
Cryptography (part 2): Public-Key Cryptography (by Evan Dummit, 2016, v. 1.00)

Contents

2 Public-Key Cryptography 1

2.1 Symmetric and Asymmetric Cryptosystems . 2

2.2 Powers and Congruences Modulo m . 3

2.2.1 Orders of Elements Modulo m . 5

2.2.2 Fermat's Little Theorem . 6

2.2.3 The Chinese Remainder Theorem . 7

2.2.4 The Euler ϕ-Function and Euler's Theorem . 9

2.3 Rabin Encryption . 11

2.4 The RSA Encryption System . 13

2.4.1 Procedure for RSA . 14

2.4.2 Attacks on RSA . 15

2.5 Primality and Compositeness Testing . 19

2.5.1 The Fermat Compositeness Test . 20

2.5.2 The Miller-Rabin Compositeness Test . 21

2.5.3 The Lucas Primality Criterion . 22

2.5.4 The AKS Primality Test . 23

2.6 Factorization Algorithms . 24

2.6.1 The Fermat Factorization . 24

2.6.2 Pollard's p− 1 Algorithm . 25

2.6.3 Pollard's ρ-Algorithm . 27

2.6.4 Sieving Methods . 28

2 Public-Key Cryptography

In this chapter, we discuss several modern public-key cryptosystems, which (unlike all of the classical cryptosystems
we have previously discussed) are resistant to known-plaintext attacks. We will begin by discussing the general
principles of asymmetric cryptography and mention the general ideas behind some modern symmetric cryptosystems.
We next develop some necessary results from number theory on modular exponentiation, so that we may treat in
su�cient detail a pair of public-key cryptosystems, including the famous RSA encryption system.

E�ective implementation of these cryptosystems requires generating large primes that can be quickly proven to be
prime, so we will then discuss primality testing and factorization algorithms, since these are important ingredients
in implementing public-key cryptosystems.

1

2.1 Symmetric and Asymmetric Cryptosystems

• All of the classical cryptosystems we have previously discussed are examples of symmetric cryptosystems: the
information required to encode a message is the same as the information required to decode a message.

◦ For example, the key for encoding a Caesar shift is an integer k giving the number of letters the message
is shifted forward. The knowledge of the integer k allows one both to encode and decode a message.

◦ Similarly, a copy of the key text for a one-time pad is required to encode or to decode a message.

• We will mention that there are several symmetric cryptosystems that are in current use and considered to be
strong: it is avowedly not the case that symmetric cryptosystems are inherently vulnerable to simple attacks
the way the historical cryptosystems we discussed are.

• One such symmetric cryptosystem that was adopted as a national standard for unclassi�ed data by the United
States in 1977 is known as the Data Encryption Standard (DES).

◦ The DES cryptosystem was a 64-bit block cipher (meaning that it operated on blocks of data 64 bits in
length), with a key length of 56 bits. 8 bits were devoted to parity checks, in order to detect errors in
data transmission.

◦ To describe the system in detail would take a great deal of time and e�ort. Ultimately, our interest is
not in the speci�c details of the system, but rather in the basic idea behind it: the system operates on
a data block by applying 16 identical stages of processing called �rounds�, each of which scrambles the
block according to a particular nonlinear procedure dictated by the key and the algorithm.

◦ Much is known about the security of DES, as it was the subject of signi�cant research, but it turns out
that there are few attacks that are much faster than a simple brute-force search.

◦ Various procedures were developed to quicken a brute-force search, and a direct approach to breaking
the cipher takes on the order of 243 calculations. To give an idea of how feasible such an attack is, to
store the result of 243 single-bit calculations would require a mere 1 terabyte of data storage, less than
a typical desktop computer hard drive.

◦ Ultimately, owing to the small key size, DES was phased out in the 1980s, and in 1999 a single DES key
was broken in less than 24 hours.

• In the 1980s, a su�cient number of security concerns about DES, as well as some concerns about the slowness
of the algorithm itself when implemented in software (it was originally designed for hardware implementation),
motivated the deployment of additional block cipher algorithms.

◦ Many of these simply reused the basic structure of DES but increased the size of the data blocks, the
size of the key, or the number of rounds.

◦ Most such algorithms are proprietary, although there are some such as Blow�sh that are open-source,
and others that are proprietary but available royalty-free such as CAST-128.

• The generally-considered successor to DES is known as the Advanced Encryption System (AES) and also
known as Rijndael, from a portmanteau of its creators' names (Joan Daemen and Vincent Rijmen).

◦ The National Institute of Standards and Technology (NIST) held an open competition for the successor
to DES in the late 1990s, and, following a lengthy evaluation, Rijndael was eventually selected from the
15 submissions as satisfying the constraints of security, e�ciency, and portability.

◦ Part of the motivation for the open and lengthy evaluation process were some suspicions (of varying
legitimacy) about whether previous algorithms like DES had hidden �backdoors� built in.

◦ The AES cipher is a 128-bit block cipher with possible key lengths of 128, 192, or 256 bits, and operates
in a similar manner to DES, invoking a number of rounds of operations (10, 12, or 14) each of which
rearranges and transforms the block according to the key.

◦ It is generally believed that AES is resistant to most kinds of direct attacks, and it has been approved
by the US government for use on classi�ed information.

2

◦ Current estimates place the computational di�culty of breaking a single 128-bit AES key, using the best
known attacks, at roughly 296 operations in a worst-case scenario, with an expected number of operations
typically closer to 2126, and an estimated memory requirement of about 256 bits (approximately 4 million
terabytes).

• One of the fundamental drawbacks of symmetric cryptosystems is that, by de�nition, being able to encode
a message is equivalent to being able to decode a message. But there are certain situations where we might
prefer to have an asymmetric cryptosystem, one in which the encoding and decoding procedures are su�ciently
di�erent that being able to encode messages does not imply that one can decode them.

◦ For example, a fundamental issue with symmetric cryptosystems is that of key exchange: if Alice and
Bob want to communicate via a symmetric cryptosystem over a long distance, they must �rst share the
key with one another, but they require a method that will not allow Eve to learn the key. They could
do this by using a di�erent cryptosystem, but again: how do they decide what key to use for the second
cryptosystem, and how do they tell each other without letting Eve know?

◦ With an asymmetric system, this is not a problem: Alice simply tells Bob how to send her an encrypted
message, and Bob can send her the key they will use for subsequent communications.

◦ As another example, if Alice wishes to digitally sign a document to indicate that it belongs to her, she
wants it to be easy for anyone to verify that the signature is actually hers, yet also very di�cult to
decouple the signature from the document itself (because this would allow anyone to forge her signature
on a new document).

• It turns out that, perhaps surprisingly, it is possible to create secure cryptosystems in which one can make
the encryption method completely public: such systems are known as public-key cryptosystems.

◦ Sending a message via public-key encryption is then very easy: Alice simply asks Bob for his public key
(and the encryption procedure), and then follows the procedure.

◦ Bob can feel free giving her this information even knowing that Eve might also be listening, because of
the asymmetry in the cryptosystem: the fact that Eve knows how to encode a message does not mean
that she can decode anything.

◦ A good analogy for public-key encryption is a locked dropbox: anyone can place an envelope into the
dropbox, but only the owner (or at least, the person who has the key) can retrieve the letters from the
box.

• Ultimately, public-key cryptosystems revolve around the existence of so-called one-way functions: functions
which are easy to evaluate (�forward�) but very di�cult to invert (�backward�) on most outputs.

◦ Many examples of one-way functions come from number theory.

◦ As an example, consider the function f(p, q) = pq that takes two prime numbers and outputs their
product.

◦ It is a trivial matter of arithmetic to compute the product pq given p and q, but if we are given pq and
asked to �nd p and q, we would need to know how to factor an arbitrary integer: this is believed to be
much, much harder.

◦ Ultimately, the property that factorization is much harder than multiplication is the basis for many
public-key cryptosystems, including the famous RSA cryptosystem.

◦ In order to discuss public-key encryption, we must �rst cover the relevant results from number theory.

2.2 Powers and Congruences Modulo m

• We now turn our attention to discussing powers of elements modulo m, which are of central importance in
the implementation of most known public-key cryptosystems.

• As an example to motivate the discussion in the rest of this section, suppose we want to �nd the remainder
when we divide 2516 by 61.

3

◦ One way we could do this is simply by computing the actual integer 2516 (which has 156 digits in base
10), and then dividing it by 61. This is certainly feasible with a computer, but would be very unpleasant
by hand.

◦ A faster way would be to compute successive powers of 2 and reduce modulo 61 at each stage: 2, 4, 8,
16, 32, 64 ≡ 3, 6, 12, 24, 48, 96 ≡ 35, 70 ≡ 9, 18, 36, This is certainly faster and feasible to do by
hand (in the sense of not requiring the computation of a 156-digit integer), but it would still require over
100 multiplications.

◦ We can speed up the process signi�cantly if we instead only compute the powers 21, 22, 24, 28, 216, ... ,
2512 and so forth (modulo 61) by successively squaring the previous values and reducing. Then we can
�nd 2516 by observing that 2516 = 2512 · 24.
◦ Explicitly, we obtain the following:

22 = 4 216 ≡ 122 = 144 ≡ 22 2128 ≡ 162 ≡ 12
24 = 16 232 ≡ 222 = 484 ≡ −4 2256 ≡ 122 ≡ 22

28 = 162 ≡ 256 ≡ 12 264 ≡ (−4)2 = 16 2512 ≡ 222 ≡ −4

◦ Therefore we see that 2516 = 2512 · 24 ≡ (−4) · 16 = −64 ≡ 58 modulo 61.

• Observe that, in the computations we performed, the later entries started repeating earlier ones. This will in
fact always be the case, as we will see soon.

• For posterity, we record this technique of successive squaring:

• Algorithm (Successive Squaring): To compute ak modulom, �rst �nd the binary expansion of k = bjbj−1 · · · b0.
Then compute the powers a2, a4, · · · , a2d by squaring the previous entry in the sequence and reducing modulo

m. Finally, compute ak ≡
∏

0 ≤ i ≤ j
bi = 1

a2
bi
modulo m.

◦ Observe that the total number of multiplications and reductions mod m required is roughly 2 log2(k),
which is a vast improvement over the k multiplications and reductions required to compute ak directly.

• It is possible to rearrange the computations in this procedure to require less storage, though the same numbers
of multiplications and squarings are required.

• Algorithm (Power Chain Squaring): To compute ak modulom, �rst �nd the binary expansion of k = c1c2 · · · cd.
Begin with the value r1 = 1, and, for each 1 ≤ i ≤ d, de�ne ri = r2i−1 (mod m) if ci = 0 and ri = (ari−1)

2

(mod m) if ci = 1. Finally, if cd = 1 set rd+1 = ard, and otherwise set rd+1 = rd. Then rd+1 ≡ ak (mod m).

◦ To illustrate the idea, consider the problem of computing a6 and note that 13 = 11012, so c1 = c2 = c4 = 1
and c3 = 0.

◦ We begin with r1 = 1. Then r2 = (ar1)
2 = a2 since c1 = 1.

◦ Similarly, r3 = (ar2)
2 = (a3)2 = a6 since c2 = 1.

◦ Next, r4 = (r3)
2 = (a6)2 = a12 since c3 = 0.

◦ Finally, r5 = ar4 = a13 since c4 = 1. We obtain the result a13, as required.

• We will remark that for certain exponents, this exponentiation process can be streamlined further using more
general �addition chains�. However, the gains are generally small, and come at the expense of using additional
memory during the computation.

◦ As an example, the binary method we described above requires 6 steps to compute a15 (mod m): it
successively computes a2, a · a2, (a · a2)2, a · (a · a2)2, (a · (a · a2)2)2, and a · (a · (a · a2)2)2.

◦ However, if instead we compute the quantities a2, a · a2 = a3, (a3)2, ((a3)2)2, and a3 · ((a3)2)2, we can
compute a15 using only 5 steps, although it requires storing the value a3 for later use.

