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2 Complex Power Series

In this chapter, our goal is to study power series in the context of complex-valued functions, with the primary
motivation being to give a new general method for constructing holomorphic functions. Indeed, as we will see in
the next chapter, in fact every holomorphic function on a region R can be written locally as a power series, and so
this method does in some sense encompass every possible holomorphic function.

We �rst develop the general theory of formal power series and formal Laurent series with complex coe�cients, which
provide tools for manipulating and computing power series expansions. We next study questions of power series
convergence, continuity, and di�erentiability to show that any power series with a positive radius of convergence is
always holomorphic. Finally, we then apply these results to de�ne various elementary functions such as the complex
exponential ez and the trigonometric functions sin(z) and cos(z) as convergent power series in order to show that
these functions' familiar properties carry over quite naturally from R to C.

2.1 Formal Power Series

• In single-variable calculus, we have various familiar expansions of functions as convergent power series, such

as ex =
∑∞
n=0

xn

n!
= 1+ x+

x2

2!
+
x3

3!
+ · · · and 1

1− x
=
∑∞
n=0 x

n = 1+ x+ x2 + x3 + · · · , where x represents

some indeterminate real number.

◦ We may perform various algebraic operations on such series, such as adding and subtracting them,
multiplying them, and in some cases even dividing them, to obtain new series. For example, we may
compute formally using the distributive law that

1

(1− x)2
=

[
1 + x+ x2 + x3 + · · ·

] [
1 + x+ x2 + x3 + · · ·

]
=

[
1 + x+ x2 + x3 + · · ·

]
+ x

[
1 + x+ x2 + x3 + · · ·

]
+ x2

[
1 + x+ x2 + x3 + · · ·

]
+ x3

[
1 + x+ x2 + x3 + · · ·

]
+ · · ·

=
[
1 + x+ x2 + x3 + · · ·

]
+
[
x+ x2 + x3 + x4 + · · ·

]
+
[
x2 + x3 + x4 + x5 + · · ·

]
+
[
x3 + x4 + x5 + x6 + · · ·

]
+ · · ·

= 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · =
∞∑
n=0

(n+ 1)xn.
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◦ The main observation is that the calculation above is purely formal, in the sense that it entirely ignores
any questions about convergence of the various power series involved and requires only manipulation of
expressions involving the indeterminate x.

◦ Our goal now is to formulate rigorously this notion of �formal power series� along with the various
algebraic operations we may perform on them. For no additional cost, we will also work with complex
coe�cients rather than purely real ones.

2.1.1 Formal Power Series With Complex Coe�cients

• De�nition: Let z be an indeterminate. A formal power series with complex coe�cients in z is an expression
of the form

∑∞
n=0 anz

n = a0 + a1z + a2z
2 + a3z

3 + · · ·+ anz
n + · · · for any choice of coe�cients ai ∈ C. The

variable z represents an indeterminate, and does not refer to a complex number. Two formal power series are
equal precisely when all of their coe�cients ai are equal.

◦ The term �indeterminate� is deliberately unde�ned in the de�nition above. A more concrete (but vastly
less intuitive) de�nition of formal power series can be given using Cartesian products1, but we will not
use it.

◦ As usual, we will omit writing terms with zero coe�cients, and omit coe�cients of 1, except for emphasis,
just as we do for polynomials and regular series. Thus, we would abbreviate the series 0 + 1z + 1z2 +
1z3 + · · · =

∑∞
n=1 z

n as z + z2 + z3 + · · · .

◦ Examples: Some examples of formal power series are
∑∞
n=0

zn

n!
= 1 + z +

z2

2!
+
z3

3!
+ · · · ,

∑∞
n=0

zn

n!
=

1 + z + z2 + z3 + · · · , and
∑∞
n=1 n

nzn = z + 4z2 + 27z3 + 256z4 + · · · .
◦ Example: A formal power series with all but �nitely many coe�cients equal to zero is simply a polynomial
in z (and vice versa). Thus, 1+z, 1+9z−z2022, and 1+z+z2+ · · ·+z999999 are all formal power series.

◦ Example: Any complex number c is trivially a formal power series: c = c+ 0z + 0z2 + · · · .

• We may manipulate formal power series by adding and multiplying them in the same way that we add and
multiply abstract polynomials (indeed, the idea is that formal power series behave essentially like �polynomials
that continue forever�).

◦ Addition is de�ned termwise: (a0 + a1z+ a2z
2 + · · · ) + (b0 + b1z+ b2z

2 + · · · ) = (a0 + b0) + (a1 + b1)z+
(a2 + b2)z

2 + · · · , or, formally, as
∑∞
n=0 anz

n +
∑∞
n=0 bnz

n =
∑∞
n=0(an + bn)z

n.

◦ Likewise, subtraction and scaling by a complex constant are also de�ned termwise: we set
∑∞
n=0 anz

n −∑∞
n=0 bnz

n =
∑∞
n=0(an − bn)zn and for any c ∈ C we set c ·

∑∞
n=0 anz

n =
∑∞
n=0(can)z

n.

◦ Multiplication is de�ned �rst on �monomials� (power series with only one nonzero coe�cient), via (anz
n)·

(bmz
m) = anbmz

n+m, and then extended to arbitrary power series via the distributive laws. Explicitly,
one obtains

(a0 + a1z + a2z
2 + · · · ) · (b0 + b1z + b2z

2 + · · · ) = a0b0 + (a1b0 + a0b1)z + (a2b0 + a1b1 + a0b2)z
2 + · · ·

where the coe�cient of zn in the product is given by
∑n
k=0 akbn−k. More formally, we have [

∑∞
n=0 anz

n] ·
[
∑∞
n=0 bnz

n] =
∑∞
n=0 [

∑n
k=0 akbn−k] z

n.

◦ We note that all of the coe�cients in any product of formal power series are given by �nite sums, and
thus we do not have any questions of convergence arising here.

• We also have a notion of �order� for formal power series, which has similar properties to the degree of a
polynomial:

• De�nition: The order of a formal power series
∑∞
n=0 anz

n is the smallest integer n for which an 6= 0. (By
convention, the order of the zero power series is ∞.)

1Speci�cally: inside the Cartesian product of copies of identical copies of C indexed by the nonnegative integers, namely
∏

Z≥0
C =

{(a0, a1, a2, . . . )}ai∈C, we de�ne the formal power series
∑∞

n=0 anz
n to be the sequence (a0, a1, a2, . . . , an, . . . ). The indeterminate

z then corresponds to the sequence (0, 1, 0, 0, 0, . . . , 0, . . . ), which is not a complex number but rather an element of this Cartesian
product!
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◦ Examples: The formal power series z4 + 4z5 + 27z6 + 256z7 + · · · has order 4, while the series z3 + z9

has order 3, and the series 1 + z + z2 + z3 + · · · has order 0.
◦ It is not hard to verify from the de�nitions of addition and multiplication that for any formal power
series f and g, we have ord(fg) = ord(f) + ord(g) and ord(f + g) ≥ min(ord(f), ord(g)).

• Example: For the formal power series f =
∑∞
n=0(n+1)zn = 1+2z+3z2+4z3+5z4+· · · and g =

∑∞
n=0 n

2zn =
z + 4z2 + 9z3 + 16z4 + · · · , �nd the terms up to order 4 for 4f , f + g, f − g, fg, and f2.

◦ Scaling all terms by 4 yields 4f =
∑∞
n=0 4(n+ 1)zn = 4 + 8z + 12z2 + 16z3 + 20z4 + · · · .

◦ Adding corresponding terms yields f + g =
∑∞
n=0(n+ 1 + n2)zn = 1 + 3z + 7z2 + 12z3 + 21z4 + · · · .

◦ Subtracting corresponding terms yields f − g =
∑∞
n=0(n+ 1− n2)zn = 1 + z − z2 − 5z3 − 11z4 − · · · .

◦ For the product fg, one may compute that the order-n coe�cient is
∑n
k=0(k + 1)(n − k)2 =

1

12
n(n +

1)2(n+2) (the formula for this sum can be veri�ed by induction). But it is easier to simply multiply out
the terms explicitly and then discard terms of order larger than 4:

fg = f(z + 4z2 + 9z3 + 16z4 + · · · )
= f · z + f · 4z2 + f · 9z3 + f · 16z4 + · · ·
= (z + 2z2 + 3z3 + 4z4 + · · · ) + (4z2 + 8z3 + 12z4 + · · · ) + (9z3 + 18z4 + · · · ) + (16z4 + · · · ) + · · ·

= z + 6z2 + 20z3 + 50z4 + · · · .

◦ Likewise, for f2 we can �nd an explicit formula for the order-n coe�cient as
∑n
k=0(k + 1)(n− k + 1) =

1

6
(n+ 1)(n+ 2)(n+ 3), or simply multiply out the expansions:

f2 = f(1 + 2z + 3z2 + 4z3 + 5z4 + · · · )
= f · 1 + f · 2z + f · 3z2 + f · 4z3 + f · 5z4 + · · ·
= (1 + 2z + 3z2 + 4z3 + 5z4 + · · · ) + (2z + 4z2 + 6z3 + 8z4 + · · · ) + (3z2 + 6z3 + 9z4 + · · · ) + (4z3 + 8z4 + · · · ) + (5z4 + · · · ) + · · ·

= 1 + 4z + 10z2 + 20z3 + 35z4 + · · · .

• These operations on formal power series obey the usual properties of arithmetic:

• Proposition (Formal Power Series Arithmetic): Suppose that a, b, and c are formal power series with complex
coe�cients in z. Then the following hold:

1. Addition is associative: a+ (b+ c) = (a+ b) + c.

2. Addition is commutative: a+ b = b+ a.

3. The power series 0 is an additive identity: a+ 0 = a.

4. If a =
∑∞
n=0 anz

n then the power series −a =
∑∞
n=0(−an)zn is an additive inverse of a: a+ (−a) = 0.

5. Multiplication is associative: a · (b · c) = (a · b) · c.
6. Multiplication is commutative: a · b = b · a.
7. The power series 1 is a multiplicative identity: 1 · a = a.

8. Multiplication distributes over addition: a · (b+ c) = a · b+ a · c.
◦ Proofs: These all follow immediately from the de�nitions of power series addition and multiplication
along with some tedious algebra and the corresponding properties (associativity of addition, etc.) of
the complex numbers.

◦ Remark (for those who like ring theory): This proposition shows that the set of complex formal
power series is a commutative ring with 1. This ring is denoted C[[z]] (the double brackets indicate
power series, to emphasize the similarity with the polynomial ring C[z]).
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• Notice that the proposition above establishes that the formal power series possess all of the properties of
being a �eld except for the existence of multiplicative inverses. Indeed, some formal power series have a
multiplicative inverse while others do not.

◦ Example: We have (1−z)(1+z+z2+z3+· · · ) =
[
1 + z + z2 + z3 + · · ·

]
+(−z)

[
1 + z + z2 + z3 + · · ·

]
=[

1 + z + z2 + z3 + · · ·
]
+
[
−z − z2 − z3 − z4 − · · ·

]
= 1, and so the power series 1− z and 1 + z + z2 +

z3 + · · · are multiplicative inverses of one another.
◦ Example: We claim that the formal power series z + z2 has no multiplicative inverse: if it did, say
b0+ b1z+ b2z

2+ · · · , multiplying out would yield 1 = (z+ z2)(b0+ b1z+ b2z
2+ · · · ) = b0z+(b0+ b1)z

2+
(b1 + b2)z

3 + · · · , but this is impossible since the constant term of the product is not equal to 1.

