order computation.

◦ However, we will say that it appears to be very di�cult to build a quantum computer: the largest integer
(as of 2016) factored using Shor's algorithm was 21.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2016. You may not reproduce or distribute this
material without my express permission.

8