◦ In general, it is a di�cult problem to search for optimized addition chains.

4

2.2.1 Orders of Elements Modulo m

• We would like to study the behavior of powers of units modulo m.

• A basic observation is that if u is any �xed unit, then uk is also a unit for any k (since its inverse is (u−1)k).

◦ Since there are only �nitely many possible di�erent values for uk modulo m, the values u, u2, u3,
must eventually repeat. Indeed, this is true for the powers of any element modulo m, even nonunits.

◦ But if ua ≡ ub with a < b, multiplying by u−a shows that ub−a ≡ 1.

◦ This means that some power of u is equal to 1 mod m. We give this situation a name:

• De�nition: If u is a unit modulo m, the smallest k > 0 such that uk ≡ 1 (mod m) is called the order of u.

• Example: Find the order of 2 modulo 11.

◦ We compute powers:

21 22 23 24 25 26 27 28 29 210 211 212 · · ·
2 4 8 5 10 9 7 3 6 1 2 4 · · ·

◦ The earliest time we obtain 1 is with 210, so 2 has order 10 modulo 11.

• Example: Find the order of 5 modulo 13.

◦ We compute powers:
51 52 53 54 55 56 57 58 · · ·
5 12 8 1 5 12 8 1 · · ·

◦ The earliest time we obtain 1 is with 54, so 5 has order 4 modulo 13.

• We collect a few useful results about orders.

• Proposition: If u is a unit modulo m and un ≡ 1 (mod m), then the order of u divides n.

◦ Proof: Let k be the order of u.

◦ Apply the division algorithm to write n = qk+r with 0 ≤ r < k, and then observe that ur = un(uk)−q ≡
1 · 1−q ≡ 1 (mod m).

◦ If r were not zero, then we would have ur ≡ 1 (mod m) with 0 < r < k, which contradicts the de�nition
of order. Thus r = 0, meaning that k divides n.

• Proposition: If u has order k modulo m, then the order of un modulo m is k/ gcd(n, k). In particular, if n
and k are relatively prime, then un also has order k.

◦ Proof: Let d = gcd(n, k) and suppose un has order r: then unr ≡ 1 (mod m).

◦ By the previous proposition, we see that k divides nr, which is equivalent to saying that k/d divides
(n/d)r.

◦ But since k/d and n/d are relatively prime, this implies k/d divides r.

◦ On the other hand, (un)k/d = (uk)n/d ≡ 1n/d = 1 (mod m), so the order of un cannot be larger than
k/d.

◦ Thus, we conclude r = k/d. The other statement is immediate, being simply the case with d = 1.

• The next result is useful in computing the order of a product of two elements.

• Proposition: If u has order k and w has order l (mod m), where k and l are relatively prime, then uw has
order kl.

◦ Proof: Suppose that uw has order d, so that (uw)d ≡ 1 (mod m).

◦ Raising to the kth power yields wdk ≡ 1 (mod m), so by the above proposition, we see that l divides dk.

5

◦ Since l and k are relatively prime, this implies l divides d.

◦ By a symmetric argument, k divides d. Since l and k are relatively prime, we see kl divides d.

◦ But clearly, (uw)kl ≡ 1 (mod m), so d ≤ kl. Hence we obtain d = kl as claimed.

◦ Remark: A weaker result also holds when the orders k and l are not relatively prime: in general, the
argument above shows that the order of uw is a multiple of kl/ gcd(k, l)2, and divides kl/ gcd(k, l) =
lcm(k, l). (A particularly bad case is if u = w−1.)

• We might also like a method to verify that a unit u modulo m has a particular order, in a way that is more
e�cient than computing all of the lower powers of u.

• Proposition: If ud ≡ 1 (mod m), and ud/p 6≡ 1 (mod m) for any prime divisor p of d, then u has order d
modulo m.

◦ Proof: Suppose u has order r modulo m. We know that r must divide d, by our results on orders.

◦ If r < d, then there must be some prime p in the prime factorization of d that appears to a strictly lower
power in the factorization of r: then r divides d/p.

◦ But then ud/p would be an integral power of ur ≡ 1, so that ud/p ≡ 1 (mod m), contrary to the given
information.

◦ Hence we conclude r = d, meaning that u has order d.

2.2.2 Fermat's Little Theorem

• From the examples we computed earlier, we can see that 211 ≡ 2 (mod 11), and also that 513 ≡ 5 (mod 13).
The presence of these exponents is not an accident:

• Theorem (Fermat's Little Theorem): If p is a prime, then ap ≡ a (mod p).

◦ Remark: If p - a, we can multiply by a−1 to get the equivalent formulation ap−1 ≡ 1 (mod p). Since the
result is immediate if p|a, Fermat's Little Theorem is often also stated as �ap−1 ≡ 1 (mod p) if p - a�.
◦ Proof: We will show that ap−1 ≡ 1 (mod p) if p - a. By assumption, a is a unit.

◦ Consider the elements a ·1, a ·2, a ·3, · · · , a · (p−1) modulo p: we claim that they are simply the nonzero
residue classes modulo p, in some order.

◦ Since there are p − 1 elements listed and they are all nonzero, it is enough to verify that they are all
distinct.

◦ So suppose a · x ≡ a · y (mod p). Since a is a unit, multiply by a−1: this gives x ≡ y (mod p), but this
forces x = y.

◦ Hence modulo p, the elements a · 1, a · 2, a · 3, · · · , a · (p− 1) are simply 1, 2, · · · , (p− 1) in some order.
Therefore we have

(a · 1)(a · 2) · · · (a(p− 1)) ≡ 1 · 2 · · · · · (p− 1) (mod p),

whence
ap−1 · (p− 1)! ≡ (p− 1)! (mod p).

Cancelling the (p− 1)! term yields ap−1 ≡ 1 (mod p), as desired.

• Using Fermat's little theorem we can compute large powers modulo primes more e�ciently than with successive
squaring.

• Example: Calculate (as e�ciently as possible) the remainder when 23003 is divided by 61.

◦ We could use successive squaring to compute this, but we would need to square 12 times (since 212 =
2048).

◦ Since 61 is prime, we can do the computation much more quickly if we use Fermat's Little Theorem,
which tells us that 260 ≡ 1 (mod 61).

◦ Taking the 50th power of this yields 23000 = (260)50 ≡ 150 = 1 (mod 61).

◦ Thus, 23003 = 23 · 23000 ≡ 8 (mod 61) .

6

2.2.3 The Chinese Remainder Theorem

• We will now divert our attention slightly and discuss the solutions to linear equations modulo m. We have
already explained how to solve a single equation:

• Proposition: The equation ax ≡ b (mod m) has a solution for x if and only if d = gcd(a,m) divides b. If d|b,
then if we write a′ = a/d, b′ = b/d, and m′ = m/d, the general solution to the equation ax ≡ b (mod m) is
x ≡ (a′)−1b′ (mod m′).

• Now suppose that we wish to solve a collection of simultaneous congruences in the variable x. The above
proposition allows us to convert any single equation cx ≡ d (mod m) to one of the form x ≡ a (mod m′), or
to see that such an equation has no solutions (in which case neither does the system!). Therefore, to solve
general systems, all we must do is characterize those x which satisfy a system of the form

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...
...

...

x ≡ ak (mod mk).

• Of course, it is possible for the equations to be inconsistent: for example, the system

x ≡ 1 (mod 4)

x ≡ 2 (mod 6)

has no solution, because the �rst equation requires x to be odd and the second requires x to be even. The
key problem here is that 4 and 6 are not relatively prime, and the equations give inconsistent requirements
modulo 2 = gcd(4, 6). It turns out that this is the only thing that can go awry.

• Theorem (Chinese Remainder Theorem): Let m1,m2, . . . ,mk be pairwise relatively prime positive integers
(i.e., with gcd(mi,mj) = 1 whenever i 6= j), and a1, a2, . . . , ak be arbitrary integers. Then there exists an
integer a such that the set of values of x satisfying the equations

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...
...

...

x ≡ ak (mod mk)

is precisely those integers x congruent to a modulo m1m2 · · ·mk. In other words, the system has a unique
solution modulo m1m2 · · ·mk.

◦ Remark: This theorem is so named because it was known to Chinese mathematicians of antiquity.

◦ Proof: First we prove the result for two congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2).

◦ For existence, the �rst congruence implies x = a1+km1 for some integer k; plugging into the second then
yields a1+ km1 ≡ a2 (mod m2). Rearranging yields km1 ≡ (a2− a1) (mod m2). Since by hypothesis m1

and m2 are relatively prime, by our proposition above we see that this congruence has a unique solution
for k modulo m2, and hence a solution for x.

◦ For uniqueness, suppose x and y are both solutions. Then x − y is 0 modulo m1 and 0 modulo m2,
meaning that m1|(x− y) and m2|(x− y). But since m1 and m2 are relatively prime, their product must
therefore divide x− y, meaning that x is unique modulo m1m2. It is also obvious that any other integer
congruent to x modulo m1m2 also satis�es the system.

7

◦ Finally, if we have more than two congruences, we can apply the result just proven to convert the last
two congruences into a single congruence. Repeatedly applying this procedure shows that the solution
set is a single residue class modulo m1m2 · · ·mk, as claimed.

• The proof is essentially constructive in that it also allows us to compute the solutions explicitly.

• Example: Find all integers n such that n ≡ 1 (mod 7) and n ≡ 3 (mod 8).

◦ The Chinese Remainder Theorem says we only need to compute one solution; all others are congruent
modulo 7 · 8.
◦ The �rst congruence implies that n = 3 + 8k for some integer k.

◦ Plugging into the second congruence yields 3 + 8k ≡ 1 (mod 7), which reduces to k ≡ −2 (mod 7).

◦ Taking k = −2 yields n = 3+8k = −13. The set of all solutions are the integers of the form −13 + 56d
for d ∈ Z.

• Although the Chinese Remainder Theorem is only stated for relatively prime moduli, it is easy to deal with
the case where the moduli have common divisors.

◦ The Theorem implies that if d|m and gcd(d,m/d) = 1, the single equation x ≡ a (mod m) is equivalent
to the two equations x ≡ a (mod d) and x ≡ a (mod m/d).

◦ Thus, if the moduli have common divisors, we need only compute the common divisors (rapidly, using
the Euclidean Algorithm), and then split the congruences apart so as to have no common divisors.

◦ If we can factor the moduli, we could also just split them all into prime powers. (However, we can still
split the moduli into relatively prime pieces in the manner described above, even if we cannot factor
them.)

◦ Alternatively, we could simply solve each congruence, plug it into the next one, and eliminate coe�cients.
This also works, though it requires a bit more care in dealing with the case where the coe�cients and
modulus have a common divisor. (It will also be less obvious precisely where a contradiction between
the congruences occurs.)

• Example: Find all solutions to the congruences n ≡ 34 (mod 36), n ≡ 7 (mod 15), and n ≡ 2 (mod 40).

◦ First observe that 36 and 15 have a common divisor of 3. Since 32 divides 36, we split the �rst congruence
into two congruences modulo 4 and 9, and the second into congruences modulo 3 and 5.

◦ This yields n ≡ 2 (mod 4), n ≡ 7 (mod 9), n ≡ 1 (mod 3), and n ≡ 2 (mod 5).

◦ These congruences' moduli have common divisors with the last congruence, which we split modulo 5 and
modulo 8 to obtain n ≡ 2 (mod 5) and n ≡ 2 (mod 8).

◦ We then have n ≡ 2 (mod 4), n ≡ 7 (mod 9), n ≡ 1 (mod 3), n ≡ 2 (mod 5), n ≡ 2 (mod 5), and n ≡ 2
(mod 8).

◦ Removing duplicates yields no contradictions, and we get n ≡ 7 (mod 9), n ≡ 2 (mod 5), and n ≡ 2
(mod 8), whose moduli are now relatively prime.

◦ The second two congruences visibly have the common solution n ≡ 2 (mod 40), giving n = 2 + 40k for
some k.