◦ The issue in the second example is that the power series z + z2 has a zero constant term, and thus all
terms in any product involving this power series have order at least 1 in z, hence in particular will also
have a constant term of zero. In fact, this is the only obstruction to having a multiplicative inverse:

• Proposition (Multiplicative Inverses of Power Series): The complex power series
∑∞
n=0 anz

n has a multiplica-
tive inverse if and only if its order is 0 (equivalently, when its constant term a0 6= 0), and in such a case its
inverse is unique and given by

∑∞
n=0 bnz

n where b0 = a−10 and bn = −a−10

∑n
k=1 akbn−k for all n ≥ 1.

◦ We will remark that the recurrence relation given for the bi is often rather cumbersome to solve in
practice. The primary utility of this result is the characterization of the power series with multiplicative
inverses.

◦ Proof: Suppose that
∑∞
n=0 anz

n has a multiplicative inverse
∑∞
n=0 bnzn, so that the product [

∑∞
n=0 anz

n]·
[
∑∞
n=0 bnz

n] equals 1.

◦ Since the product is
∑∞
n=0 [

∑n
k=0 akbn−k] z

n, comparing coe�cients yields a0b0 = 1, a0b1 + a1b0 = 0,
a0b2 + a1b1 + a2b0 = 0, ... , and in general

∑n
k=0 akbn−k = 0 for all n ≥ 1.

◦ In particular, we cannot have a0 = 0 since this would contradict the �rst equation. On the other hand,
if a0 6= 0, then the �rst equation uniquely determines b0 = a−10 , the second equation uniquely determines
b1 = −a−10 [a1b0], the third equation uniquely determines b2 = −a−10 [a1b1 + a2b0], ... , and the nth
equation uniquely determines bn = −a−10

∑n
k=1 akbn−k.

◦ Therefore, we conclude that
∑∞
n=0 anz

n has a multiplicative inverse if and only if a0 6= 0 and that its
inverse is as claimed.

• Example: Find the terms up to order 4 in the multiplicative inverse of the formal power series f =
∑∞
n=0(n+

1)zn = 1 + 2z + 3z2 + 4z3 + 5z4 + · · · .

◦ Per the proposition, both f and g do have multiplicative inverses since their constant terms are nonzero.

◦ Suppose the inverse of f is b0 + b1z+ b2z
2 + b3z

3 + b4z
4 + · · · . Then we have (1+ 2z+3z2 +4z3 +5z4 +

· · · )(b0 + b1z + b2z
2 + b3z

3 + b4z
4 + · · · ) = 1 which upon expanding yields

b0 + (2b0 + b1)z + (3b0 +2b1 + b2)z
2 + (4b0 +3b1 +2b2 + b3)z

3 + (5b0 +4b1 +3b2 + 2b3 + b4)z
4 + · · · = 1.

◦ Comparing coe�cients gives b0 = 1, 2b0 + b1 = 0 so that b1 = −2, 3b0 + 2b1 + b2 = 0 so that b2 = 1,
4b0 + 3b1 + 2b2 + b3 = 0 so that b3 = 0, and 5b0 + 4b1 + 3b2 + 2b3 + b4 = 0 so that b4 = 0.

◦ Thus we see f−1 = 1− 2z + z2 + 0z3 + 0z4 + · · · .

◦ Remark: In fact, as one may check, all of the subsequent terms in f−1 are zero, meaning that f−1 =
1− 2z + z2 exactly.

• We can also give another procedure to �nd the multiplicative inverse of a power series f =
∑∞
n=0 anz

n with
a0 6= 0.

◦ First, since f−1 = a−10 (f/a0)
−1, we may reduce to calculating the inverse of f/a0, which is easier since

the constant term is now 1.

◦ So write g = f/a0 where g = 1 +
∑∞
n=1 bnz

n. If we write b = −
∑∞
n=1 bnz

n, then we need only compute
the formal power series inverse of 1− b.
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◦ But in our calculation earlier we saw that the formal power series inverse of 1−b was 1+b+b2+b3+ · · · ,
and this latter sum is well de�ned because b has constant term 0 (so only the terms up to bn will
contribute to the sum representing the coe�cient of zn).

◦ Therefore, expanding out this sum yields the inverse of 1− b, and then scaling by a−10 yields the inverse
of
∑∞
n=0 anz

n.

• Example: Find the terms up to order 4 in the multiplicative inverse of the formal power series f = 2−4z−4z2.

◦ Here we have a0 = 2 so dividing by 2 yields g = 1− 2z − 2z2 and then b = 2z + 2z2.

◦ Then the formal power series inverse of g = 1− b is

1 + b+ b2 + b3 + b4 + · · · = 1 + (2z + 2z2) + (2z + 2z2)2 + (2z + 2z2)3 + (2z + 2z2)4 + · · ·
= 1 + (2z + 2z2) + (4z2 + 8z3 + 4z4) + (8z3 + 24z4 + · · · ) + (16z4 + · · · ) + · · ·
= 1 + 2z + 6z2 + 16z3 + 44z4 + · · ·

which upon rescaling yields f−1 =
1

2
+ z + 3z2 + 8z3 + 22z4 + · · · .

◦ To check we can multiply out f · f−1 = (2 − 4z − 4z2)(
1

2
+ z + 3z2 + 8z3 + 22z4) = 1 − 120z5 − 88z6,

which indeed is 1 up through degree 4.

2.1.2 Formal Laurent Series With Complex Coe�cients

• We have seen so far that the formal power series give a natural extension of polynomials, in that they possess
most of the familiar algebraic properties of polynomials, but also allow us to compute multiplicative inverses
in many cases.

◦ Indeed, we may even rewrite many rational functions of z as power series by calculating multiplicative
inverses.

◦ For example, since (1−z)−1 = 1+z+z2+z3+ · · · , we may by extension write
1 + z

1− z
= (1+z)(1−z)−1 =

(1 + z)(1 + z + z2 + z3 + · · · ) = 1 + 2z + 2z2 + 2z3 + · · · .
◦ However, not all rational functions of z may be written as a power series in this way, since we require
the denominator series to have a multiplicative inverse.

◦ For example, we cannot expand
1 + 3z

z − z2
as a formal power series since the denominator z − z2 is not

invertible, nor can we even expand the very simple rational function
1

z
.

• Our ultimate goal is to use power series as a tool for studying di�erentiability by shifting focus from formal
series to convergent series, where we allow �plugging in� values z ∈ C to our series to obtain a complex-valued
function.

◦ Because rational functions are di�erentiable, we would like to be able to study all of them from the view-
point of series together, rather than having to make consistent exceptions for series whose denominator
is not invertible.

• Pleasantly, our earlier analysis of non-invertible series already provides an avenue for handling this di�culty:
we simply need to allow powers of z to have multiplicative inverses as well.

◦ In other words, we must also allow the series of the form z−n for each �xed positive integer n.

◦ Since we wish to retain all of the algebraic properties of series (i.e., we want to be able to add and
multiply them), this requirement is equivalent to allowing our series to have a �nite number of terms
with negative exponents of z.

◦ Such series are called formal Laurent series:
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• De�nition: Let z be an indeterminate. A formal Laurent series with complex coe�cients in z is an expression
of the form

∑∞
n=−d anz

n = a−dz
−d + a1−dz

1−d + · · · + a0 + a1z + a2z
2 + · · · + anz

n + · · · for any choice
of coe�cients ai ∈ C and some �xed nonnegative integer d. Two formal Laurent series are equal precisely
when all of their coe�cients ai are equal (with the convention that any terms not included have an implicit
coe�cient of 0).

◦ Every formal power series is automatically a formal Laurent series with d = 0.

◦ We use the same de�nition of order for formal Laurent series: explicitly, the order of the Laurent series∑∞
n=−d anz

n is the smallest integer n for which an 6= 0 (where as before, the order of the zero series is
∞).

◦ Examples: Some other examples of formal Laurent series are z−1 of order −1,
∑∞
n=−4 z

n = z−4 +
z−3 + z−2 + z−1 + 1 + z + · · · of order −4,

∑∞
n=−1 nz

n = −z−1 + z + 2z2 + 3z3 + · · · of order −1,∑∞
n=−3

zn

|n|!
=
z−3

3!
+
z−2

2!
+ z−1 +1+ z+

z2

2!
+ · · · of order −3, and 7z−2022 + (1− i)z−3 +2iz4 + z88888

of order −2022.

• Intuitively, we can think of a formal Laurent series as merely being a formal power series times some power of
z−1. More explicitly, we have

∑∞
n=−d anz

n = z−d·[
∑∞
n=0 anz

n+d] = z−d·[a−d+a1−dz+· · ·+a0zd+a1zd+1+· · · ].

◦ From this standpoint, we see that we can manipulate formal Laurent series by adding and multiplying
them in precisely the same way that we do with formal power series.

◦ Addition, subtraction, and scaling are de�ned termwise:
∑∞
n=−d anz

n ± c ·
∑∞
n=−d bnz

n =
∑∞
n=−d(an ±

cbn)z
n. (If the leading negative-power terms do not have the same degree we simply extend one of the

series with coe�cients of 0 until it matches the other.)

◦ Multiplication is de�ned via the distributive law just as before: �rst we set (anz
n) · (bmzm) = anbmz

n+m

for any integers m and n (now possibly negative), and then we extend to arbitrary Laurent series via the
distributive laws. Explicitly, one obtains

(a−dz
−d+ · · ·+a0+a1z+ · · · ) · (b−ez−e+ · · ·+b0+b1z+ · · · ) = a−db−ez

−d−e+(a−db1−e+a1−db−e)z
1−d−e+ · · ·

where the coe�cient of zn in the product
[∑∞

n=−d anz
n
]
·
[∑∞

n=−e bnz
n
]
is given by

∑n+e
k=−d akbn−k.

◦ Alternatively, we could factor out the negative powers of z �rst and then multiply the remaining terms as
regular formal power series:

[∑∞
n=−d anz

n
]
·
[∑∞

n=−e bnz
n
]
= z−d[

∑∞
n=0 anz

n+d] · z−e[
∑∞
n=0 bnz

n+e] =

z−d−e · [
∑∞
n=0 anz

n+d][
∑∞
n=0 bnz

n+e].

◦ Because we only have a �nite number of negative-exponent terms, all of the the coe�cients still only
require �nite sums, so we do not need to worry about convergence issues.

• Formal Laurent series have all of the same algebraic properties as formal power series, but with one substantial
added bonus: every nonzero Laurent series has a multiplicative inverse.

• Proposition (Formal Power Series Arithmetic): The formal Laurent series with complex coe�cients form a
�eld under addition and multiplication. More explicitly, suppose that a, b, and c are formal Laurent series
with complex coe�cients in z. Then the following hold:

1. Addition is associative: a+ (b+ c) = (a+ b) + c.

2. Addition is commutative: a+ b = b+ a.

3. The Laurent series 0 is an additive identity: a+ 0 = a.

4. If a =
∑∞
n=−d anz

n then the Laurent series −a =
∑∞
n=−d(−an)zn is an additive inverse of a: a+(−a) = 0.

5. Multiplication is associative: a · (b · c) = (a · b) · c.
6. Multiplication is commutative: a · b = b · a.
7. The Laurent series 1 is a multiplicative identity: 1 · a = a.

8. Multiplication distributes over addition: a · (b+ c) = a · b+ a · c.
9. Every nonzero Laurent series a has a multiplicative inverse a−1 with a−1 ·a = 1, and ord(a−1) = −ord(a).
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◦ Properties (1)-(8) all follow in the same way as for formal power series. The main point of interest
is (9), which follows from our work earlier on invertible power series. Intuitively, the idea is just to
factor out an appropriate power of z and then observe that the �leftover� formal power series with
nonzero constant term is invertible.