◦ Plugging into the only remaining congruence yields 2 + 40k ≡ 7 (mod 9), whence 4k ≡ 5 (mod 9). The
inverse of 4 modulo 9 is easily computed as −2. Multiplying by it yields k ≡ −10 ≡ −1 (mod 9).

◦ Hence the congruences have a solution x = 2+40k = −38, and the set of all solutions is x = −38 + 360d
for d ∈ Z.

8

2.2.4 The Euler ϕ-Function and Euler's Theorem

• We would now like to generalize Fermat's little theorem to the case of composite moduli: that is, to �nd some
exponent n such that an ≡ a (mod m), or something like this. For motivation, we �rst try a few examples:

◦ Consider the powers of 2 modulo 24:

21 22 23 24 25 26 27 28 · · ·
2 4 8 16 8 16 8 16 · · ·

◦ Here, we see that the powers do eventually start repeating, but they never return to 1 (nor even to 2).
This should not be surprising, because 2 is not a unit modulo 24. In particular, we see that there is no
exponent n > 1 such that 2n ≡ 2 (mod 24).

◦ Instead, perhaps we should only consider cases where a is a unit modulo m. Consider the powers of 2
modulo 21:

21 22 23 24 25 26 27 28 29 210 211 212 · · ·
2 4 8 16 11 1 2 4 8 16 11 1 · · ·

so we see that 2 has order 6 modulo 21. We also note that 220 ≡ 4 6≡ 1 (mod 21), so the proper exponent
is not simply m− 1, like it is for primes.

• From the examples above, we see that in order to obtain some sort of reasonable generalization of Fermat's
Little Theorem to composite moduli, we should restrict our attention to powers of units.

• We have already characterized which integers are units modulo m, but we might also like to know how many
there are:

• De�nition: Ifm is a positive integer, we de�ne the Euler ϕ-function ϕ(m), sometimes also called Euler's totient function,
to be the number of units modulo m. Equivalently, ϕ(m) is the number of integers between 1 and m inclusive
that are relatively prime to m.

◦ It is self-evident that ϕ(1) = 1, and that ϕ(p) = p− 1 if p is a prime.

◦ Example: To compute ϕ(30), we simply list the integers relatively prime to 30 in the proper range. It is
not hard to see that 1, 7, 11, 13, 17, 19, 23, and 29 are the only ones, so ϕ(30) = 8.

• Proposition: If p is a prime and k ≥ 0, ϕ(pk) = pk − pk−1.

◦ Proof: Observe that a has a common divisor with pk if and only if p divides a.

◦ Therefore, the integers between 1 and pk which are not relatively prime to pk are simply the multiples
of p, of which there are pk−1. The remaining pk − pk−1 integers are relatively prime to p.

• We can use the Chinese Remainder Theorem to great e�ect in analyzing the Euler ϕ-function:

• Theorem (Multiplicativity of ϕ): If m and n are relatively prime, then ϕ(mn) = ϕ(m)ϕ(n).

◦ Terminology: A function f with domain Z with the property that f(mn) = f(m)f(n) whenever m and
n are relatively prime is called a multiplicative function. This terminology is somewhat infelicitous since
it would tend to suggest that f(mn) = f(m)f(n) holds for any m and n, not just relatively prime ones.

◦ Proof: We claim that if m and n are relatively prime, a is a unit modulo mn if and only if it is a unit
mod m and mod n.

◦ If a is a unit mod mn, then there exists a b such that ab ≡ 1 (mod mn). Reducing mod m and n yields
ab ≡ 1 (mod m) and ab ≡ 1 (mod n), so a is a unit mod m and mod n.

◦ Conversely, if a is a unit mod m and mod n, then let ab ≡ 1 (mod m) and ac ≡ 1 (mod n). Then the
Chinese Remainder Theorem implies there exists an integer d such that d ≡ b (mod m) and d ≡ c (mod
n): then ad is congruent to 1 modulo m and modulo n, hence modulo mn.

◦ Now we just count: there are ϕ(mn) units modulo mn, and ϕ(m)ϕ(n) pairs of units modulo m and
modulo n. These are counting the same thing, so ϕ(mn) = ϕ(m)ϕ(n).

9

• Corollary (Formula for ϕ): If m =
∏
i p
ai
i is factored into prime powers, then ϕ(m) =

∏
i p
ai−1
i (pi − 1) =

m
∏
i(1− 1/pi). In particular, the value of ϕ(m)/m only depends on the primes dividing m.

◦ Proof: Apply the relation ϕ(mn) = ϕ(m)ϕ(n) repeatedly to the factorization of m into prime powers.

◦ We obtain ϕ(m) =
∏
i ϕ(p

ai
i) =

∏
i(p

ai
i − p

ai−1
i), which can be rearranged into the two given formulas.

• Example: Find ϕ(1680).

◦ First we factor 1680 = 24 ·3·5·7, and then we can write ϕ(1680) = ϕ(24)ϕ(3)ϕ(5)ϕ(7) = 8·2·4·6 = 384 .

• Now that we understand the units a bit better, we can give the proper generalization of Fermat's little theorem
to composite moduli:

• Theorem (Euler's Theorem): If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

◦ Proof: By assumption, a is a unit mod m.

◦ Let the set of all units mod m be u1, u2, . . . , uϕ(m), and consider the elements a ·u1, a ·u2, · · · , a ·uϕ(m)

modulo m: we claim that they are simply the elements u1, u2, . . . , uϕ(m) again (possibly in a di�erent
order).

◦ Since there are ϕ(m) elements listed and they are all still units, it is enough to verify that they are all
distinct.

◦ So suppose a · ui ≡ a · uj (mod m). Since a is a unit, multiply by a−1: this gives ui ≡ uj (mod m), but
this forces i = j.

◦ Hence modulo m, the elements a · u1, a · u2, · · · , a · uϕ(m) are simply u1, u2, . . . , uϕ(m) in some order.
Therefore we have

(a · u1)(a · u2) · · · (a · uϕ(m)) ≡ u1 · u2 · · ·uϕ(m) (mod m),

whence, upon cancelling u1 · u2 · · ·uϕ(m) from both sides, we obtain

aϕ(m) ≡ 1 (mod m),

as desired.

• We can use Euler's theorem to compute large powers of elements with a composite modulus.

• Example: Find the last two digits of 172016 when written in base 10.

◦ Equivalently, we want to compute 172016 (mod 100). We could do this by directly using successive
squaring, but we would need to square 10 times (since 210 = 1024) and then do many multiplications.

◦ Alternatively, we could use Euler's theorem. Since 100 = 2252 we have ϕ(100) = ϕ(4)ϕ(25) = 2 ·20 = 40.

◦ Then Euler's theorem says that 1740 ≡ 1 (mod 100). Taking the 50th power yields 172000 = (1740)50 ≡
150 = 1 (mod 100).

◦ Then 172016 ≡ 1716 (mod 100), and we can compute this with far fewer successive squarings:

172 = 289 ≡ −11 (mod 100)

174 ≡ (−11)2 = 121 ≡ 21 (mod 100)

178 ≡ 212 = 441 ≡ 41 (mod 100)

1716 ≡ 412 = 1681 ≡ 81 (mod 100)

Therefore, we see that 172016 ≡ 81 (mod 100) .

10

2.3 Rabin Encryption

• A simple example of a public-key cryptosystem is the Rabin public-key cryptosystem.

◦ This procedure was �rst published in 1979 by Michael O. Rabin. It is one of the �rst non-classi�ed
public-key cryptosystems, and it is also one of the simplest.

• First, Bob must create his public key.

◦ To do this, he simply computes two large primes p and q each congruent to 3 modulo 4.

◦ Bob then publishes N = pq. This value N is his public key.

• Now suppose that Alice wants to send Bob a message.

◦ First, Alice converts her message into an integer m modulo N in some agreed-upon manner.

◦ For example, if N has 257 digits in base 2, then Alice could break her message into pieces that are each
256 base-2 digits long, and encode each one separately.

◦ If Alice's message is text, she would of course convert it to a number using some �xed text encoding,
and then break it into pieces as above.

◦ Alice then computes m2 modulo N and sends the result to Bob.

• If Bob receives a message m2, then to decode the message Bob needs to compute the square root of m2 modulo
pq.

◦ By the Chinese Remainder Theorem, Bob can equivalently �nd the solutions to x2 ≡ a (mod p) and
x2 ≡ a (mod q), where a = m2.

◦ Each of these congruences has two solutions, and �nding one of them immediately gives the other:
x2 ≡ m2 mod p is equivalent to p|(x−m)(x+m), meaning x = ±m mod p.

◦ The key observation is that x = a(p+1)/4 has the property that x2 ≡ a (mod p): since a = m2 (mod p)
and mp−1 ≡ 1 (mod p) by Euler's theorem, we have

x2 ≡ a(p+1)/2 ≡ mp+1 ≡ m2 ≡ a (mod p).

◦ Therefore, to decrypt the message, Bob must solve the simultaneous congruences x = ±a(p+1)/4 (mod p)
and x = ±a(q+1)/4 (mod q), which he can do easily with the Chinese Remainder Theorem.

• Note that once Bob decrypts the message, he will have four values each of which squares to m2 modulo N :
how does he know which one was actually Alice's original message?

◦ Without additional information, Bob cannot determine which of these four values was actually Alice's
message.

◦ One way of �xing this problem is for Alice to append some particular string of digits to the beginning of
her message m: it is then very unlikely that any of the other square roots of m2 will also start with this
string of digits.

• Example: Bob sets up a Rabin public-key cryptosystem with N = 1817 = 23 · 79. Alice sends him the
encrypted message 347, and tells Bob that the two-digit message was padded with starting digits �11�. Decode
the message.

◦ Decoding requires solving x2 ≡ 347 (mod 1817) for x.

◦ By our analysis, the solutions satisfy x ≡ ±347(23+1)/4 (mod 23) and x ≡ ±347(79+1)/4 (mod 79).

◦ Successive squaring yields x ≡ ±18 (mod 23) and x ≡ ±49 (mod 79).

◦ Using the Chinese Remainder Theorem, we obtain the four solutions x ≡ ±662, ±741 (mod 1817).

◦ Hence the original message was one of x = 662, 741, 1076, 1155. The only one of these that starts with
�11� is x = 1155, so the original message was 55 .

11

• Now suppose that Eve intercepts the encrypted message m2 and wants to decode it. In order to do this, Eve
would need to be able to compute all the square roots of m2 modulo N .

• We claim that computing these square roots is equivalent to factoring N when N is a product of two primes.

◦ Explicitly, suppose that m is a unit modulo N , and we are looking for the solutions of x2 ≡ m2 (mod
N).

◦ By the Chinese Remainder Theorem, solving x2 ≡ a (mod pq) is equivalent to solving x2 ≡ m2 (mod p)
and x2 ≡ m2 (mod q).

◦ Observe that x2 ≡ m2 (mod p) is equivalent to (x−m)(x+m) ≡ 0 (mod p), or p|(x−m)(x+m), from
which x ≡ ±m (mod p).

◦ Similarly, x ≡ m2 (mod q) is equivalent to x ≡ ±m (mod q).

◦ Thus, there are four solutions to the congruence x2 ≡ m2 (mod n): they are ±m and ±w, where w ≡ m
(mod p) and w ≡ −m (mod q).

◦ Now observe that w +m ≡ 2m (mod p) and w +m ≡ 0 (mod q), so q divides w +m but p does not.
Therefore, gcd(w +m, pq) = p.

◦ Therefore, if we are given the three values w, m, and pq = N , we can �nd the value of a prime factor
of N , and thus its factorization because N is the product of two primes, by computing gcd(w +m, pq).
(Computing the greatest common divisor is very fast using the Euclidean algorithm.)

◦ What this means is: breaking Rabin encryption for a single message is equivalent to factoring N .

◦ If p and q are both very large, then it is believed to be extremely di�cult to factor N : thus, Eve will be
unable to decode Alice's message.

• Rabin encryption is very simple, yet it is easy to prove that breaking it (in general) is equivalent to factoring
the public key N . However, it does su�er from some weaknesses of varying severity, of which we will list a
few.

• Attack 1 (Brute force): If the number of possible plaintexts is small and Eve wants to know how a message
decodes, she could simply encrypt all possible plaintexts and compare them to the ciphertext.

◦ This is not really a problem of Rabin encryption per se: the same problem exists for any cryptosystem
with a small number of possible plaintexts.

◦ To avoid this issue, Bob simply needs to choose his value of N to be su�ciently large that it is infeasible
for Eve to test every possible plaintext, and then to pad each message with a random string at the
beginning (or end), of su�cient length that makes it infeasible for Eve to test all of the possibilities.

◦ Padding can also overcome the nonuniqueness of square roots, but (in this case) breaking the encryption
is no longer provably equivalent to factorization.

• Attack 2 (Chosen-ciphertext): Eve chooses a random message m and asks Bob's decoding machine to decode
m2 for her. Eve then has a good chance of being able to use the result to determine Bob's key.

◦ As we explained above, there are four square roots of m2 modulo n: ±m and ±w, where w is the solution
to w ≡ m (mod p) and w ≡ −m (mod q).

◦ When Bob's computer decodes Eve's message, it has a 50% chance of erroneously assuming that w or
−w was actually Eve's message.

◦ Suppose it gives Eve the value of w: then by using the attack we described above, gcd(m+ w, n) = q is
one of the prime divisors of Bob's public key N .

◦ Similarly, the computer gives Eve the value −w, then gcd(m− w,N) = p.

◦ Hence, there is a 50% chance that Eve would be able to factor Bob's public key and thus break the
encryption.

◦ If Even repeats this process a mere ten times, she will be overwhelmingly likely to obtain a factorization
of Bob's public key.

◦ Bob can attempt to prevent this by never revealing a decrypted message to anyone. But in a computerized
implementation of the procedure, this is very hard to manage.

12

• The second attack is su�ciently serious that (in addition to the rather annoying issue of nonuniqueness of
square roots) Rabin encryption, despite being provably equivalent to factorization, is not suitable for modern
use.

◦ One way to try to �x the problem is to pad each message to make them adhere to a particular format
(for example, by encoding messages in blocks of 1024 bits, where the last 128 bits are duplicates of the
previous 128) and then refuse to return a decoded message that does not decode to the correct format.

◦ It would not be possible to use a chosen-ciphertext attack to get around such a procedure since the
number of attempts required to �nd a ciphertext message whose corresponding plaintext adheres to the
correct encoding is on the order of 2126 or so (each ciphertext has 4 associated plaintexts, and a random
plaintext has a 1/2128 probability of having the right formatting).

◦ However, making any alteration to the Rabin encryption scheme will yield something that is no longer
provably equivalent to factorization.

• We will also remark that it is not necessary to restrict the primes to being congruent to 3 modulo 4.

◦ This assumption is only made because it is much easier to compute square roots modulo such primes
using successive squaring, because (m2)(p+1)/4 ≡ m (mod p).

◦ There are other fast algorithms to compute square roots modulo primes congruent to 1 modulo 4, but
they require some more results from abstract algebra (speci�cally, a �nite �eld factorization algorithm
known as Berlekamp's algorithm).

• There are also some other ways to attempt to �x the nonuniqueness of square roots modulo N .

◦ One way is to take both primes congruent to 3 modulo 4 and then require that the message m be a
perfect square modulo N = pq.

◦ There is an e�cient procedure for determining whether a given residue class a modulo a prime p is
a perfect square (or �quadratic residue�) involving the computation of something called the Legendre
symbol. Speci�cally,

◦ If p ≡ q ≡ 3 (mod 4) then it can be shown that among the four messages ±m and ±w, only m will be a
perfect square modulo p and modulo q.

◦ It is then easy for Bob to determine which of the four possible square roots ofm2 was the original message
by identifying the one that is a square modulo p and modulo q.

◦ However, in practice this procedure is not really possible to implement: Alice would need to know that
her message was a perfect square before she sends it, and determining whether a given element m modulo
N = pq is a square is in general a very di�cult problem. (There are in fact other public-key cryptosystems
based on the hardness of this problem.)

◦ There is a fast method, called the Jacobi symbol, that 50% of the time will tell Alice that her message
is not a square, and the other 50% of the time will tell her that there is a 1/2 probability her message is
a square and a 1/2 probability it is not a square. Ultimately, however, it seems that the nonuniqueness
is extremely di�cult to remove.

2.4 The RSA Encryption System

• One of the practical issues with the Rabin cryptosystem is the nonuniqueness of square roots, since its encoding
function (the squaring map modulo N) is not one-to-one.

• A way to get around this problem is to use a di�erent power map, rather than the squaring map, chosen to
be invertible mod N : this is the idea behind RSA encryption.

◦ The RSA cryptosystem was �rst publicly described in 1977 by Ron Rivest, Adi Shamir, and Leonard
Adleman, from whose surnames the initialism �RSA� was formed.

◦ It turns out that an essentially equivalent system had been developed by Cli�ord Cocks in 1973 while
working for Britain's Government Communications Headquarters (GCHQ). However, his work was not
declassi�ed until 1997, and his system was marginally less general than RSA.

13

2.4.1 Procedure for RSA

• First, Bob must create his public key.

◦ To do this, he �rst computes two large primes p and q and sets N = pq.

◦ Bob also chooses an integer e which is relatively prime to ϕ(N) = (p− 1)(q − 1).

∗ Often, e = 3 is used. (This requires choosing p and q to be primes congruent to 2 modulo 3.) There
are various reasons, which we discuss later, why e = 3 is not always a good choice.

∗ Another popular choice is e = 216 + 1 = 65537, which is prime and also allows for rapid successive
squaring.

◦ Bob then publishes the two values N and e, which serve as his public key.

• Now suppose that Alice wants to send Bob a message.

◦ Alice converts her message into an integer m modulo N in some agreed-upon manner.

◦ Alice then computes c ≡ me modulo N (using successive squaring) and sends the result to Bob.

• If Bob has received a ciphertext block c ≡ me (mod N), he wishes to recover the value of m.

◦ We claim that Bob can recover m by computing cd modulo N using successive squaring, where d is the
inverse of e modulo ϕ(N).

◦ By choosing e to be relatively prime to ϕ(N), such a d will always exist, and Bob can easily compute it
via the Euclidean algorithm because he knows ϕ(N) = (p− 1)(q − 1).

◦ Most actual implementations of RSA use the Chinese Remainder Theorem to do the decoding modulo p
and modulo q separately, and then combine the results. This is faster since the moduli are much smaller,
but it is not strictly necessary.

• One way to show that the decryption procedure will work is via the Chinese Remainder Theorem and Fermat's
Little Theorem.

◦ Explicitly, since N = pq, by the Chinese Remainder Theorem it is enough to show that cd ≡ m (mod p)
and cd ≡ m (mod q).

◦ By assumption, de ≡ 1 (mod ϕ(N)) and ϕ(N) = (p− 1)(q − 1), so in particular de ≡ 1 (mod p− 1), so
de = 1 + k(p− 1) for some integer k.

◦ Now since c ≡ me (mod p), we have cd ≡ mde ≡ m1+k(p−1) ≡ m · (mp−1)k (mod p).

◦ If m ≡ 0 (mod p) then cd ≡ 0 ≡ m (mod p) so the result holds.

◦ Otherwise, if p does not divide m, by Fermat's Little Theorem we have mp−1 ≡ 1 (mod p), so cd ≡
m · 1k ≡ m (mod p), as claimed.

◦ We can use the same argument to see that cd ≡ m (mod q): thus, cd ≡ m (mod pq), as required.

• There is a slightly faster to see how the procedure works using Euler's theorem.

◦ Again, since c ≡ me (mod N), we obtain cd ≡ mde (mod N).

◦ Also, since de ≡ 1 (mod ϕ(N)) we can write de ≡ 1 + rϕ(N) for some integer r.

◦ Then by Euler's theorem, if m is relatively prime to N we have mϕ(N) ≡ 1 (mod N), so we can write

cd ≡ mde ≡ m1+rϕ(N) ≡ m · (mϕ(N))r ≡ m · 1r ≡ m (mod N)

as required.

◦ Note that technically, this explanation only applies when m is relatively prime to N .

◦ In practice, however, this is essentially always the case, since the only time m is not relatively prime to
N is when m is divisible by p or by q, which happens only with probability about 1/p+ 1/q.

• Example: Encode, and then decode, the message m = 444724 using RSA, with N = 18 212 959 and e = 3.

14

◦ To encode, we simply compute m3 modulo N , which is 12 534 939 .

◦ To decode, we �rst factor N = 3329 · 5471, and compute ϕ(N) = 3328 · 5470 = 18 204 160.

◦ Next, we need to �nd the decryption exponent d, which is the inverse of 3 modulo ϕ(N) = 18204160.

◦ Applying the Euclidean algorithm will eventually produce the relation 18204160− 6068053 · 3 = 1, from
which we can see that the inverse is −6068053 ≡ 12 136 107.

◦ Hence d = 12 136 107.

◦ Now we simply compute 12 534 93912 136 107 modulo N via successive squaring. (Of course, this requires
a computer.)

◦ We eventually obtain the decrypted message 444 724 , which is, of course, what we should have gotten.

• It is clear from our description that RSA is fairly straightforward to implement, at least in principle.

◦ The encoding and decoding procedures only require successive squaring, which is quite fast.

◦ Bob's computation of the decryption exponent d requires the Euclidean algorithm, which is also quite
fast.

◦ It is not so obvious, however, that RSA is secure.

• Suppose Eve is spying on Alice and Bob.

◦ Eve will have the values of N and e, since those are public, and she will also have the ciphertext c ≡ me

(mod N).

◦ Thus, Eve's goal is to solve the congruence me ≡ c (mod N) for m, given the values of e, c,N .

• One way for Eve to try to decode the message is for her to �nd the decryption exponent d.

◦ Suppose the order of m modulo N is r: then Eve needs to �nd is a d such that r divides ed− 1.

◦ To see this: if med ≡ m (mod N), then med−1 ≡ 1 (mod N), hence r divides ed − 1 by properties of
order.

◦ Conversely, if d is such that ed ≡ 1 mod r, then med ≡ m (mod N), since mr ≡ 1 (mod N).

• In general, the expectation is that Eve would essentially need to factor N in order to compute a decryption
exponent in a reasonable amount of time. Without knowledge of the exact value of ϕ(N), there is no known
way to construct such a d that also allows for e�cient computation.

◦ Furthermore, it can be shown that computing ϕ(N) is equivalent to factoring N , if N is the product of
two primes.

◦ It can also be shown that the order of a unit modulo N = pq divides lcm(p − 1, q − 1), and that there
are always units whose order is exactly equal to this value.

◦ If p−1 and q−1 have many factors in common (e.g., if p and q were chosen poorly) then the order could
be much smaller than N . On the other hand, if p and q are chosen carefully with gcd(p− 1, q− 1) small,
then the lcm is quite large, meaning there is little hope for Eve to construct a d without knowledge of
ϕ(N).

• To summarize, it is strongly suspected (but not proven) that there does not exist any algorithm that can
compute decryption exponents for RSA that is particularly more e�cient than factoring the public key N .

2.4.2 Attacks on RSA

• There are a number of attacks on RSA, particularly if the encryption exponent is small. We will list a few of
them at varying levels of e�ectiveness.

• Attack 1 (Brute force): If the number of possible plaintexts is small and Eve wants to know how a message
decodes, she could simply encrypt all possible plaintexts and compare them to the ciphertext.

15

◦ As in our earlier discussion, the same problem exists for any cryptosystem with a small number of possible
plaintexts.

◦ To avoid this issue, Bob simply needs to choose his value of N to be su�ciently large, and then to pad
each message with a random string at the beginning (or end) of su�cient length that makes it infeasible
for Eve to test all of the possibilities.

• Attack 2 (Factoring): If Eve wants to break Bob's RSA key, one method that would certainly work is factoring
N .