◦ Proof (9): Suppose a =
∑∞
n=d anz

n is a nonzero Laurent series of order d (where d may be positive,
negative, or zero).

◦ Then a = zd ·
∑∞
n=0 an+dz

n. But the formal power series ã =
∑∞
n=0 an+dz

n = ad + a1+dz + · · · has
nonzero constant term, so it has some multiplicative inverse power series b with ã · b = 1.

◦ Then a · (z−db) = (zdã) · z−db = ã · b = 1, which means the series z−db is a formal Laurent series
inverse for a as required.

◦ The statement about the order follows immediately, since ord(a−1) = ord(z−db) = −d = −ord(a).
◦ Remark (for those who like ring theory): The �eld of formal Laurent series is denoted C((z)) to
highlight the analogy with the �eld of rational functions C(z): indeed, C((z)) is the �eld of fractions
of the formal power series ring C[[z]].

• Example: Find the terms up to order 5 in the multiplicative inverse of the formal Laurent series f = z + z3.

◦ By the discussion above, we simply extract the appropriate power of z from f and then invert the
remaining portion.

◦ We factor f = z(1 + z2) and then must �nd the formal power series inverse of 1 + z2, which is∑∞
n=0(−z2)n = 1− z2 + z4 − z6 + z8 − · · · .

◦ Then f−1 = z−1(1 + z2)−1 = z−1
∑∞
n=0(−z2)n = z−1 − z + z3 − z5 + · · · .

• Example: Find the multiplicative inverse of the formal Laurent series f =
∑∞
n=−2 z

n = z−2 + z−1 + 1 + z +
z2 + · · · .

◦ As above, we simply extract the appropriate power of z from f and then invert the remaining portion.

◦ We factor f = z−2
∑∞
n=0 z

n and then must �nd the formal power series inverse of
∑∞
n=0 z

n, which as we
have seen previously is 1− z.

◦ Then f−1 = z2(
∑∞
n=0 z

n)−1 = z2(1− z) = z2 − z3 .

• Example: Find the terms up to order 5 in the multiplicative inverse of the formal Laurent series f =∑∞
n=−1 n

2zn = z−1 + z + 4z2 + 9z3 + · · · .

◦ We factor f = z−1(1 + z2 + 4z3 + 9z4 + · · · ) and then must �nd the formal power series inverse of
1 + z2 + 4z3 + 9z4 + · · · , which we do term-by-term.

◦ Since we want f−1 = z(1 + z2 + 4z3 + 9z4 + · · · )−1 up to order 5, we only need to calculate (1 + z2 +
4z3 + 9z4 + · · · )−1 up to order 4.

◦ With b = −z2 − 4z3 − 9z4 − · · · we see that the inverse of 1− b is

1 + b+ b2 + b3 + b4 + · · · = 1 + (−z2 − 4z3 − 9z4 − · · · ) + (−z2 − 4z3 − 9z4 − · · · )2 + (−z2 − 4z3 − 9z4)3 + · · ·
= (−z2 − 4z3 − 9z4 − · · · ) + (z4 + 8z5 + · · · ) + (−z6 + · · · ) + · · ·
= 1− z2 − 4z3 − 8z4 + · · · .

◦ Then up to order 5, we have f−1 = z(1− z2 − 4z3 − 8z4 + · · · ) = z − z3 − 4z4 − 8z5 + · · · .

• By computing the Laurent expansion of the inverse of the denominator, we can express any rational function
in z as a formal Laurent series (indeed, we can even express the quotient of any two Laurent series as another
Laurent series as long as the denominator is not zero).

• Example: Expand
1− 3z

z + z3
as a formal Laurent series up to order 5.
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◦ Using the inverse of z + z3 calculated above, we have

1− 3z

z + z3
= (1− 3z)(z + z3)−1 = (1− 3z)(z−1 − z + z3 − z5 + · · · )

= (z−1 − z + z3 − z5 + · · · ) + (−3 + 3z2 − 3z4 + 3z6 − · · · )

= z−1 − 3− z + 3z2 + z3 − 3z4 − z5 + · · · .

2.2 Convergence of Complex Power Series

• So far, we have discussed power series and Laurent series in z as purely formal objects. Our goal now is to
study power series as functions of the complex variable z, which amounts to �plugging in� a complex number
in for z.

◦ The main issue at hand is that for an arbitrary power series or Laurent series, the resulting series
expression may not converge for all (or even any) values z ∈ C.
◦ Therefore, we will �rst discuss convergence of sequences and series of complex numbers, and then we will
apply these results to analyze the convergence properties of power series and Laurent series.

2.2.1 Sequences and Series of Complex Numbers

• We begin with the de�nition of a convergent sequence of complex numbers. The de�nition is essentially the
same as for sequences of real numbers:

• De�nition: We say a sequence {an}n≥1 of complex numbers converges to the limit L, written limn→∞ an = L,
if for any ε > 0 there exists a positive integer N such that for all n ≥ N it is true that |an − L| < ε.

◦ A sequence converges (with no quali�er) if it converges to some limit L, and it fails to converge if there
exists no such L.

◦ As usual, the intuition is that the terms an approach L �arbitrarily closely� as n grows large.

◦ The above de�nition simply makes this notion precise: namely, for any �error amount� ε > 0, we can
always specify how far out N in the sequence we must go to ensure that all of the terms afterwards (i.e.,
with n ≥ N) are within the error amount of the limit L.

◦ Example: The sequence with an = 1/n for all n ≥ 1 converges to 0 as n→∞, since for any ε > 0, if we
take any integer N > 1/ε then for n ≥ N we have |an − L| = |1/n− 0| ≤ 1/N < ε as required.

◦ Example: The sequence with an = in for all n ≥ 1 does not converge, since the terms cycle among i,
−1, −i, 1 and so for ε = 1/2 there are no possible values of L and N with |an − L| < 1/2 for all n ≥ N ,
since by the triangle inequality we would have

√
2 = |an − an+1| ≤ |an − L|+ |L− an+1| < 1 and this is

impossible.

• There are many basic properties of convergence of sequences, some of which we record here:

• Proposition (Properties of Sequence Convergence): Suppose {an}n≥1 and {bn}n≥1 are complex sequences.

1. If limn→∞ an = La and limn→∞ bn = Lb, then limn→∞(an+ bn) = La+Lb, limn→∞(an− bn) = La−Lb,
limn→∞(anbn) = LaLb, and �nally if Lb 6= 0 then limn→∞(an/bn) = La/Lb.

2. If the sequence {an}n≥1 converges to L, then any subsequence (i.e., a sequence {af(n)}n≥1 for some
strictly increasing integer-valued function f(n)) also converges to L.

3. If f : R→ C is any function and limx→∞ f(x) = L, then limn→∞ f(n) exists and equals L.

4. We have limn→∞ an = x+ iy if and only if limn→∞Re(an) = x and limn→∞ Im(an) = y.

5. The function f : C→ C is continuous if and only if limn→∞ f(an) = f(limn→∞ an) for every convergent
sequence {an}n≥1.

6. The sequence {an}n≥1 converges if and only if for any ε > 0 there exists an N such that for all m,n ≥ N
it is true that |am − an| < ε. (A sequence with this latter property is called a Cauchy sequence.)
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◦ All of these results are natural analogues of the corresponding properties of real-valued sequences,
and are fairly direct applications of the de�nition of sequence convergence.

◦ We omit the proofs, but make some remarks: (1) establishes that limits of sequences have all of the
usual algebraic properties shared by limits of functions, and (3) establishes that we can compute
limits of sequences using properties of limits of functions.

◦ Also, (4) establishes that we can reduce any limit about complex sequences to a pair of real-valued
limits, while (5) establishes the so-called sequential de�nition of continuity (it is essentially another
form of the substitution rules for limits of functions).

◦ Finally, for (6): intuitively, a convergent sequence is one where the terms approach some �xed number
L, while a Cauchy sequence is one where the terms all eventually get close to one another. The point
of (6) is that these two notions are the same.

• For convenience we will also record the de�nition of when a sequence diverges to ∞, which we will use
occasionally later:

• De�nition: We say a sequence {an}n≥1 of complex numbers diverges to ∞ if for any A > 0 there exists a
positive integer N such that for all n ≥ N it is true that |an| > A.

◦ The intuition here is that a sequence diverges to ∞ if the absolute values of the terms an eventually
stay arbitrarily large as n grows large. (Unlike with sequences of real numbers, where we have separate
notions of diverging to +∞ and diverging to −∞, we do not generally make a distinction about the
�direction� in which the an tend toward ∞.)

◦ Example: The sequence with an = (1 + i)n diverges to ∞ as n → ∞ since |an| =
√
2
n
tends to ∞ as n

does.

◦ Note that a non-convergent sequence need not diverge to ∞: for example, the sequence with an = in

does not diverge to ∞ since |an| = 1 for all n.

• Our main interest is in discussing convergence of in�nite series of complex numbers. As usual we de�ne the
associated notions in the same way as for real series:

• De�nition: If {an}n≥1 is a sequence of complex numbers, for each integer k ≥ 1 we de�ne the kth partial sum

of the series to be Sk =
∑k
n=1 an = a1 + · · · + ak. We say the in�nite series

∑∞
n=1 an converges if the limit

of partial sums limk→∞
∑k
n=1 an converges, and in such a case we say the value of the series is the resulting

limit.

◦ Example: Suppose |z| < 1: we claim that the in�nite geometric series
∑∞
n=1 z

n−1 converges and has sum

1

1− z
. Its kth partial sum equals 1 + z + z2 + · · · + zk−1 =

1− zk

1− z
by the usual �nite geometric series

summation formula, and so for L =
1

1− z
we compute the di�erence |Sk − L| =

∣∣∣∣ zk

1− z

∣∣∣∣ = |z|k

|1− z|
which

approaches 0 as k →∞ because |z| < 1. Thus, the series converges and its sum is
1

1− z
as claimed.

◦ Example: The in�nite series
∑∞
n=1

1

n2 + n
converges and has sum 1, since its kth partial sum equals∑k

n=1

1

n2 + n
=
∑k
n=1

[
1

n
− 1

n+ 1

]
= [

1

1
− 1

2
] + [

1

2
− 1

3
] + · · ·+ [

1

k
− 1

k + 1
] = 1− 1

k + 1
which has limit

1 as k →∞.

• We have various fundamental properties of convergent series:

• Proposition (Properties of Series Convergence): Suppose
∑∞
n=1 an and

∑∞
n=1 bn are complex series.

1. If
∑∞
n=1 an converges, then limn→∞ an exists and is 0.

◦ Proof: Note by hypothesis the sequence of partial sums {Sn}n≥1 is a Cauchy sequence, which in
particular requires the di�erences Sn − Sn−1 between consecutive terms to tend to 0.

◦ But since Sn − Sn−1 = an this means limn→∞ an = 0 as claimed.
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2. (Linearity) If
∑∞
n=1 an = A and

∑∞
n=1 bn = B both converge, then

∑∞
n=1(an + bn) = A + B and∑∞

n=1 can = cA for any c ∈ C.
3. The series

∑∞
n=1 an converges to a sum x+iy if and only if

∑∞
n=1 Re(an) converges to x and

∑∞
n=1 Im(an)

converges to y.

◦ Proofs: Both (2) and (3) follow immediately from the corresponding properties of limits of sequences.

4. (Absolute Convergence) If
∑∞
n=1 |an| converges (in such a case we say the series converges absolutely),

then
∑∞
n=1 an converges.

◦ Proof: Let ε > 0. Since the partial sums S̃k =
∑k
n=1 |an| are Cauchy, there exists N such that∣∣∣S̃m − S̃n∣∣∣ < ε for all m > n ≥ N .

◦ Then for Sk =
∑k
n=1 an, by the triangle inequality we have |Sm − Sn| = |an+1 + · · ·+ am| ≤ |an+1|+

· · ·+ |am| = S̃m − S̃n < ε, and so the partial sums of {an}n≥1 are also Cauchy.

2.2.2 Convergent Power Series

• Our primary goal is to construct functions as power series, so in order to connect our previous discussion of
formal power series to power series as functions, we need to analyze the convergence of power series.

◦ Explicitly, given a formal power series f =
∑∞
n=0 anz

n and a value z0 ∈ C, we would now like to (attempt
to) �plug in z0� to the formal power series.

◦ Of course, the resulting series may not converge. If we denote by S the set of points where the series does
converge, we may then view f as a function f : S → C de�ned by the series expansion f(z0) =

∑∞
n=0 anz

n
0 .

◦ All of this works just as well if f is a formal Laurent series, except for the fact that a formal Laurent
series of negative order will not be de�ned when z0 = 0 since the resulting series expansion would require
dividing by zero. (For example, what would z−1 + 2 mean when z = 0?)

◦ However, since a Laurent series only involves �nitely many terms of negative order, the convergence will
be una�ected for z0 6= 0 if we discard those terms, so we really only need to analyze convergence of power
series.

• Our main result is that every power series has an associated disc of convergence, inside which the series
converges absolutely and outside which the series diverges.

• Proposition (Convergent Power Series): Suppose
∑∞
n=0 anz

n is a formal power series and let z0 ∈ C.

1. If
∑∞
n=0 anz

n converges for z = z0, then it converges absolutely for all z1 with |z1| < |z0|.
◦ Proof: If z0 = 0 the result is trivial so assume |z0| is positive and that |z1| < |z0|. Since the series∑∞

n=0 anz
n
0 converges, the individual terms must tend to zero, meaning that limn→∞ anz

n
0 = 0.

◦ By the de�nition of limit with ε = 1, there exists some N such that for all n ≥ N we have |anzn0 | ≤ 1,
so that and thus |an| ≤ |z0|−n.

◦ But then

∞∑
n=N

|anzn1 | ≤
∞∑
n=N

∣∣∣∣z1z0
∣∣∣∣n, and this last series is a convergent geometric series because

∣∣∣∣z1z0
∣∣∣∣ <

1. This implies the original series converges absolutely, as claimed.

2. There exists a nonnegative number R (which can equal∞), the radius of convergence of the power series∑∞
n=0 anz

n, such that the series converges absolutely for |z| < R and diverges for |z| > R.

◦ Proof: Consider the set of nonnegative real numbers S = {|z| :
∑∞
n=0 anz

n converges}. Note 0 ∈ S
so S is nonempty.

◦ If S has no upper bound, then by (1) applied to an increasing sequence of values of |z|, the series
converges absolutely for all z ∈ C, in which case R =∞.

◦ Otherwise, S is bounded above. By the least upper bound axiom of the real numbers2 S has some
least upper bound R. If R = 0, then the series converges only when z = 0.

2We say a real number b is an upper bound for a set S of real numbers if x ≤ b for all x ∈ S. A least upper bound for a set S is a
number l that is an upper bound for S such that l ≤ b for any other upper bound of S. The least upper bound axiom states that if S
is a nonempty subset of R that has an upper bound, then S has a least upper bound.
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◦ Otherwise, if R > 0, then for any ε > 0 there exists some r ∈ S with R − ε < r ≤ R such that the
series converges for some z0 with |z0| = r (otherwise, R − ε would be a least upper bound for S).
Then by (1), the series converges absolutely for all |z1| < R − ε < r. Since this holds for any ε > 0
we conclude that the series converges absolutely for all |z| < R as claimed.

◦ Finally, by the de�nition of R, the series will diverge whenever |z| > R: otherwise, R would not be
the least upper bound of the set of values of |z| where the series converges.

3. If the series
∑∞
n=0 anz

n has radius of convergence R > 0, then lim supn→∞ |an|
1/n ≤ 1/R.

◦ Note that if {bn} is any sequence, then lim supn→∞ bn is an abbreviation for limn→∞[supk≥n bk]
where supk≥n bk is the least upper bound of the set {bn, bn+1, bn+2, . . . }.

◦ The least upper bound is either �nite (if the sequence is bounded) or∞ (if not). The limit supremum

given above is, roughly speaking, capturing the idea that if the values |an|1/n are bounded above,
then the radius of convergence is positive and at least the reciprocal of the �limiting� least upper
bound.

◦ Proof: Suppose that
∑∞
n=0 anz

n has radius of convergence R > 0, and let 0 < r < R.

◦ By (2), the series
∑∞
n=0 |an| rn converges, so its terms must go to zero.

◦ This means limn→∞ |an| rn = 0, and so by the de�nition of limit there exists some N such that

|an| rn ≤ 1 hence |an|1/n ≤ 1/r for all n ≥ N .

◦ This means 1/r is an upper bound for the set {|an|1/n}n≥N hence also for all of the sets {|an|1/n}n≥M
for any M ≥ N .

◦ Therefore, lim supn→∞ |an|
1/n ≤ 1/r. Since this holds for any 0 < r < R we conclude in fact that

lim supn→∞ |an|
1/n ≤ 1/R. This establishes the result when R is �nite.

◦ In the case R = ∞, we may apply the argument above to an increasing sequence of values of R to

conclude that lim supn→∞ |an|
1/n

= 0.

4. If lim supn→∞ |an|
1/n

= t is �nite, then the series
∑∞
n=0 anz

n is absolutely convergent for |z| < 1/t.

◦ Proof: Suppose that lim supn→∞ |an|
1/n

= t for some t > 0 and let t′′ > t′ > t.

◦ By the de�nition of the limsup, there exists some N such that for all n ≥ N we have |an|1/n ≤ t′ so
that |an| ≤ (t′)n.

◦ Then for |z| < 1/t′′, the series tail
∑∞
n=N |anzn| ≤

∑∞
n=N

( t′
t′′
)n

is bounded by a convergent geo-

metric series, and so
∑∞
n=N anz

n and hence
∑∞
n=0 anz

n converges absolutely for |z| < 1/t′′.

◦ Since this holds for any t′′ > t, taking t′′ → t shows that the series converges absolutely for all
|z| < 1/t.

5. The radius of convergence R of
∑∞
n=0 anz

n is given by R = 1/ lim supn→∞ |an|
1/n

(where if the limsup

is 0 then R = ∞ and if the limsup is ∞ then R = 0). In particular, if limn→∞ |an|1/n exists then the
value of the limit is 1/R.

◦ We note that the second part is simply the standard root test applied to the series
∑∞
n=0 anz

n. The
point of this result is that we can also handle the situation where the limit required for the root test

does not exist, but the terms |an|1/n are still bounded.

◦ Proof: The �rst part follows by combining (3) and (4). The second part follows by noting that if

limn→∞ |an|1/n exists then the value of the limit equals lim supn→∞ |an|
1/n

.

• We can use the explicit formula in (5) to compute the radius of convergence R of various power series.

◦ Inside the radius of convergence the series converges absolutely and outside it will diverge (indeed, it will
diverge to ∞, since the absolute values of the terms will not go to zero).

◦ However, the behavior on the boundary circle |z| = R can be quite complicated: the series may converge
at some points but not others.

◦ When computing the radius of convergence, it is often useful to use the fact that limn→∞ n1/n = 1 along
with the simple estimates (n/e)n < n! < nn, the upper bound following from noting that each term in

n! is at most n and the lower bound following from observing that en =
∑∞
k=0

kn

k!
is greater than its nth
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term
nn

n!
. One may also use the more precise Stirling's approximation n! ≈ nne−n

√
2πn, in which the

ratio between the two quantities approaches 1 as n→∞.

• Example: Find the radius of convergence of
∑∞
n=0 z

n and all values of z for which it converges.

◦ We have an = 1 for all n, so the limit limn→∞ |an|1/n exists and equals 1. Thus, the radius of convergence

is 1 , meaning that the series converges for |z| < 1 and diverges for |z| > 1.

◦ It remains to analyze the situation where |z| = 1. In this case we see that the terms all have |zn| = 1, so
since the terms do not have limit 0, the series does not converge for any of these values of z.

◦ We conclude that the series converges for |z| < 1 and diverges for |z| ≥ 1.

• Example: Find the radius of convergence of
∑∞
n=0

n

(2 + i)n
zn and all values of z for which it converges.

◦ We have an =
n

(2 + i)n
for all n, so limn→∞ |an|1/n = limn→∞

n1/n√
5

=
1√
5
. Thus, the radius of

convergence is
√
5 , meaning that the series converges for |z| <

√
5 and diverges for |z| >

√
5.

◦ When |z| =
√
5, the terms have

∣∣∣∣ n

(2 + i)n
zn
∣∣∣∣ = n

√
5
n

√
5
n = n, so since the terms do not have limit 0, the

series does not converge for any of these values of z.

◦ We conclude that the series converges for |z| <
√
5 and diverges for |z| ≥

√
5.

• Example: Find the radius of convergence of
∑∞
n=1

zn

2nn2
and all values of z for which it converges.

◦ We have an =
1

2nn2
for all n, so limn→∞ |an|1/n = limn→∞

1

2
(n1/n)−2 =

1

2
. Thus, the radius of

convergence is 2 , meaning that the series converges for |z| < 2 and diverges for |z| > 2.

◦ When |z| = 2, the terms have absolute value

∣∣∣∣ zn2nn2

∣∣∣∣ = 1

n2
, so since

∑∞
n=1

1

n2
is �nite (by comparison to

the integral
´∞
1

dx

x2
or to the series 1+

∑∞
n=2

1

n2 − n
= 2), the series converges absolutely for all |z| = 2.

◦ We conclude that the series converges for |z| ≤ 2 and diverges for |z| > 2.

• Example: Find the radius of convergence of
∑∞
n=0

zn

n!
and all values of z for which it converges.

◦ We have an =
1

n!
for all n, so the limit limn→∞ |an|1/n = limn→∞

1

(n!)1/n
= 0 since (n!)1/n > n/e for

each n.

◦ Thus, the radius of convergence is ∞ , meaning that the series converges for all z ∈ C.

• Example: Find the radius of convergence of
∑∞
n=0 n!z

n and all values of z for which it converges.

◦ We have an = n! for all n, so the limit limn→∞ |an|1/n = limn→∞(n!)1/n = ∞ since (n!)1/n > n/e for
each n.

◦ Thus, the radius of convergence is 0 , meaning that the series converges only for z = 0.

• There are many examples of series with more unusual formulas for the coe�cients, and their behaviors can
be a bit more exotic:

• Example: Analyze the convergence of the power series
∑∞
n=0

[
z2n

2n
+
z2n+1

3n

]
= 1+ z +

z2

2
+
z3

3
+
z4

4
+
z5

9
+

z6

8
+
z7

27
+ · · · .
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◦ Note that the limit limn→∞ |an|1/n does not exist, since |an|1/n =
1√
2
when n is even but |an|1/n =

1

3n/(2n+1)
→ 1√

3
when n is odd.

◦ However, the limsup still exists and is
1√
2
because supk≥n |ak|

1/k
=

1√
2
for all k ≥ 1, and so limn→∞ supk≥n |ak|

1/k
=

1√
2
.

◦ Thus, the radius of convergence is
√
2 , so the series converges absolutely for |z| <

√
2 and diverges for

|z| >
√
2.