◦ Once Eve has a factorization of N , she can compute the decryption exponent the same way Bob does.

◦ In general, it is believed that factorization of large integers is di�cult with a standard (i.e., non-quantum)
computer, provided the primes in the factorization are su�ciently large and not of any particularly special
form (e.g., not congruent to 1 modulo a large power of 2 and not such that p − 1 has a large number
of small divisors). We will describe some general-purpose and special-purpose factorization algorithms
later.

◦ If some extra information about the prime divisors is known to Eve, then there are more e�cient factor-
ization procedures.

◦ For example, if we are trying to factor N = pq where p and q are primes of approximately equal size, and
the �rst half or the last half of the digits of p are known, then the factorization can be found using lattice
reduction methods very quickly, in time polynomial in log2 p. For comparison, a brute-force attempt of
all possible primes less than p whose digits agree with the known ones would take about

√
p steps.

• We will remark that the current (publicly known) record for factorization of an RSA public key is 768 bits,
which took approximately 267 individual computations and a total computing time equivalent to roughly 2000
years on a single-core 2GHz desktop computer.

◦ It is expected that an RSA key of length 1024 bits is probably factorable now in 2016, given su�cient
computing power (e.g., on the order of a government agency). But 2048 bits seems very much out of
reach with current technology.

◦ A direct factorization attack using a standard computer appears computationally infeasible for su�ciently
large public keys. However, there exist much faster factorization algorithms, such as Shor's algorithm,
that could be run on a quantum computer, assuming a su�ciently large one can ever be built.

• Attack 3 (Håstad's attack): Suppose the same message m is encrypted using the encryption exponent e = 3
each time and sent to 3 recipients using 3 di�erent public keys N1, N2, and N3, which are assumed to be
relatively prime.

◦ Note that if the public keys are not relatively prime, taking the gcd of two keys would immediately give
a factorization of both, so we are not making that much of an assumption above.

◦ Suppose Eve intercepts the three encoded messages c1, c2, and c3.

◦ Using the Chinese Remainder Theorem, Eve solves the three congruences C ≡ c1 (mod N1), C ≡ c2
(mod N2), and C ≡ c3 (mod N3), to obtain a residue class C modulo N1N2N3, with C ≡ m3 (mod
N1N2N3).

◦ But now, since 0 ≤ m < Ni for each i = 1, 2, 3, it is the case that 0 ≤ m3 < N1N2N3. Since C also lies
in this range and is congruent to m3, in fact C = m3 (as an integer).

◦ But now Eve can compute the plaintext m by �nding the cube root of C over the integers (which is easy
to do numerically).

• Håstad's attack is one of the reasons it can be a poor idea to use a small encryption exponent.

◦ In general, performing Håstad's attack with an encryption exponent of e requires e di�erent encodings
of the message with di�erent public keys.

16

◦ Identical encodings of the same message with di�erent public keys could happen in a variety of settings.
A natural one would be a mass email that is sent to many di�erent addresses: if each copy of the
message is sent to a di�erent recipient using RSA, then an eavesdropper could obtain tens, hundreds,
or even thousands of encodings of the message with di�erent public keys (certainly enough to decode
the message unless the value of e is extremely large). In practice, email is not usually encoded with
asymmetric encryption, but the principle still holds.

• Although RSA is comparatively fast, it is still much slower than modern symmetric cryptosystems. As such,
a typical use of RSA is to send a key for a symmetric cryptosystem which is then used to encode future
messages. However, if some care is not taken when encoding the message, this procedure can be attacked.

• Attack 4 (Short plaintext attack): Suppose it is 1983 and Alice wants to send Bob a 56-bit key for DES, of
which there are about 256 possibilities. Alice simply encodes the message as a 56-bit integer and sends it to
Bob using Bob's 200-digit RSA key.

◦ A direct brute-force attack is not feasible for Eve to perform because 256 is a fairly large computation
even by modern standards. (Remember that it is 1983 in this example.)

◦ Eve instead gambles that the key Alice encoded was a composite number with prime factors that were
not unreasonably large, say m = ab for some integers a, b with a, b ≤ 230. This is reasonably likely to
occur in practice.

◦ Eve then computes a list of the values of xe (mod N) for all 1 ≤ x ≤ 230 and all values cy−e (mod N)
for all 1 ≤ y ≤ 230.

◦ If Eve �nds an element common to both lists with then she knows xe ≡ c y−e (mod N) so that (xy)e ≡ c
(mod N). Raising to the dth power gives xy ≡ cd ≡ m (mod N), so Eve can compute m since she knows
x and y.

◦ This attack is much more e�cient because Eve only needs to store two lists of 230 elements each (only a
few terabytes) and compare them to each other.

◦ This attack is easy to defeat using a padding procedure: if Alice instead tells Bob ahead of time that she
will be including 100 random digits before and after her 56-bit key, Bob can simply delete them once he
decodes the message, but Eve's attack will no longer work since the message m is not likely to have a
factorization into small terms.

• Attack 5 (Low decryption exponent): If the decryption exponent d is su�ciently small relative to N = pq
and the primes p and q are reasonably close together, it is possible to compute d very rapidly using continued
fractions.

◦ Speci�cally, if q < p < 2q and if d <
1

3
N1/4, then d can be computed rapidly.

◦ First, observe that N − ϕ(N) = p+ q − 1 < 3
√
N by the assumptions on p and q.

◦ Now if de = 1+kϕ(N), since d <
1

3
N1/4 and e < ϕ(N) we see ϕ(N)k < de <

1

3
ϕ(N)·N1/4 so k <

1

3
N1/4.

◦ Then 0 <
k

d
− e

N
=
kn− ed
dN

=
k(n− ϕ(N))

dN
<

1/3 ·N1/4 · 3
√
N

dN
=
n3/4

dN
<

1

3d2
.

◦ So what this means is that

∣∣∣∣ eN − k

d

∣∣∣∣ < 1

3d2
. Recall that we are trying to compute d: what this says is

that the rational number k/d is very close to e/N .

◦ From the theory of continued fractions, it is known that for any real number α, if

∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
then

p/q is one of the convergents to the continued fraction expansion of α. (We will not actually discuss the
details of computing continued fractions since it would take us too far a�eld, but su�ce it to say that
they are easy to compute.)

◦ Since k/d lies within the required bound, it must be one of the convergents to the continued fraction
of e/N . Eve can compute the convergents very rapidly, and then test whether each pair (k, d) gives an
integer solution to de = 1 + kϕ(N) for ϕ(N).

17

◦ When she obtains an integer solution for ϕ(N), she can then compute the factorization of N since she
has both N and ϕ(N).

• Attack 6 (Partially-known plaintext, low exponent): If a portion of a plaintext is known and the encryption
exponent is low, it can be possible to decode the remaining piece of the ciphertext.

◦ An example where this kind of situation can occur is when interacting with automated scripts: when
resetting a password over a secure channel, the response message is likely to be something of the form
�Thank you for changing your password. As con�rmation, your new password is ���� (where the dashes
indicate the user's password).

◦ We will illustrate the basic ideas in the case where e = 3. If the beginning of the plaintext is known,
then the message m has the form m = A + x where A is a known large number and x is an unknown
small number.

◦ The ciphertext is then c ≡ (A+ x)3 = x3 + 3Ax2 + 3Ax+A3 (mod N).

◦ Eve therefore wants to �nd a small solution x to the polynomial congruence x3+3Ax2+3A2x+(A3−c) ≡ 0
(mod N).

◦ Eve can apply a lattice reduction algorithm such as LLL to some well-chosen vectors to �nd a small
solution to the modular congruence, and then solve the resulting polynomial over the real numbers to
determine the value of x.

◦ When N is su�ciently large relative to x, this procedure will be much faster than any kind of brute-force
attack using the known plaintext information.

• Attack 7 (Timing attack): Depending on the algorithms that are used, it is possible to determine information
about the decryption exponent by measuring how long it takes to perform each step of the computation.

◦ Such attacks have nothing to do with the RSA cryptosystem itself, but rather the potentially insecure
ways in which the algorithm is implemented by a computer.

◦ Here is the rough idea behind a timing attack: most implementations on binary computers use �power
chain� squaring to do modular exponentiation, since this requires much less memory than the direct
successive squaring procedure we described.

◦ When doing power-chain squaring, when there is a bit 1 in the exponent the computer must do a
multiplication before squaring, and when there is a bit 0 the computer only needs to square.

◦ If, for example, each multiplication and each squaring took 1 nanosecond, and the computer required 20
nanoseconds to decrypt a message whose decryption exponent has 16 bits, then there were 16 squarings
(because of the size of the decryption exponent) and thus 4 multiplications.

◦ This would tell us that the decryption exponent had exactly 4 ones in its binary representation.

◦ Of course in practice, there is substantial variation in hardware and software computing speeds, but
taking an average over a su�ciently large sample would give a fairly good estimate of the number of
multiplications.

◦ To extract additional information about the positioning of the ones in the binary representation, we can
study the variation in the computing speed.

◦ Explicitly: if a particular bit in the decryption exponent is equal to 0, then the amount of time it
takes to do a single multiplication at that stage will be independent of the amount of time the remaining
computation takes (since the computation does not require a multiplication there). But if the bit is equal
to 1, the time it takes to do a single multiplication will not be independent (since that multiplication is
part of the computation).

◦ It is possible to determine whether two random variables are correlated or uncorrelated using basic statis-
tical analysis (e.g., by plotting the values for many observations and computing a regression coe�cient):
by doing this, Eve can determine whether each successive bit in the decryption exponent was 0 or 1.

◦ A variation on this attack is instead to measure the power consumption of the computer: it will use more
power when it is doing a computation than when it is not, so one can glean information about what is
occurring during the di�erent steps of the computation by recording the processor's power usage.

18

• This kind of timing / power measurement attack is hard to guard against for reasons that are deeply ingrained
in modern computer architecture.

◦ One way to try to prevent timing attacks is to intentionally mask the speed of the calculations by making
the computer evaluate a multiplication at every stage (even though the result is not actually used half
the time). Then each step will take essentially the same amount of time no matter what the bits of
the decryption exponent are, so there is no information leaked by measuring how long the computations
take.

◦ However, most software compilers are speci�cally designed to streamline program code when converting
it to machine language, and they will do things like removing computations that are not used at any
subsequent time. From a programming perspective this is an extremely helpful thing for a compiler to
do, since any unused branches of code are simply a drag on the computer: removing them from the
machine code will speed up the computation.

◦ But of course, in the case where we intentionally add an unused calculation to prevent a timing attack,
the compiler's attempts to be helpful will make the implementation vulnerable again!

◦ Even when we can arrange matters so that the compiler does not add a vulnerability (which is for obvious
reasons a di�cult computational problem), the computer processor itself might create one.

◦ Most (perhaps all) computer processors use a �branch predictor� to try to guess whether a particular
branch will be taken in a program will be taken before it actually occurs. The goal is to improve the
speed of the program by partially executing the branch that the computer predicts will be taken: if
the prediction is correct, the processor has e�ectively saved time by evaluating a later part of the code
already, but if the prediction is wrong, the processor will have to back up and use the correct branch.

◦ By analyzing the performance of a branch predictor in an appropriately devious way, it is essentially
possible to reproduce a timing attack even when the power-chain squaring algorithm is modi�ed to have
essentially the same computations regardless of the bits in the decryption exponent.

◦ There are ways to code the successive squaring algorithm in such a way to avoid this kind of attack, but
(at the least) it is not clear whether other implementations might not be vulnerable to other kinds of
attacks.

2.5 Primality and Compositeness Testing

• In order to implement the public-key cryptosystems we have discussed, we need a way to generate large prime
numbers.

• It might seem that �nding large prime numbers would be very di�cult, but it is actually relatively simple.

◦ The Prime Number Theorem says that the approximate number of primes less than X is
X

lnX
.

◦ Therefore (roughly) the probability that a randomly-chosen large integer N is prime is about
1

lnN
.

◦ So for example, if we choose a random integer with 100 digits (in base 10), it has an approximately
1

ln(10100)
≈ 0.4% chance of being prime.