◦ Remark: The idea here is that this series alternates taking terms from the series
∑∞
n=0

z2n

2n
(which has

radius of convergence
√
2) with taking terms from the series

∑∞
n=0

z2n+1

3n
(which has radius of convergence

√
3). Its overall behavior is controlled by the series with the smaller radius of convergence.

• Example: Analyze the convergence of the power series
∑∞
n=1

z2
n

n
= z2 +

z4

2
+
z8

3
+ · · · .

◦ Note that the limit limn→∞ |an|1/n does not exist, since |an|1/n = n−1/2
n

when n is a power of 2 and

|an|1/n = 0 otherwise. However, the limsup still exists since we may simply ignore the zero terms and
compute limn→∞ n−1/2

n

= 1.

◦ Thus, the radius of convergence is 1, so the series converges absolutely for |z| < 1 and diverges for |z| > 1.

◦ The convergence behavior of this series on the unit circle |z| = 1 turns out to be rather erratic. If

z = e2πai/2
k

is a 2kth root of unity, then z2
k

= 1 and so all of the higher 2nth powers of z will also be 1.

Then the tail of the series
∑∞
n=1

z2
n

n
is
∑∞
n=k

1

n
, which diverges to ∞.

◦ Thus, we see that the series diverges on all of the points of the form z = e2πai/2
k

for some k ≥ 1. This set
of points is dense on the unit circle, in the sense that any point on the circle is a limit along a sequence of
such points (this follows simply because we may take a sequence of rational numbers of the form ak/2

k

converging to an arbitrary number θ: then e2πiaki/2
k → eiθ)

◦ On the other hand, it can also be shown using Fourier analysis3 that there is a dense set of points on the
unit circle for which the series converges.

• We can also describe how the various algebraic operations on power series a�ect their convergence:

• Proposition (Operations on Power Series): Suppose that f =
∑∞
n=0 anz

n and g =
∑∞
n=0 bnz

n are power series
whose radii of convergence are both at least R > 0.

1. For |z| < R, the series for cf for any c ∈ R, and for f + g and f − g, all converge, and (cf)(z) = c · f(z),
(f + g)(z) = f(z) + g(z), and (f − g)(z) = f(z)− g(z).
◦ Proof: For cf we have limn→∞

∑∞
k=0(cak)z

k = limn→∞[c ·
∑∞
k=0 akz

k] = c · limn→∞[
∑∞
k=0 akz

k] =
c · f(z) since the latter limit exists.

◦ So we see that cf(z) converges to the claimed value c · f(z). Likewise, for f + g and f − g we simply
apply the corresponding limit properties to see they converge to their claimed values.

2. For |z| < R, the series for fg converges and (fg)(z) = f(z)g(z).

◦ Proof: As a formal power series we have fg =
∑∞
n=0 cnz

n where cn =
∑n
k=0 akbn−k. Let r be

arbitrary with 0 < r < R.

◦ From our characterization of the radius of convergence, we know that lim supn→∞ |an|
1/n ≥ 1/R >

1/r so there exists N1 such that for all n ≥ N1 we have |an|1/n ≤ 1/r meaning that |an| ≤ 1/rn.

Likewise since lim supn→∞ |bn|
1/n ≥ 1/r there exists N2 such that for all n ≥ N2 we have |bn| ≤ 1/rn.

3Speci�cally, Carleson's theorem (applied to an appropriate function f) implies that if
∑∞

n=0 a
2
n converges then

∑∞
n=0 ane

inx

converges for almost all x in [0, 2π], in the sense that the Lebesgue measure of the set of points where the series diverges is equal to 0.
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◦ Taking N = max(N1, N2) yields that |an| , |bn| ≤ 1/rn for all n ≥ N . By accounting for the behavior
of the lower terms, this means there exist constants A and B such that |an| ≤ A/rn and |bn| ≤ B/rn
for all n.

◦ Then |cn| = |
∑n
k=0 akbn−k| ≤

∑n
k=0 |ak| |bn−k| ≤

∑n
k=0(AB/r

n) = (n+ 1)AB/rn, and so |cn|1/n ≤
(n+ 1)1/nA1/nB1/n/r.

◦ Taking the limsup yields lim supn→∞ |cn|
1/n ≤ 1/r , whence the radius of convergence of fg is at

least r. Since this holds for any 0 < r < R the radius of convergence of fg is at least R.

◦ As a consequence we also see that
∑∞
n=0[

∑n
k=0 |ak| |bn−k|]rn converges.

◦ For the actual value, let fn(z) =
∑n
k=0 anz

n, gn(z) =
∑n
k=0 bnz

n, and pn(z) =
∑n
k=0 cnz

n. Then
the only terms in fn(z)gn(z)− pn(z) are those of order at least n+ 1.

◦ Then limn→∞ |fn(z)gn(z)− pn(z)| ≤ limn→∞
∑∞
j=n+1[

∑n
k=0 |ak| |bj−k|]|z|n, but this limit converges

to 0 since it is the tail of the convergent series
∑∞
n=0[

∑n
k=0 |ak| |bn−k|]rn from above.

◦ This implies limn→∞[fn(z)gn(z) − pn(z)] = 0, hence (fg)(z) = limn→∞ pn(z) = limn→∞ fn(z) ·
limn→∞ gn(z) = f(z)g(z) as desired.

3. If f has nonzero constant term, then the radius of convergence for f−1 is positive.

◦ Proof: By rescaling we may assume that f has constant term 1.

◦ Now, since f =
∑∞
n=0 anz

n has a positive radius of convergence, by our results above there exists a

�nite constant A such that |an|1/n ≤ A for all su�ciently large n. By increasing A as needed, we

may in fact assume |an|1/n ≤ A hence |an| ≤ An for all n ≥ 1.

◦ Then f−1 =
∑∞
n=0 bnz

n where b0 = 1 and bn = −
∑n
k=1 akbn−k for each n ≥ 1.

◦ Hence, |bn| = |
∑n
k=1 akbn−k| ≤

∑n
k=1 |ak| |bn−k| =

∑n
k=1A

k |bn−k|.
◦ Now we show that |bn| ≤ 2n−1An for each n > 0 by strong induction on n. The base case n = 1 is
trivial since |b1| ≤ A.
◦ For the inductive step suppose |bk| ≤ 2k−1Ak for each k ≤ n. Then |bn+1| ≤ A |bn| + A2 |bn−1| +
· · ·+An+1 |b0| = A · 2n−1An+A2 · 2n−2An−1 + · · ·+An+1 = (2n−1 +2n−2 + · · ·+1)An+1 < 2nAn+1

as required.

◦ Finally, we see that for |z| < 1/(3A), we have
∑∞
n=0 |bnzn| <

∑∞
n=0(3A)

−n(2nAn+1) =
∑∞
n=0A(2/3)

n =
3A. Thus the series for f−1 converges absolutely for |z| < 1/(3A), and thus has a positive radius of
convergence.

• In general the radius of convergence of f−1 can be much smaller (or larger) than that of f and cannot be
determined using only the radius of convergence of f .

◦ For example, if r > 0 then for f = 1− rz the radius of convergence is ∞, but for f−1 =
∑∞
n=0 r

nzn the
radius of convergence is 1/r, which can be arbitrarily close to 0.

◦ On the other hand, for f =
∑∞
n=0(n+ 1)zn the radius of convergence is 1 but for f−1 = 1− 2z + z2 the

radius of convergence is ∞.

◦ However, for the slightly di�erent f =
∑∞
n=0(n + 2)zn the radius of convergence is still 1, but now

f−1 = −z +
∑∞
n=0

zn

2n+1
has radius of convergence 2.

2.2.3 Continuity and Di�erentiability of Power Series

• We now investigate continuity and di�erentiability of power series. Our main goal is to show that a power series
de�nes a di�erentiable function inside its radius of convergence, which in particular allowing us to construct
holomorphic functions as power series. To establish these results, however, we require some preliminary facts
about uniform convergence of functions.

◦ To give some brief motivation, suppose that {fn}n≥1 is a sequence of functions on a set S that converges
pointwise as n→∞, meaning that limn→∞ fn(z) converges for each z ∈ S.
◦ Then, even if each of the functions fn is continuous, the resulting limit function f(z) = limn→∞ fn(z)
need not be continuous: for example, if we take fn(x) = xn on the interval [0, 1], then limn→∞ fn(x) ={
0 for 0 ≤ x < 1

1 for x = 1
is discontinuous.
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◦ The issue, broadly speaking, is that the functions fn do not converge uniformly to f , in the sense that
the maximum value of |fn(x)− f(x)| for x ∈ [0, 1] does not tend to 0 as n→∞.

• De�nition: If S is a set of complex numbers, a sequence of complex functions {fn}n≥1 converges uniformly to f
on S if for any ε > 0 there exists N such that |fn(z)− f(z)| < ε for all z ∈ S and all n ≥ N . We also say a
series

∑∞
n=0 fn converges uniformly if its partial sums converge uniformly.

◦ Notice that the de�nition is more restrictive than requiring mere pointwise convergence, whose de�nition
is as follows: for any ε > 0 and any z ∈ S there exists N such that |fn(z)− f(z)| < ε for all n ≥ N .

◦ The di�erence is that uniform convergence requires (for any ε > 0) giving a single uniform choice of N
that works for all z ∈ S at once, rather than allowing di�erent values of N for di�erent points z ∈ S.
◦ In essence, the idea is that allowing di�erent values of N for di�erent points z ∈ S allows the convergence
to vary in speed in S, to the extent that we can lose continuity after passing to the limit function f .

◦ In contrast, insisting on uniform convergence turns out to force the limit function f to be continuous:

• Proposition (Uniform Convergence of Functions): Suppose R is a complex region and the complex functions
{fn}n≥1 are continuous on R.

1. Suppose that the sequence {fn}n≥1 converges uniformly to the function f on R. Then f is continuous
on R.

◦ Proof: Let α ∈ R. We must show that limz→α f(z) = f(α), so let ε > 0. We must �nd δ > 0 such
that |f(z)− f(α)| < ε for all |z − α| < δ.

◦ By hypothesis, the functions fn converge uniformly to f onR, so there existsN such that |fN (z)− f(z)| <
ε/3 for all z ∈ R. In particular this holds for z = α so we also have |fN (α)− f(α)| < ε/3.

◦ Also, since fN is continuous, there exists δ > 0 such that |fN (z)− fN (α)| < ε/3 for all z with
|z − α| < δ.

◦ Then by the triangle inequality, for all z with |z − α| < δ we have |f(z)− f(α)| ≤ |f(z)− fN (z)|+
|fN (z)− fN (α)|+ |fN (α)− f(α)| < ε/3 + ε/3 + ε/3 = ε, as required.

◦ Remark: This approach is a fairly common technique and is frequently called an �ε/3 argument�.

2. Suppose that the sequence {fn}n≥1 is Cauchy, meaning that for any ε > 0 there exists N such that
|fn(z)− fm(z)| < ε for all m,n ≥ N and all z ∈ R. Then {fn}n≥1 converges uniformly to a function f .

◦ Proof: First note that for any �xed z ∈ R, the sequence {fn(z)}n≥1 is Cauchy, so it converges to a
limit f(z). We now show that the convergence of {fn}n≥1 to the resulting function f is uniform.

◦ Let ε > 0. Then by hypothesis there exists N such that |fn(z)− fm(z)| < ε/2 for all m,n ≥ N and
all z ∈ R.
◦ For a �xed n ≥ N and z ∈ R, because limm→∞ fm(z) = f(z) there exists an m (depending on z, n, ε)
such that |fm(z)− f(z)| < ε/2.