◦ However, this probability includes the possibility that we chose N to be even, or divisible by 3, or 5, or
7, and so forth. If we throw away integers divisible by primes less than 20, the probability of picking a
prime randomly increases to about 2.5%.

◦ We would like to develop e�cient methods for testing whether a given large integer is prime: if we can,
then it should be relatively straightforward to �nd large primes by choosing essentially random numbers
until we get one that passes all the tests.

◦ For example, if we take 200 randomly chosen 100-digit integers with no divisors less than 20 (it is easy
to screen out integers with small divisors), the probability that at least one of them is actually prime is
about 1− 0.975200 ≈ 99.4%, which is extremely high!

• Thus, the only remaining ingredient for generating big primes is a method for determining whether a given
large integer n is prime or composite, without needing to factor it in the event that it is composite.

19

• There are various naive methods for doing this (such as attempting to divide n by each prime smaller than√
n to see if it divides evenly), but these are extremely impractical if n has hundreds of digits. Our goal is to

describe several e�ective primality testing methods that are motivated by the results we have already proven.

• We will note that there are a wide variety of primality/compositeness tests and factorization algorithms of
varying complexity, many of which we do not possess the background to discuss. Therefore, we will cover only
a few of the most approachable techniques.

2.5.1 The Fermat Compositeness Test

• Fermat's Little Theorem says that if p is prime, then ap ≡ a (mod p) for every a. By taking the contrapositive,
we obtain a su�cient condition for an integer to be composite.

• Test (Fermat Test): If a is an integer such that an 6≡ a (mod n), then n is composite.

◦ Warning: The Fermat test is not a primality test: it is a compositeness test. There are only two possible
outcomes of the test: either it shows that n is composite, or it yields no result. In particular, it can never
be used to say that an integer is actually prime.

• Example: Apply the Fermat test to determine whether n = 56 011 607 is composite.

◦ Using successive squaring, we can compute 256 011 607 ≡ 48 437 830 (mod n): therefore, n is composite .

◦ Note that the test does not tell us anything about the factorization of n: we know is that n is composite,
but we don't have any information about the factorization.

◦ In fact, n is the product of the two primes 6653 and 8419.

• It would be quite pleasant if the Fermat test were successful for every composite number. Unfortunately, this
is not the case, as it is possible to make a bad choice for a.

• Example: Apply the Fermat test to decide whether n = 341 is composite.

◦ Using successive squaring, we can compute that 2341 ≡ 2 (mod 341), so the test provides no information
with a = 2.

◦ We instead try a = 3: successive squaring yields 3341 ≡ 168 (mod 341), whence we see that 341 is
composite.

• We might still hope that there will always be some a for which the Fermat test succeeds. Unfortunately, this
is not the case either: there exist integers with the property that the Fermat test fails for every residue class
a.

• Proposition: The Fermat test fails, for every a, to recognize 561 = 3 · 11 · 17 as composite.

◦ Proof: By the Chinese Remainder Theorem, it is enough to see that a561 ≡ a modulo 3, 11, and 17 for
every a.

◦ Fermat's Little Theorem implies that a3 ≡ a (mod 3). Multiplying both sides by a2 gives a5 ≡ a3 ≡ a.
Iterating, we see more generally that a2k+1 ≡ a (mod 3) for any k. In particular, taking k = 280 yields
a561 ≡ a (mod 3).

◦ In the same way we see that a10k+1 ≡ a (mod 11), so in particular taking k = 56 gives a561 ≡ a (mod
11). Similarly, we have a16k+1 ≡ a (mod 17), so by taking k = 35 we see a561 ≡ a (mod 17).

• De�nition: An integer m for which the Fermat test fails modulo m for every a is called a Carmichael number
(or pseudoprime).

◦ It has been shown that there are in�nitely many Carmichael numbers, but that they are signi�cantly
less common than primes (in an appropriate sense).

• In practice, Fermat's test is fairly e�ective when performed for enough values of a. Nonetheless, because of
the existence of Carmichael numbers, it has a positive probability of failing to identify a number as composite.

20

2.5.2 The Miller-Rabin Compositeness Test

• We would like to improve on the Fermat test, since it has a positive probability of failing to yield any results.
To begin, suppose p is prime and consider the solutions to r2 ≡ 1 (mod p).

◦ This congruence is equivalent to p|(r2 − 1) = (r− 1)(r+1), so since p is prime, the solutions are r ≡ ±1
(mod p).

◦ Now, if m is an odd integer that is prime, and a is any nonzero residue class, Fermat's Little Theorem
implies that for r = a(m−1)/2, we have r2 = am−1 ≡ 1 (mod m).

◦ By the above, we can conclude that a(m−1)/2 ≡ ±1 (mod m).

◦ Furthermore, in the event that r ≡ 1 (mod m) and m− 1 is divisible by 4, we see that for s = a(m−1)/4,
we have s2 = a(m−1)/2 = r ≡ 1 (mod m).

◦ By the above logic applied again, we necessarily have s = ±1 (mod m).

◦ We can clearly repeat the above argument if s ≡ 1 (mod m) and m− 1 is divisible by 8, and so on and
so forth.

• Test (Miller-Rabin Test): Let m be an odd integer and write m − 1 = 2kd for d odd. For a residue class a

modulo m, calculate each of the values ad, a2d, a4d, ... , a2
kd modulo m. If the last entry is 6≡ 1 (mod m)

then m is composite. Furthermore, if any entry in the list is ≡ 1 (mod m) and the previous entry is not ≡ ±1
(mod m), then m is composite.

◦ Proof: The �rst statement is simply the Fermat test. The second statement is an application of the
contrapositive of the statement �r2 ≡ 1 (mod p) implies r ≡ ±1 (mod p)�, proven above.

◦ Warning: Like with the Fermat test, a single application of the Miller-Rabin test cannot prove a�rma-
tively that a given number is prime: it can only show that m is composite.

• Example: Use the Miller-Rabin test to determine whether 561 is prime.

◦ We will try a = 2 with m = 561. Observe m− 1 = 24 · 35, so k = 4 and d = 35.

◦ We need to compute a35, a70, a140, a280, a560 modulo 561.

◦ We can do this rapidly by successive squaring: this yields the list 263, 166, 67, 1, 1.

◦ Since the fourth term is 1 and the previous term is not ≡ ±1 (mod 561), we conclude that 561 is
composite.

• Example: Use the Miller-Rabin test to determine whether 2047 is prime.

◦ We try a = 2 with m = 2047. Observe m− 1 = 2 · 1023, so k = 1 and d = 1023.

◦ We need to compute a1023, a2046 modulo 2047.

◦ Successive squaring yields the values 1, 1: thus, the test is inconclusive for a = 2.

◦ Next we try a = 3: successive squaring yields 1565, 1013. The last entry is not ≡ 1, so m is composite.

• The Miller-Rabin test is much stronger than the Fermat test, as can be seen from the example above: we
showed earlier that 561 is a Carmichael number, meaning that the Fermat test will never show it is composite.
On the other hand, the Miller-Rabin test succeeds in showing 561 is composite using only the residue a = 2.

• De�nition: If m is odd and composite, and the Miller-Rabin test fails for a modulo m, we say that m is a
strong pseudoprime to the base a.

◦ It turns out that strong pseudoprimes are fairly uncommon. For example, it has been proven that, for
any odd composite m, the Miller-Rabin test succeeds for at least 75% of the residue classes modulo m.

◦ In particular, there are no �Carmichael numbers� for the Miller-Rabin test, where the test fails for every
residue class.

◦ Furthermore, if an integer m passes the Miller-Rabin test for more than m/4 residue classes modulo m,
then m is prime. This is not a computationally e�ective way to show that an integer is prime, since it
requires m/4 calculations (far more than trial division).

21

◦ However, it is believed that the bound can be substantially lowered from m/4. If we assume the Gener-
alized Riemann Hypothesis (which is typically believed to be true), then it has been proven that testing
the �rst 2(logm)2 residues modulo m is su�cient.

• In practice, the Miller-Rabin test is used �probabilistically�: we apply the test many times to the integer m,
and if it passes su�ciently many times, we say m is probably prime.

◦ Any given residue has at least a 3/4 probability of showing that m is composite, so the probability that
a composite integer m can pass the test k times with randomly-chosen residues a is at most 1/4k.

◦ Taking k = 100 gives a probability negligable enough to use for all practical purposes (since the proba-
bility of having a hardware or programming error is certainly higher than 1/4100).

◦ The Miller-Rabin test is very fast: a single application of the test to an integer m requires approximately
(logm)2 calculations (to perform the required modular exponentiations), so even for integers with hun-
dreds or thousands of digits, the method will quickly return a result that is correct with extremely high
probability.

◦ As noted above, if we assume the Generalized Riemann Hypothesis then the Miller-Rabin test would
give a proof of primality in roughly 2(logm)4 steps.

2.5.3 The Lucas Primality Criterion

• The tests we have examined so far test only for compositeness: they cannot actually prove a given integer is
a prime. We will now give an example of a method that can prove a given integer is prime (though it su�ers
from some drawbacks).

• The basic idea is as follows: if n = ab is composite, then ϕ(n) < n− 1 because there will be integers less than
n sharing a common prime divisor with n. Conversely, if p is prime, ϕ(p) = p− 1.

• Therefore, if we can show the existence of an element modulo n whose order is n − 1, then n is necessarily
prime.

◦ We will postpone discussion of why such elements will exist modulo p when p is a prime, but they do
exist and they are fairly common.

• This is the idea behind the Lucas primality criterion:

• Criterion (Lucas Criterion): Suppose n > 1 and that there exists a modulo n such that an−1 ≡ 1 (mod n)
but such that a(n−1)/q 6≡ 1 (mod n) for any prime divisor q of n. Then n is prime.

◦ Proof: The �rst statement says that a is necessarily a unit modulo n, so suppose the order of a is k.

◦ By properties of order, since an−1 ≡ 1 (mod n) we see that k divides n− 1.

◦ Now suppose that k is not equal to n−1. Then at least one prime q in the factorization of k must appear
to a lower power than in the factorization of n: hence k divides (n− 1)/q. So by properties of order, we
would then have a(n−1)/q ≡ 1 (mod n), contrary to assumption.

◦ Thus, k = n− 1, so a has order n− 1 modulo n. By Euler's theorem, the order of any element modulo n
divides ϕ(n), so we see ϕ(n) ≥ n− 1. But this requires every positive integer less than n to be relatively
prime to n, so since n > 1 we conclude that n is prime.

• Example: Use the Lucas criterion to show that n = 20563 is prime, using a = 3.

◦ First, we compute 320562 ≡ 1 (mod 20563), so the �rst part of the criterion holds.

◦ Now we factor n− 1 = 20562 = 2 · 3 · 23 · 149.
◦ Next, we �nd

320562/2 = 310281 ≡ 20562 (mod n)
320562/3 = 36854 ≡ 3065 (mod n)
320562/23 = 3894 ≡ 15551 (mod n)
320562/149 = 3148 ≡ 19307 (mod n)

and since all of the results are not equal to 1 modulo n, we conclude that n is prime.

22

• The Lucas criterion can certainly work well, but there are serious computational issues with it.

• First, if n does happen to be prime, it does not give any indication on how to construct an appropriate value
of a. (This is why we called the result a �criterion� rather than a test.)

◦ As it turns out, there will usually be many such a that work, but their distribution will often be rather
random.

◦ This is not usually such an issue in practice because we can simply test a number of values of a (such as
a = 2, 3, 5, 6, 7, 10,...) until we �nd one that works.

• Second, and much more critically, we need to �nd the prime factorization of p− 1 in order to prove that p is
prime.

◦ For some primes p, it is certainly the case that p−1 is easy to factor: for example, if p = 2q+1 or 4q+1
or 6q + 1, ... where q is another prime. (Of course, we would then need to verify that q is itself actually
prime in order to know we had the correct factorization....)

◦ However, it can certainly happen that p = 2q1q2 + 1 where q1 and q2 are themselves large primes of
roughly equal size. In this case to prove that p is prime would require factoring an integer whose size is
roughly p/2, and (as we will discuss) factorization is usually quite di�cult.

• Ultimately, there is really no way to avoid having to �nd a factorization in order to apply the Lucas test.

◦ If, however, someone does expend the e�ort to �nd the factorization of p− 1, it is straightforward to use
the results to verify that the computations are correct after the fact.

• The �Pratt certi�cate� of a prime number consists of a valid a satisfying the Lucas criterion, together with
the factorization of p− 1.

◦ Verifying the Pratt certi�cate is much faster than generating it, since the veri�cation requires only
computing the appropriate modular exponentiations.

◦ One minor issue with the Pratt certi�cate is that it requires the prime factorization of p−1 to be correct:
one could attempt to circumvent the procedure by giving a �factorization� of p − 1 into terms that are
not actually prime, and choosing a value of a which still makes the indicated modular exponentiations
come out correctly.

◦ To give a fully veri�able primality certi�cate, one would need also to include certi�cates showing that all
of the prime divisors q1, q2, ... of p− 1 are also themselves prime. This in turn would require certi�cates
showing that each of the prime divisors of q1 − 1, q2 − 1 is prime, and so on and so forth, until all the
divisors are su�ciently small that they can simply be compared to a list of known primes.

◦ It can be shown that the total length of a certi�cate would be roughly on the order of (log p)2 digits (note
that p itself has about log p digits), and that all of the computations can be checked in time roughly
equal to (log p)4. Generating the certi�cate itself, of course, is likely to take substantially longer due to
the factorizations that are required.

2.5.4 The AKS Primality Test

• What we still lack is a provably fast algorithm that determines whether a given integer m is prime. A starting
point is the following observation:

• Proposition: If a is relatively prime to m and x is variable, then (x+ a)m ≡ xm + a (modulo m) holds (as a
polynomial in x with coe�cients modulo m) if and only if m is prime.

◦ For example, if a = 2 and m = 5, the result says (x + 2)5 = x5 + 10x4 + 40x3 + 80x2 + 80x + 32 is
equivalent (modulo 5) to the polynomial x5 + 2, which is indeed the case.

◦ Conversely, if a = 1 and m = 4, the result says (x+1)4 = x4+4x3+6x2+4x+1 should not be equivalent
(modulo 4) to the polynomial x4 + 1,which it is not.

◦ Proof: Expanding out the power with the binomial theorem shows that (x+ a)m ≡ xm + a (modulo m)
is equivalent to saying that

(
m
k

)
is divisible by m for all 0 < k < m, and am ≡ a (mod m).

23

◦ If p is prime, then we can write
(
p
k

)
=

p!

k! · (p− k)!
and observe that the numerator is divisible by p but

the denominator is not. Furthermore, Fermat's Little Theorem says ap ≡ a (mod p).

◦ Now suppose m is not prime. We claim that one of the binomial coe�cients
(
m
k

)
with 0 < k < m is

not divisible by m. Explicitly, if m = prd where p is prime and d is not divisible by p, then
(
m
p

)
=

m(m− 1) · · · (m− p+ 1)

p!
is not divisible by pr, since the only term in the numerator divisible by p is

n = pr, but there is a factor of p in the denominator.

• Although this result is a primality test, it is not especially useful, since computing the necessary binomial
coe�cients takes quite a long time. One way to speed up the computation is to take both sides modulo the
polynomial xr − 1 for some small r: in other words, to check whether the relation (x + a)m ≡ xm + a (mod
xr − 1) holds, where coe�cients are also considered modulo m.

◦ The di�culty is that we may lose information by doing this. It turns out that if we choose r carefully, and
verify the congruence for enough di�erent values of a, we can prove that it necessarily holds in general.

• Test (Agrawal-Kayal-Saxena Test): Let m > 1 be an odd integer that is not of the form ab for any b > 1.

◦ Let r be the smallest value such that the order of r modulo m is greater than (logm)2.

∗ This value can be computed simply by �nding the orders of 2, 3, ... , until one of them has an order
exceeding this bound.

∗ If any of these integers divides m, then m is clearly composite.

∗ If there is no such residue less than m, m is prime. (This can only happen for m < 107.)

∗ There will always be such an r satisfying r ≤ 1 + (logm)5.

◦ For each a with 1 ≤ a ≤
√
ϕ(r) logm, check whether (x+ a)m ≡ xm + a (mod xr − 1,m).

∗ If any of these congruences fails, m is composite.

∗ Otherwise, m is prime.

• We will not prove the correctness of the AKS algorithm here.

◦ However, we will note that the algorithm gives an a�rmative declaration of whether m is prime or
composite (unlike the previous tests we have discussed).

◦ Furthermore, the runtime of this algorithm is a polynomial in logm: it is much more e�cient than (say)
trial division, which has a runtime of roughly

√
m.

◦ The version above runs in time roughly equal to (logm)12, and there have been subsequent modi�cations
that lowered the time to approximately (logm)6. However, this is much slower than the �probabilistic�
tests like the Miller-Rabin test, which is believed to run in time approximately (logm)4.

2.6 Factorization Algorithms

• All of the compositeness tests we have discussed so far are nonconstructive: they show that an integer m is
composite without explicitly �nding a divisor.

• We now turn to the question of actually factoring large integers. In general, factorization seems to be very
much more computationally di�cult than primality testing. We will describe some of the most common
techniques.

2.6.1 The Fermat Factorization

• Suppose we wish to factor n = pq, where p < q are odd numbers. (Usually they will be primes in the examples
we consider, but this is not necessary.)

◦ From the di�erence-of-squares identity, we write n =

(
q + p

2

)2

−
(
q − p
2

)2

.

24

◦ If q−p is small, then the term

(
q − p
2

)2

will be much smaller than

(
q + p

2

)2

. This means that

(
q + p

2

)2

will be a perfect square that is only a small amount larger than n.

◦ We can then simply compute the �rst integer k ≥
√
n and then check whether any of the integers k2−n,

(k + 1)2 − n, (k + 2)2 − n, ... ends up being a perfect square. If it is, the di�erence-of-squares identity
yields a factorization.

◦ Note that we can compute square roots to very high accuracy, extremely rapidly, using logarithms, since√
n = eln(n)/2.

• The method above is called the Fermat factorization: we search for a and b such that n = a2−b2 = (a+b)(a−b).

• Example: Factor n = 1298639.

◦ We try looking for a Fermat factorization. We can compute numerically that
√
n ≈ 1139.58.

◦ We then compute 11402 − n = 961, which is 312.

◦ Hence we get the factorization n = (1140− 31) · (1140 + 31) = 1109 · 1171. (Both of these integers turn
out to be prime.)

• Example: Factor n = 2789959.

◦ We try looking for a Fermat factorization. We compute
√
n ≈ 1670.32.

◦ We then compute 16712 − n = 2282, which is not a square.

◦ Next we try 16722 − n = 5625, which is 752.

◦ We obtain the factorization n = (1672− 75) · (1672 + 75) = 1597 · 1747. (Both of these integers turn out
to be prime.)

• Of course, the e�ectiveness of the Fermat factorization technique depends on how small q − p is.

◦ The number of iterations is more or less equal to
√
(q + p)/2 −

√
n, which, if q − p < n1/3, is bounded

above by 2n1/6. Trial division takes roughly
√
n = n1/2 iterations in the worst case, so the Fermat

factorization is signi�cantly faster than trial division if q − p is small.

◦ On the other hand, if q is roughly 2p, then we would need to examine about p squares before we would
�nd the factorization. In this case, n ≈ 2p2, so in terms of n we end up doing about

√
n checks, which

is the same as trial division.

• There are ways to modify the Fermat factorization that can overcome the issue of having q be larger than p.

◦ For example, if it is known or suspected that n = pq where q/p is close to 2, then applying the Fermat
factorization technique to 8N will quickly return 8N = 4p ·2q, because 4p and 2q are very close together.
(Multiplying by 8 is necessary because 2N = (p+ q/2)

2 − (p − q/2)2 is not a di�erence of squares of
integers.)

• Ultimately, however, the Fermat factorization is totally ine�ective if p and q each have hundreds of digits:
even if their �rst few digits are the same, searching for perfect squares will only be marginally faster than
trial division.

2.6.2 Pollard's p− 1 Algorithm

• One way to look for divisors of an integer n is as follows:

◦ If a is a random residue modulo n = pq, then it is likely that the order of a modulo p is di�erent from
the order of a modulo q.

◦ Suppose that the order of a modulo p is k, and is less than the order of a modulo q.

◦ Then ak ≡ 1 (mod p) while ak 6≡ 1 (mod q), meaning that gcd(ak − 1, n) = p.

25

◦ Of course, if n = pq is a product of two primes, then it is likely that the order of a modulo p and modulo
q is quite large, and so a direct search for the order would be very ine�cient.

◦ One way to speed the computation is to notice that we do not need to �nd the exact order of a: any
multiple of it will su�ce, as long as that multiple is not also divisible by the order of a modulo q.

◦ A reasonably e�ective option that is also easy to implement is to evaluate the values a1!, a2!, a3!, a4!, ...
, aB! modulo n (for some bound B), since the jth term is simply the jth power of the previous term.
This procedure is guaranteed to return a result congruent to 1 modulo p provided that the order of a
divides B!.

• Algorithm (Pollard's (p− 1)-Algorithm): Suppose n is composite. Choose a bound B and a residue a modulo
n. Set x1 = a, and for 2 ≤ j ≤ B, de�ne xj = xjj−1 (mod n). Compute gcd(xB − 1, n): if the gcd is between
1 and n then we have found a divisor of n. If the gcd is 1 or n, start over with a new residue a.

◦ If the gcd is 1, it may be possible to extend the computation to obtain a divisor by increasing the bound
B. It is easy to resume such an aborted computation: we can simply compute additional terms xj past
xB using the same recursion.

◦ If the gcd is n, it may have been the case that B was chosen too large (i.e., we carried the computation
su�ciently far that B! was a multiple of the order modulo p and modulo q). In such a case, we could
repeat the computation with a smaller bound (e.g., B/2) to see if stopping the calculation earlier would
catch one of the orders modulo p or modulo q but not the other.

◦ The idea behind the algorithm is if p is a prime divisor of n such that p− 1 has only small prime factors,
then the order of any element modulo p will divide B! where B is comparatively small. On the other
hand, if the other prime factors qi of n are such that qi − 1 has a large prime factor, it is unlikely that a
randomly chosen residue will have small order modulo q.

◦ Thus, when we apply Pollard's (p − 1)-algorithm to a composite integer n = pq where p − 1 has only
small prime divisors, it is likely that the procedure will quickly �nd the factorization. (This is the reason
for the algorithm's name.)

◦ It is a nontrivial problem in analytic number theory to determine the optimal choice for the bound B.
In practice, for integers with 20 digits or fewer, one usually chooses B on the order of 105 or so: such a
computation can be done essentially instantaneously by a computer.

• Example: Use Pollard's (p− 1)-algorithm with a = 2 to �nd a divisor of n = 4913429.

◦ We start with a = 2, so that x1 = 2. For emphasis we will compute gcd(xj − 1, n) for each value of j
until we �nd a gcd larger than 1:

Value j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
xj 2 4 64 2036929 251970 3059995 1426887

gcd(xj − 1, n) 1 1 1 1 1 1 2521

◦ After the 7th step, we obtain a nontrivial divisor 2521, giving the factorization n = 2521 · 1949 .

◦ Observe that 2521−1 = 2520 = 23325171 has only small divisors, and indeed 2520 divides 7! (so we were
guaranteed to obtain it by the 7th iteration of the procedure).

◦ On the other hand, 1949 − 1 = 22 · 481 has a large prime divisor, so it would usually take B = 481 to
�nd 1949 as a divisor.

• We will remark that the speed of Pollard's (p− 1)-algorithm depends on the size of the largest prime divisor
of p− 1, which can vary quite substantially even for primes p of approximately the same size.