◦ Then by the triangle inequality, we have |f(z)− fn(z)| ≤ |f(z)− fm(z)| + |fm(z)− fn(z)| < ε/2 +
ε/2 = ε. Since this holds for any ε and any z ∈ R, the functions {fn}n≥1 converge uniformly to f as
required.

3. If {fn}n≥1 is Cauchy, then {fn}n≥1 converges to a continuous function f on R.

◦ Proof: This is immediate from (1) and (2).

• We can now apply these results to establish that power series are continuous inside of their radius of conver-
gence, and also that a function is uniquely determined by its power series:

• Theorem (Continuity and Uniqueness of Power Series): Suppose f(z) =
∑∞
n=0 anz

n is a power series with
radius of convergence R > 0.

1. For any 0 < r < R, the series f(z) =
∑∞
n=0 anz

n converges absolutely and uniformly on the region
|z| ≤ r.
◦ Proof: We have previously shown that if f has radius of convergence R, then

∑∞
n=0 anz

n converges
absolutely for |z| < R, so in particular it converges absolutely on that region.
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◦ For the uniformity, we will show that the sequence of partial sums fn =
∑n
k=0 akz

k is Cauchy
on |z| ≤ r. Suppose for convenience that n ≤ m: then for |z| ≤ r we have |fm(z)− fn(z)| =∣∣∑m

k=n+1 akz
k
∣∣ ≤∑m

k=n+1

∣∣akzk∣∣ ≤∑∞k=n+1 |ak| rk.
◦ But because f(z) converges absolutely at z = r (since r < R), the tail sum

∑∞
k=n+1 |ak| rk tends to

zero as n→∞, which is to say, there exists some N such that
∑∞
k=N+1 |ak| rk < ε.

◦ Then for N ≤ n ≤ m we have |fm(z)− fn(z)| < ε for all |z| ≤ r, so the sequence is Cauchy hence
converges uniformly by our results above.

◦ Remark: We will note that the series for f need not converge uniformly on |z| < R: for example,
f(z) =

∑∞
n=0 z

n has radius of convergence 1, but the convergence is not uniform on |z| < 1 since
f(z)→∞ as z → 1 (so there is no uniform upper bound on the tails of the series as z → 1).

2. (Continuity) The function f(z) is continuous for all |z| < R.

◦ Proof: Take any r with |z| < r < R. Then z lies in the region |z| ≤ r and so f is continuous at z by
(1) and the fact that a uniformly-convergent limit of continuous functions is continuous.

3. If f(z) =
∑∞
n=0 anz

n is a nonzero power series with f(0) = 0, then there exists some s > 0 such that
f(z) 6= 0 for all z with 0 < |z| < s.

◦ The point of this result is that the zero at z = 0 of the power series f(z) is �isolated�: namely, that
there are no other zeroes of f within some positive distance of z = 0.

◦ Equivalently, by taking the contrapositive, if f(z) is a convergent power series with a sequence
{zn}n≥1 with f(zn) = 0 and zn 6= 0 for each n such that zn → 0, then in fact f(z) must be the zero
series.

◦ Proof: Suppose f has order d ≥ 1, so that f(z) = adz
d+
∑∞
n=d+1 anz

n = adz
d[1+

∑∞
n=1 bnz

n] where
bn = ad+n/ad and ad 6= 0.

◦ Then the series g(z) =
∑∞
n=1 bnz

n has the same radius of convergence R > 0, so by (2) it de�nes
a continuous function with g(0) = 1 (since its constant term is 1). In particular, there exists some
s > 0 such that |g(z)| > 1/2 for all |z| < s.

◦ But then for 0 < |z| < s the function f(z) = adz
dg(z) is nonzero since none of ad, z

d, and g(z) is
zero.

4. (Uniqueness) If f(z) and g(z) are power series with radii of convergence ≥ R, and f(zn) = g(zn) for an
in�nite sequence {zn}n≥1 of nonzero complex numbers with limit 0, then in fact f(z) and g(z) are equal
as power series.

◦ Proof: Suppose f(z) 6= g(z) and apply (3) to f(z) − g(z): then there exists some s > 0 such that
f(z)− g(z) 6= 0 for all z with 0 < |z| < s.

◦ But this is directly contradicted by the assumption that the limit zn → 0, since there must exist
terms zn with 0 < |zn| < s.

◦ Therefore, f(z) = g(z) as power series.

• Finally, we tackle di�erentiation and antidi�erentiation of power series: we will show that we can calculate
derivatives and antiderivatives by di�erentiating and antidi�erentiating termwise.

• Theorem (Derivatives and Antiderivatives of Power Series): Suppose f(z) =
∑∞
n=0 anz

n is a power series with
radius of convergence R > 0.

1. The termwise derivative series
∑∞
n=0 nanz

n−1 has radius of convergence R.

◦ Proof: By our results on the radius of convergence we know that lim supn→∞ |an|
1/n

= 1/R.

◦ But then since limn→∞ |n|1/n = 1, we also have lim supn→∞ |nan|
1/n

= lim supn→∞ |an|
1/n

= 1/R,
so the series

∑∞
n=0 nanz

n−1 also has radius of convergence R.

2. The function f(z) is holomorphic on the region |z| < R and its derivative is f ′(z) =
∑∞
n=0 nanz

n−1.

◦ Proof: Suppose |z| < R and let δ > 0 be such that |z|+ δ < R (e.g., δ = (R− |z|)/2).

◦ In computing the limit of the di�erence quotient limh→0
f(z + h)− f(z)

h
we may assume |h| < δ so

that f converges absolutely at z and at z + h.
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◦ For such h we have f(z + h) =
∑∞
n=0 an(z + h)n =

∑∞
n=0 an(z

n + nzn−1h + h2pn(z, h)) where
pn(z, h) =

∑n
k=2

(
n
k

)
hk−2zk−h.

◦ We have |pn(z, h)| =
∣∣∑n

k=2

(
n
k

)
hk−2nk−h

∣∣ ≤ ∑n
k=2

(
n
k

)
|h|k−2 |z|k−h ≤

∑n
k=2

(
n
k

)
δk−2 |z|n−k =

pn(|z| , δ).
◦ Therefore we have f(z + h)− f(z)− h

∑∞
n=0 nanz

n−1 = h2
∑∞
n=0 anpn(z, h).

◦ Since the three series on the left-hand side all converge absolutely (using (1) for
∑∞
n=0 nanz

n−1),
the series

∑∞
n=0 anpn(z, h) on the right-hand side also converges absolutely. In particular this means∑∞

n=0 |an| pn(|z| , δ) is some �nite number M .

◦ Then

∣∣∣∣f(z + h)− f(z)
h

−
∑∞
n=0 nanz

n−1
∣∣∣∣ = |h| · |∑∞n=0 pn(z, h)| ≤ |h| ·

∑∞
n=0 |an| |pn(z, h)| ≤ |h| ·∑∞

n=0 anpn(|z| , δ) =M |h|.

◦ But now sinceM |h| → 0 as h→ 0, we see that the limit limh→0

[
f(z + h)− f(z)

h
−
∑∞
n=0 nanz

n−1
]

exists and equals zero.

◦ This means f ′(z) exists and f ′(z) = limh→0
f(z + h)− f(z)

h
=
∑∞
n=0 nanz

n−1, as claimed.

3. The function f(z) is in�nitely di�erentiable and its higher derivatives f (n) all have radius of convergence
R. Furthermore, the values of the derivatives at z = 0 determine the coe�cients an via f (n)(0) = n!an.

◦ Proof: The �rst statement follows by a trivial induction using (2). For the coe�cients, we simply
observe that the constant term of the series for f (n) is obtained by di�erentiating the term anz

n a
total of n times, yielding n!an.

4. The termwise antiderivative series
∑∞
n=0

an
n+ 1

zn+1 has radius of convergence R.

◦ Proof: As with the derivative series, since lim supn→∞ |an|
1/n

= 1/R and since limn→∞

∣∣∣∣ 1

n+ 1

∣∣∣∣1/n =

1, we have lim supn→∞

∣∣∣∣ an
n+ 1

∣∣∣∣1/n = lim supn→∞ |an|
1/n

= 1/R, so the series
∑∞
n=0

an
n+ 1

zn+1 also

has radius of convergence R.

5. The function f(z) is antidi�erentiable on |z| < R with an antiderivative given by F (z) =
∑∞
n=0

an
n+ 1

zn+1.

◦ Proof: The termwise antiderivative series F (z) is holomorphic for |z| < R by (2) and (3) and its
derivative is easily seen to be f(z) by the di�erentiation formula in (2).

2.2.4 Analytic Functions and Power Series

• So far, we have only discussed power series of the form
∑∞
n=0 anz

n, which will converge on an open disc of
the form |z| < R where R is the radius of convergence: we can think of this series as being centered at the
(actual) center z = 0 of the open disc.

◦ However, just as with Taylor series for real-valued functions, many complex functions are more naturally
expressed as a power series centered at some other point z = z0 rather than z = 0.

◦ We can easily adapt our analysis so far by making the simple translation z 7→ z − z0 (thus shifting z0 to
0) to obtain power series of the form f =

∑∞
n=0 an(z − z0)n centered at z = z0.

• All of our analysis so far also applies to these recentered power series: for example, the power series f =∑∞
n=0 an(z− z0)n possesses a radius of convergence R satisfying 1/R = lim supn→∞ |an|

1/n
with the property

that f converges absolutely on the open disc |z − z0| < R and diverges for |z − z0| > R.

◦ In other words, we can calculate the radius of convergence in exactly the same manner as for a series
centered at zero.

◦ Example: The power series
∑∞
n=0(z − 1)n centered at z = 1 has radius of convergence 1, so it converges

absolutely for |z − 1| < 1 and diverges for |z − 1| > 1.
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◦ Example: The power series
∑∞
n=0

(z − 3i)n

2n
centered at z = 3i has radius of convergence 2, so it converges

absolutely for |z − 3i| < 2 and diverges for |z − 3i| > 2.

◦ Example: The power series
∑∞
n=0

(z + i)n

n!
centered at z = i has radius of convergence∞, so it converges

absolutely on all of C.

• We can make all of this precise as follows:

• De�nition: If f is a complex function, we say f is analytic at z0 if there exists a power series expansion∑∞
n=0 an(z − z0)n and some r > 0 such that the series converges to the value f(z) for all z with |z − z0| < r.

If U is an open region, we say f is analytic on U if f is analytic at every point in U .

◦ In other words, an analytic function is one that can be written as an absolutely convergent power series
centered around any point z0 in its domain. We think of f as being de�ned �locally�, i.e., near z0, by
that power series.

◦ Example: Polynomials are analytic on every open set U , since we may explicitly change variables to
obtain the desired �series� expansion.

◦ If f is analytic on U , then each of the power series expansions at z0 ∈ U are uniquely determined: if we
had two di�erent series expansions, their di�erence would be zero on an open disc centered at z0, but
this requires the series to be identical by our uniqueness result earlier.

◦ We can see immediately from our results on convergence that if f and g are analytic on U , then so are
f + g, f − g, fg, and that f/g is analytic on the subset of U where g(z) 6= 0.

◦ As a consequence, we see that rational functions are also analytic, since they are quotients of polynomials.

• Furthermore, we see from our results on derivatives that if f is analytic on U , then f is holomorphic on U .

◦ In the next chapter, we will prove that the converse is also true: if f is holomorphic on U , then f is
analytic on U .

◦ Interestingly, the analogous statement (di�erentiable implies analytic) is false for real-valued functions
on the real line, even if we strengthen the hypothesis to �in�nitely di�erentiable�!

◦ For example, the function f(x) = e−1/x
2

for x 6= 0 with f(0) = 0 is in�nitely di�erentiable at 0 (all its
derivatives are zero) but it is not analytic at 0 since it does not equal its power series expansion (the
zero series) on any open interval centered at 0.

• Although we have de�ned analyticity, we have not actually shown yet that any particular power series are
analytic other than rational functions.

◦ To do this, we need to describe how to �recenter� a power series centered at some point z = z0 as a series
centered at a di�erent point z = z1.

◦ A natural way to try to do this is to expand out the original series in terms of the new variable z − z1
and then collect terms.

◦ For simplicity, suppose that we want to rewrite f(z) =
∑∞
n=0 an(z − z0)n as a series centered at z = 0

(the general case can be obtained by a translation from this one).

◦ The obvious approach is simply to expand out all of the powers (z − z0)n formally and then add up the
resulting partial sums, but this rapidly becomes messy, since each of the resulting coe�cients ends up
being an in�nite sum.

◦ A more e�cient approach is to use the formula for the coe�cients of a series in terms of the values of the
derivative: with f(z) =

∑∞
n=0 an(z−z0)n we compute f (k)(z) =

∑∞
n=0 ann(n−1) · · · (n−k)(z−z0)n−k−1

whence f (k)(0) =
∑∞
n=0 ann(n− 1) · · · (n− k)(−z0)n−k−1.

◦ In particular, we can see, for example, that the constant term in the resulting series is f(0) =
∑∞
n=0 an(−z0)n,

which only makes sense when f(0) converges.

◦ However, the calculations above do presuppose that the desired series expansion actually exists, so we will
need to show that as well. But in fact, as long as we insist that z = 0 lies inside the disc of convergence
for f(z), we can show that these formal calculations are valid.
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• Proposition (Local Series Expansions): Suppose f(z) =
∑∞
n=0 anz

n is a power series with radius of convergence
R. Then f is analytic on the region with |z| < R.

◦ By translating we also see that a power series
∑∞
n=0 an(z− z1)n with radius of convergence R is analytic

for |z − z1| < R.

◦ Proof: Let z0 be a point in the disc, so that |z0| < R, and choose s > 0 so that |z0| + s < R: we will
construct a power series expansion

∑∞
n=0 bn(z − z0)n that converges to f(z) for |z − z0| < s.

◦ We have zn = [z0+(z−z0)n] =
∑n
k=0

(
n
k

)
zn−k0 (z−z0)k so f(z) =

∑∞
n=0 anz

n =
∑∞
n=0 an

[∑n
k=0

(
n
k

)
zn−k0 (z − z0)k

]
.

◦ Since f converges absolutely for all |z| < R (and so in particular for all |z − z0| < s since this smaller
disc is contained completely inside |z| < R) taking z̃ = |z|+ |z − z0| in the absolute value series, we see

that the series
∑∞
n=0 |an| (|z|+ |z − z0|)n =

∑∞
n=0 |an|

[∑n
k=0

(
n
k

)
|z0|n−k |z − z0|k

]
converges.

◦ But this means the expression
∑∞
n=0 an

[∑n
k=0

(
n
k

)
zn−k0 (z − z0)k

]
converges absolutely, and so we may

switch the order of summation without changing the value.

◦ This yields f(z) =
∑∞
k=0

[∑∞
n=k an

(
n
k

)
zn−k0

]
(z−z0)k and so f(z) =

∑∞
k=0 bk(z−z0)k for bk =

∑∞
n=k an

(
n
k

)
zn−k0 .

• In the proof above, note that the coe�cient bk is simply the value
f (k)(z0)

k!
, and so we have simply rederived

the familiar Taylor series expansion f(z) =
∑∞
k=0

f (k)(z0)

k!
(z − z0)k.

◦ In principle, we can use these formulas to recenter arbitrary series expansions of analytic functions. But
in most cases when we are only given f as a series expansion, it is very di�cult to evaluate the resulting
expressions for the coe�cients.

◦ If we have an explicit formula for f (e.g., if f is a rational function), it is generally much easier simply
to make a translation and then apply our earlier method for �nding power series expansions of rational
functions centered at z = 0.

• Example: Find the power series centered at z = 1 up to order 4 for f(z) =
2 + z

2− z
.

◦ Here, since we have an explicit formula for f , it is easier to evaluate a change of variables.

◦ By setting w = z − 1, we equivalently want to �nd the power series expansion centered at w = 0 for

f(z) = f(w + 1) =
3 + w

1− w
.

◦ This series is (3 + w)(1 + w + w2 + w3 + w4 + · · · ) = 3 + 4w + 4w2 + 4w3 + 4w4 + · · · .

◦ Rewriting in terms of z yields f(z) = 3 + 4(z − 1) + 4(z − 1)2 + 4(z − 1)3 + 4(z − 1)4 + · · · .

2.3 Elementary Functions as Power Series

• Now that we have established the fundamental properties of power series as analytic functions, we can construct
and study complex analogues of familiar real-valued elementary functions as power series.

◦ In a fairly strong sense, there is an essentially unique way to extend a real-valued elementary function
to one de�ned by a complex power series.

◦ More precisely, if f is a real-valued function on the real line, there is at most one power series f̃ =∑∞
n=0 anz

n with positive radius of convergence that agrees with f on an open real interval (−ε, ε) for
some ε > 0. (If there were two such series, then their di�erence would be zero on the entire interval
(−ε, ε) hence by our uniqueness result the di�erence would be identically zero.)

◦ In particular, for any real function f de�ned by a Taylor series
∑∞
n=0 anx

n that converges on some open
interval to the value of f , the �right� de�nition is to take its complex extension as f(z) =

∑∞
n=0 anz

n.
Since this power series agrees with f(x) on an open interval of the real line, this is the only possible choice
of f(z) by the observation above. Additionally, the series f(z) has positive radius of convergence and
is therefore holomorphic, so we retain the ability to manipulate it just as with the original real Taylor
series.

19



◦ Moreover, if we apply our uniqueness observation to function identities that hold for real arguments, we
see that those identities will necessarily carry over to complex arguments as well. (This phenomenon is
sometimes referred to as the �principle of the persistence of functional relations�.)

2.3.1 Complex Exponentials and Trigonometric Functions

• We start by de�ning the complex exponential as a power series, which (per our discussion above) is completely
determined by the real Taylor series expansion of the exponential:

• De�nition: For z ∈ C, we de�ne the complex exponential ez =

∞∑
n=0

zn

n!
.

◦ This series has radius of convergence∞, as we have previously calculated. Therefore, we can di�erentiate

termwise to obtain the expected
d

dz
[ez] =

∑∞
n=1

nzn−1

n!
=
∑∞
n=1

zn−1

(n− 1)!
=
∑∞
n=0

zn

n!
= ez.

◦ Furthermore, for any �xed w ∈ C, the function ez+w−ezew is analytic on all of C hence has a local power
series expansion at 0. But this function is identically zero on the real line (per the usual properties of
the real exponential function) hence by the uniqueness of power series expansions, it must be identically
zero on all of C. Thus, we have the usual identity ez+w = ezew for any z, w ∈ C.
◦ Of course, it is possible (although very tedious) to verify this identity directly by expanding out the
power series for ez+w.

◦ In particular we also recover all of the usual multiplicative properties of the complex exponential: for
example, taking z = −w and rearranging yields e−z = 1/ez.

◦ We may also (re)derive Euler's identity: setting z = iθ produces

eiθ =

∞∑
n=0

(iθ)n

n!
= 1+iθ−θ

2

2!
− iθ

3

3!
+
θ4

4!
+
iθ5

5!
−· · · =

[
1− θ2

2!
+
θ4

4!
− · · ·

]
+i

[
θ − θ3

3!
+
θ5

5!
+ · · ·

]
= cos θ+i sin θ

using the real Taylor series expansions for sin θ and cos θ.

◦ Then for x, y real we have ex+iy = exeiy = ex[cos y + i sin y], which establishes that our de�nition of the
complex exponential as a power series agrees with that of our earlier approach.

◦ As an immediate consequences we see that ez = ez and that |ez| = eRe(z), so in particular ez is never equal
to zero. But by using the polar form we can see that every nonzero complex number r[cos θ+ i sin θ] is in
the image of ez: explicitly, eln(r)+iθ = r[cos θ + i sin θ] where ln(r) represents the real natural logarithm
of the positive real number r.

◦ The complex exponential is periodic with period 2πi, since e2πi = 1 and thus ez+2πi = ez for all z.
Indeed, if ez = 1 for z = x + iy then 1 = |ez| = ex so x = 0, and then 1 = eiy = cos y + i sin y yields
y = 2πk for some integer k.

◦ So we see that ez = 1 if and only if z = 2πik for some integer k, and so as a consequence we have
ez1 = ez2 if and only if ez2−z1 = 1 if and only if z2 = z1 + 2πik for some integer k.

• Example: Find all z ∈ C with ez = 2 + 2i.

◦ Writing 2 + 2i in exponential form yields 2 + 2i = 2
√
2eiπ/4 = eln(2

√
2)+iπ/4.

◦ By the remarks above this is equivalent to z − [ln(2
√
2) + iπ/4] = 2kπi for some integer k, which gives

z = ln(2
√
2) + (π/4 + 2kπ)i .

• Example: Find all z ∈ C with e(1+i)z = 2.

◦ Since 2 = eln 2, the equation is equivalent to e(1+i)z = eln(2) which in turn is equivalent to (1+i)z−ln(2) =
2kπi for some integer k.

◦ This yields z =
ln(2) + 2kπi

1 + i
=

1

2
ln(2) · (1− i) + kπ(1 + i) for some integer k.
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• We can also extend the de�nitions of sine and cosine in the same way as the exponential:

• De�nition: For z ∈ C, we have the complex sine sin(z) =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 and cosine cos(z) =

∞∑
n=0

(−1)n

(2n)!
z2n.

◦ From the series expansions above we can easily see that eiz = cos(z)+i sin(z) and e−iz = cos(z)−i sin(z),

and so we have cos(z) =
eiz + e−iz

2
and sin(z) =

eiz − e−iz

2i
. Since eiz and e−iz have radius of convergence

∞, so do sin(z) and cos(z) (this can also be seen directly from the series expansions).

◦ We also have the usual relations
d

dz
[sin(z)] = cos(z) and

d

dz
[cos(z)] = − sin(z) by di�erentiating termwise,

or, more easily, via
d

dz
[sin(z)] =

d

dz
[
eiz − e−iz

2i
] =

ieiz + ie−iz

2i
=
eiz + e−iz

2
= cos(z) and

d

dz
[cos(z)] =

d

dz
[
eiz + e−iz

2
] =

ieiz − ie−iz

2
= −e

iz − e−iz

2i
= − sin(z).

◦ All of the familiar trigonometric identities also hold as well: the Pythagorean identity sin2(z)+cos2(z) =
1, the negation identities sin(−z) = − sin(z) and cos(−z) = cos(z), and the addition formulas cos(z+w) =
cos(z) cos(w)− sin(z) sin(w) and sin(z + w) = sin(z) cos(w)− cos(z) sin(w).

◦ Each of these identities follows by noting that the di�erence between the two sides (for �xed w in the
case of the addition formulas) is an analytic function of z on all of C that is identically zero on the real
line, hence by our uniqueness results is identically zero on all of C.
◦ One can also establish the identities directly using the series expansions for sine and cosine (which is
extremely tedious), or by reducing them to properties of the complex exponential function (which is less
so).