◦ If p is an odd prime, then p−1 is clearly even, so the �worst case scenario� for Pollard's (p−1)-algorithm
is to have n = pq where p = 2p0 + 1 and q = 2q0 + 1 with p, q, p0, q0 all prime and where p and q are

roughly equal. In such a case, we would require B ≈ p0 ≈
1

2

√
n in order to �nd the factorization (unless

we are lucky with our choice of a).

◦ As an aside, a prime p0 such that 2p0 + 1 is also prime is called a �Sophie Germain prime�. It is not
known whether there are in�nitely many such primes, although heuristically it is expected there should
be in�nitely many.

26

◦ It is also a rather involved analytic number theory problem to estimate the �expected� running time for
the algorithm. In general, if we use a bound B = nα/2, then we would expect to have a probability
roughly α−α of �nding a factorization. When α = 1/2 this says we would have about a 25% chance of
obtaining a factorization if we take B = n1/4.

◦ When generating an RSA modulus, it is very unlikely to choose a prime p such that p− 1 only has small
divisors by accident (at least, as long as one is choosing them randomly). Nevertheless, it is often a good
idea to generate the modulus in such a way that each prime p has another large prime divisor of p− 1.

◦ If, for example, one wants to generate a 250-digit prime p such that p− 1 has a large prime divisor, one
could �rst generate a 200-digit prime p0 and a random 50-digit number k, and then test the numbers
p = (k + r)p0 + 1 for integers r ≥ 0 until a prime is found. By construction, p − 1 will then have the
200-digit prime p0 as a divisor.

2.6.3 Pollard's ρ-Algorithm

• Another way we can try to generate divisors is in the following way: if we choose k integers modulo n = pq at
random, where k > 2

√
p, then it is likely that two of the k integers will be congruent modulo p, but di�erent

modulo n.

◦ The reason for this is as follows: if we choose k integers modulo p, then the probability that they all lie

in di�erent residue classes is
(
p
k

)
/pk =

(
1− 1

p

)
·
(
1− 2

p

)
· · · · ·

(
1− k − 1

p

)
.

◦ Taking the natural logarithm of this expression yields

k−1∑
j=1

log

(
1− j − 1

p

)
< −

k−1∑
j=1

j − 1

p
< −k

2

2p
, where

we invoked the inequality log(1− x) < −x, which is true for small positive x.

◦ Thus, the probability that two of the k integers lie in the same residue class modulo p is at least
1− e−k2/(2p): so in particular, if k = 2

√
p, the probability will be roughly 1− e−2 ≈ 0.86.

◦ A typical application of this result in basic probability is to set p = 365 and k = 23, which yields the
often-surprising result that if 23 people are chosen at random, the probability that two or more of them
share a common birthday exceeds 1/2. There are a number of applications of this idea in cryptography,
which we will discuss later.

• Choosing k random residue classes and trying to see whether any of them are congruent modulo p is not much

faster than trial division, since
(
k
2

)
≈ 1

2
k2 comparisons would be needed in order to �nd two that are equal

mod p, and if k ≈ 2
√
p then we do not obtain an improvement over trial division (which would also take p

attempts).

• The observation, initially made by Pollard, is that we can speed up this process by generating the residue
classes by iterating a polynomial map in the following way:

◦ Let p(x) be a polynomial with integer coe�cients, and choose an arbitrary a, and consider the values a,
a1 = p(a), a2 = p(p(a)), a3 = p(p(p(a))), ..., taken modulo n, where in general we set ai = p(ai−1).

◦ Absent any reason to expect otherwise, we would guess that the values p(ai) mod n will be essentially
random, and so if we compare roughly

√
p of them to each other, we are likely to �nd two that are

congruent modulo p, if p is the smallest prime divisor of n.

◦ The advantage lies in the fact that if ai ≡ aj (mod p) for some i < j, then ai+1 ≡ aj+1 (mod p), in turn
implying ai+2 ≡ aj+2 (mod p) and so forth. So the sequence becomes periodic with period j − i.
◦ In particular, if t ≥ i is any multiple of the period j− i, then at ≡ a2t (mod p). This means we can detect
the periodicity of this sequence by looking only at pairs of the form (at, a2t), which is a vast improvement
over having to search all pairs (ai, aj).

◦ To obtain a divisor of n, we therefore want to compute gcd(a2t − at, n).

• Collecting the above observations yields the following algorithm:

27

• Algorithm (Pollard's ρ-Algorithm): Suppose n is composite and set p(x) = x2 + 1. Choose an arbitrary a,
set x0 = y0 = a, and then de�ne xi = p(xi−1) mod n and yi = p(p(yi−1)) mod n. Compute gcd(yi − xi, n)
for each i until the gcd exceeds 1. If the gcd is n, repeat the procedure with a di�erent u0 or a di�erent
polynomial p(x).

◦ Note that yi = x2i, so we could just have computed the sequence xi and gcd(x2i − xi, n) for each i.
◦ However, we organize the algorithm in this way because it only requires a �xed amount of storage space:
we only need to keep track of the most recent pair (xi, yi) to compute the next one.

◦ If we kept track of the xi only, we would need to use more memory: at the step where we compute
gcd(x2i − xi, n), we would need to keep the values xi+1, xi+2, ... , x2i−1 for use later on. As i increases,
so does the number of terms we need to keep track of.

◦ There is also no particularly compelling reason to choose p(x) = x2 +1 aside from the fact that it seems
to work well in practice. (Linear functions do not work, and more complicated polynomials would take
longer to compute.)

• Example: Use Pollard's ρ-algorithm to �nd a divisor of n = 1242301.

◦ We start with u = 1, so that x1 = 2 and y1 = 5, and successively keep track of the terms xi and yi
modulo n.

Value i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10
xi 2 5 26 677 458330 743607 710748 894671 544825 121987
yi 5 677 743607 894671 121987 636498 581703 1109702 1195126 635655

gcd(yi − xi, n) 1 1 1 1 1 1 1 1 1 281

◦ We see that at the 10th step, we obtain a nontrivial divisor 281, yielding the factorization n = 281 ·4421.

• We will remark that Pollard's ρ-algorithm is not guaranteed to �nd a divisor on any given attempt: rather,
it is only expected to do so according to some heuristics.

◦ However, we would expect that it should �nd the smallest prime divisor of n after roughly
√
p steps, and

since p ≤
√
n, the expected runtime is on the order of n1/4.

◦ This is signi�cantly faster than the n1/2 we obtain from trial division, but it is still enormously large
if n has hundreds of digits. On the other hand, it is at least more of a guarantee than from Pollard's
(p− 1)-algorithm, which

2.6.4 Sieving Methods

• We can improve on the Fermat factorization method by using the following fact from modular arithmetic,
which already essentially came up when we discussed Rabin encryption:

• Proposition: If n is composite and a2 ≡ b2 (mod n) with a 6= ±b (mod n), then 1 < gcd(a+ b, n) < n.

◦ Note that a2 ≡ b2 with a 6= ±b can only happen if n is composite, since there are only at most two
solutions to any quadratic equation modulo a prime.

◦ Proof: The given hypotheses imply n|(a+ b)(a− b) and that n does not divide either factor.

◦ Hence the gcd of a+ b and n cannot be 1 (since then necessarily n would divide a− b), and it cannot be
n (since then necessarily n would divide a+ b). Hence the gcd must be strictly between 1 and n.

• The point of this proposition is that, since we can compute the gcd rapidly using the Euclidean algorithm,
having such an a and b immediately yields a divisor of n.

◦ Example: Since 102 ≡ 32 (mod 91), we can �nd a divisor of 91 by computing gcd(10 + 3, 91) = 13.
Indeed, 13 is a divisor of 91, with quotient 7.

• The task is then to �nd a more e�cient way to construct such an a and b than brute-force searching.

28

◦ Note that the goal of the Fermat factorization method is to construct a and b such that n = a2 − b2,
which is a special case of what we are looking for.

◦ It is possible to �nd such a and b when using the Miller-Rabin test: if the test successfully shows m is
composite by �nding c2j ≡ 1 (mod m) with cj 6≡ ±1 (mod m), then (cj)2 ≡ 1 (mod m) while cj 6= ±1
(mod m): then a = cj and b = 1 satisfy the desired conditions.

• The method known as the quadratic sieve is one of the fastest procedures for factoring numbers less than 90 dig-
its. Here is an outline of the procedure; the procedure we describe is properly called Dixon's factorization method,
of which the quadratic sieve is an optimization:

◦ Instead of trying to �nd a single value of a for which a2 modulo n is a square, we instead compute a
number of di�erent values of a such that a2 modulo n has all of its prime divisors in a small �xed set.
Then, by taking products of some of these values, one can obtain a congruence of the form a2 ≡ b2 (mod
n) with a 6= ±b (mod n).

◦ For example, modulo 2077, if we search for powers that have small prime divisors we will �nd 462 ≡ 31131

and 592 ≡ 2233131. Multiplying them yields the equality (46 · 59)2 ≡ (2132131)2, which is the same as
6372 ≡ 2342. Then gcd(637− 234, 2077) = 31, which gives a divisor of 2077.

◦ In general, this kind of search requires (i) �nding many squares whose factorizations only involve small
primes, and then (ii) �nding a product of such factorizations that has a square value.

◦ Goal (i) is in general rather di�cult, and we will not describe in detail the methods used to do it.

◦ Goal (ii), however, can be done e�ciently with linear algebra: the idea is to �nd a nonzero linear
dependence between the vectors of prime-factorization exponents, considered modulo 2.

◦ For example, if we want to �nd a set of elements among 6, 10, 30, 150 whose product is a perfect square,
we can �nd the prime factorizations 6 = 213150, 10 = 213051, 30 = 213151, 150 = 213152, we would take
the four vectors of exponents 〈1, 1, 0〉, 〈1, 0, 1〉, 〈1, 1, 1〉, 〈1, 1, 2〉 and search for a linear combination of
these vectors whose entries are all even.

◦ In this case, we can see that 〈1, 1, 0〉+〈1, 1, 2〉 = 〈2, 2, 2〉, corresponding to the product 6·150 = 900 = 302.

◦ There are simple linear-algebra procedures for doing this by row-reducing an appropriate matrix (which
is quite computationally e�cient).

• We will also remark that there is an improvement on the quadratic sieve called the general number �eld sieve
that operates on the same kind of principle, except instead of doing its computations with the set of rational
numbers Q, it works using more general number �elds such as Q(

√
2) = {a + b

√
2 : a, b ∈ Q}. (Again, the

details are too technical for us to treat properly here.)

• We will mention that the sieving algorithms run in speed that is asymptotically far faster than other methods
for su�ciently large integers.

◦ Speci�cally, the computational complexity for the general number �eld sieve to factor n is approximately

e1.95(lnn)
1/3(ln lnn)2/3 , while the complexity for the quadratic sieve is approximately e(lnn)

1/2(ln lnn)1/2 .

◦ As a comparison, Pollard's ρ-algorithm is expected to run in roughly n1/4 = e0.25(lnn)
1

steps.

◦ For small n, the exponent 0.25(lnn)1 will be less than (lnn)1/2(ln lnn)1/2 because of the constant 0.25,
but for large n, the expression with the smaller power of lnn will be smaller.

◦ Similarly, for medium-sized n, 1.95(lnn)1/3(ln lnn)2/3 will be bigger than (lnn)1/2(ln lnn)1/2 because of
the constant 1.95, but for large n, 1.95(lnn)1/3(ln lnn)2/3 is smaller.

◦ Thus, for small integers (roughly 40 base-10 digits or fewer), Pollard's ρ-algorithm will be fastest, while
for integers up to about 90 digits the quadratic sieve is best. For larger integers, the general number
�eld sieve is the best.

◦ There is an algorithm known as Shor's algorithm that could run on a quantum computer that can factor
an integer in approximately (lnn)2(ln lnn)(ln ln lnn) steps, vastly faster than the other algorithms we
have mentioned.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2016. You may not reproduce or distribute this
material without my express permission.

29