◦ In particular, since sin(2π) = 0 and cos(2π) = 1, by the addition formulas we see that cos(z + 2π) =
cos(z) and sin(z + 2π) = sin(z) for all z ∈ C, so sine and cosine remain periodic with period 2π as
functions on C. Likewise, since sin(π/2) = 1 and cos(π/2) = 0 we have the usual complement formulas
cos(π/2− z) = sin(z) and sin(π/2− z) = cos(z).

◦ Indeed, we can also see that the real zeroes of sine (namely kπ for integers k) are actually the only
complex zeroes: sin(z) = 0 if and only if eiz = e−iz if and only if iz = (−iz) + 2kπi for some integer k,
and this last condition is equivalent to z = kπ for some integer k.

◦ By the complement formulas this also means the real zeroes of cosine are its only complex zeroes as well.

• Example: Find all z ∈ C with cos(z) = 3.

◦ From the de�nition we have cos(z) =
eiz + e−iz

2
so setting w = eiz yields 3 =

w + w−1

2
hence w2+6w+

1 = 0 so that w = −3±
√
8.

◦ The solutions to eiz = −3 −
√
8 are z = (π + 2πk) + i ln(3 +

√
8) for k ∈ Z while the solutions to

ez = −3 +
√
8 = −1/(3 +

√
8) are z = (π + 2πk)− i ln(3 +

√
8) for k ∈ Z.

◦ So the full set of solutions is z = (π + 2πk)± i ln(3 +
√
8) for k ∈ Z.

• We can also de�ne the other complex trigonometric functions in the usual way in terms of sine and cosine:

• De�nition: For z ∈ C we de�ne tan(z) =
sin(z)

cos(z)
, sec(z) =

1

cos(z)
, cot(z) =

cos(z)

sin(z)
, and csc(z) =

1

sin(z)
.

◦ From our analysis above we see that all of these functions are analytic and holomorphic on their entire
domains, which for tan(z) and sec(z) are all z 6= π/2 + πk and for cot(z) and csc(z) are all z 6= kπ for
integers k.

◦ Furthermore, since all of the usual identities for the complex sine and cosine still hold, the same is true

for all of the usual identities involving these functions, such as the derivatives
d

dz
[tan(z)] = sec2(z),

d

dz
[sec(z)] = sec(z) tan(z),

d

dz
[cot(z)] = − csc2(z),

d

dz
[csc(z)] = − csc(z) cot(z) and the Pythagorean

relations 1 + tan2(z) = sec2(z) and 1 + cot2(z) = csc2(z).
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• We will also remark that the identities sin(z) =
eiz − e−iz

2i
and cos(z) =

eiz + e−iz

2
are reminiscent of the

de�nitions of the hyperbolic trigonometric functions. Indeed, there is a quite natural relationship between
them:

• De�nition: For z ∈ C we have the hyperbolic sine sinh(z) =
ez − e−z

2
and cosine cosh(z) =

ez + e−z

2
.

◦ Note that these de�nitions are the same as the usual ones for a real variable. We can see easily that
d

dz
[sinh(z)] = cosh(z) and

d

dz
[cosh(z)] = sinh(z).

◦ The real-valued functions are de�ned in this way because they yield a parametrization x = cosh(t),
y = sinh(t) of the hyperbola x2 − y2 = 1 analogous to the parametrization x = cos(t), y = sin(t) of the
circle x2 + y2 = 1.

◦ The connection between the hyperbolic sine and cosine with the regular sine and cosine in the real case
is purely by analogy, but in the complex case we see easily that cosh(iz) = cos(z) and sinh(iz) = i sin(z),
or equivalently, sin(iz) = i sinh(z) and cos(iz) = cosh(z).

◦ Using these formulas we can easily obtain the hyperbolic analogues of the usual trigonometric identities
(which otherwise require quite a bit more algebra): for example, sin2(z)+cos2(z) = 1 immediately yields
− sinh2(z) + cosh2(z) = 1, while sin(2z) = 2 sin(z) cos(z) yields sinh(2z) = 2 sinh(z) cosh(z).

◦ Likewise we can de�ne the other hyperbolic trigonometric functions in the usual way: tanh(z) =
sinh(z)

cosh(z)
,

sech(z) =
1

cosh(z)
, coth(z) =

cosh(z)

sinh(z)
, and csch(z) =

1

sinh(z)
.

• Example: Find all z ∈ C with sinh(z) = 4/3.

◦ From the de�nition we have
4

3
=
ez − e−z

2
so setting w = ez yields

4

3
=
w − w−1

2
hence w2− 8

3
w−1 = 0

so that w = 3,−1/3.
◦ The solutions to ez = 3 are z = ln(3) + 2πik for k ∈ Z while the solutions to ez = −1/3 are z =

ln(1/3)+ (π+2πk)i for k ∈ Z. So the full set of solutions is z = ln(3) + 2πik, ln(1/3) + (π + 2πk)i for

k ∈ Z.

2.3.2 The Complex Logarithm, Complex Powers

• We have now constructed a wide slate of elementary functions, such as the complex exponential and trigono-
metric functions, in analogy to the familiar real-valued exponential and trigonometric functions. Although
there are various di�erent choices of de�nitions (e.g., as convergent power series, as solutions to di�erential
equations, as limits), all of these de�nitions can be shown to be equivalent.

◦ However, the real-valued natural logarithm has several di�erent de�nitions, and not all of these yield
feasible options for de�ning a complex logarithm function.

◦ For example, the natural logarithm is often de�ned as lnx =
´ x
1

dt

t
: i.e., as an antiderivative of the

function f(x) =
1

x
for x 6= 0. However, there is no power series, or even Laurent series, centered at z = 0

whose derivative is f(z) =
1

z
.

◦ As we will show later, in fact f(z) =
1

z
does not have any antiderivative that is de�ned on the domain

of f(z), namely C\{0}, or even on an open region containing any circle centered at the origin.

• The most natural choice is to de�ne the complex logarithm to be the inverse of the complex exponential
function ez.

◦ However, unlike the real exponential ex, which is one-to-one on R and thus has a well de�ned inverse
function lnx, the complex exponential ez is periodic on C and thus does not have an inverse function.
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◦ Instead, we must settle with taking the complex logarithm to be a multivalued function.

◦ Fortunately, this is still a familiar situation, since all of the trigonometric functions are periodic (with
period 2π or π, depending on the function), so their inverses are also naturally multivalued functions.

• De�nition: The complex logarithm log(z) is de�ned to be the multivalued function that is the inverse of the
complex exponential ez. For any z ∈ C, log(z) is de�ned to be the set of all w ∈ C with ew = z.

◦ Notation: We will denote the real-valued natural logarithm function (with domain the positive real
numbers) as lnx to keep its notation di�erent from the multivalued complex logarithm function log z.

◦ Since the image of ez consists of all nonzero complex numbers, the domain of log(z) is C\{0}.
◦ Also, because ez1 = ez2 if and only if z2 = z1 + 2πik for some integer k, we see that the set of values in
log(z) is of the form w + 2πik for k ∈ Z where w is some individual value with ew = z.

◦ Using this observation, we can then explicitly compute the complex logarithm by writing z 6= 0 in polar
(or equivalently exponential) form: for z = reiθ we have z = eln r+iθ, so one value in the set log(z) is
ln r + iθ hence by the remark above, the full set is log(z) = {ln r + i(θ + 2kπ) : k ∈ Z}.
◦ From the exponential identity ez+w = ezew we immediately obtain the corresponding logarithm identity
log(zw) = log(z)+ log(w), where the identity is to be interpreted as an equality of sets, in the sense that
the set of all possible values of log(z) + log(w) yields the set of possible values of log(zw).

◦ Also, we see Re(log z) = ln |z| for any nonzero z and any value of the complex logarithm log z.

• Example: Find all complex values of log(−1).

◦ In polar form we have −1 = eiπ, so by the above, we have log(−1) = (π + 2kπ)i for k ∈ Z.

• Example: Find all complex values of log(
√
3− i).

◦ In polar form we have
√
3− i = 2e11iπ/6, so by the above, we have log(

√
3− i) = ln(2) + (11π/6 + 2kπ)i

for k ∈ Z.

• By using the complex logarithm we can give a general de�nition for complex powers.

◦ The idea is that we would like the rule log(ab) = b log a to hold for arbitrary complex a and b, in analogy
with the corresponding identity for real logarithms.

• De�nition: If a, b ∈ C with a 6= 0, we de�ne ab to be eb log a.

◦ We note that in general, the quantity ab will have multiple possible values corresponding to the di�erent
possible values of log a.

• Example: Find all possible complex values of (−1)i.

◦ We have log(−1) = (π + 2kπ)i for k ∈ Z as calculated above. So per the de�nition, we have (−1)i =
ei·(π+2kπ)i = e−(π+2kπ) for k ∈ Z.
◦ Explicitly, the possible values are . . . , e−3π, e−π, eπ, e3π, . . . . Note, interestingly, that (−1)i has in�nitely
many distinct real values!

• Example: Find all possible complex values of 11/4.

◦ Since log(1) = 2πki, we have 11/4 = e2πki/4 for k ∈ Z.
◦ Unlike above, there are only four possible values of this expression: e0, eiπ/2, eiπ, e3iπ/2, which are simply
1, i,−1,−i. Quite sensibly, these are the four complex fourth roots of unity.

• We can obtain single-valued complex logarithm functions by restricting the domain of the exponential function
to a region on which it is one-to-one, or equivalently, by selecting a speci�c value of the complex logarithm
log(z) as output for each particular z.
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◦ Our primary motivation is so that we can establish the continuity and di�erentiability of these various
�branches� of the complex logarithm.

◦ First, we observe that it is not possible to make a continuous selection of a logarithm function on any
circle |z| = r for a �xed r > 0: the real part of the logarithm must be ln r (per our discussion above),
and the imaginary part at z = reiθ must be among {. . . , θ − 2π, θ, θ + 2π, θ + 4π, . . . }.
◦ If the value at z = r is c, then if we continuously increase θ from 0, then the imaginary part must increase
continuously from c at the same rate: however, at θ = 2π, we have returned to z = r but the imaginary
part is now c+ 2π 6= c.

◦ Therefore, any selection of a logarithm function must introduce some discontinuities.

• A fairly natural choice, motivated by our formula above as log(z) = {ln r + i(θ + 2kπ) : k ∈ Z}, would be
simply to select the value of the logarithm whose imaginary part lies in [0, 2π). This yields what is usually
called the principal complex logarithm:

• De�nition: For nonzero z ∈ C, the principal complex logarithm, sometimes denoted Log(z), is the unique
value w ∈ C such that ew = z and 0 ≤ Im(w) < 2π.

◦ In other words, Log(z) is the inverse function of the restriction of ez to the vertical strip 0 ≤ Im(z) < 2π,
on which it is one-to-one.

◦ Examples: We have Log(−1) = iπ and Log(
√
3− i) = ln(2) + 11iπ/6.

◦ We can see that the principal complex logarithm is discontinuous on the positive real axis, since if we
approach z = r from above (i.e., along a path with positive imaginary part) the value of Log(z) will
approach ln r, while if we approach z = r from below (i.e., along a path with negative imaginary part)
the value of Log(z) will approach ln r + 2πi.

◦ This type of discontinuity is called a branch cut: along the path from 0 to ∞ that lies along the positive
real axis, we have (essentially) �cut� the branch of the complex logarithm to ensure it is single-valued.

◦ By selecting di�erent possible regions for the imaginary part of the logarithm we can arrange di�erent
branch cuts from 0 to ∞.

◦ For example, if we instead choose to require the imaginary part of the logarithm lie in [−π/2, 3π/2),
then the branch cut is along the negative imaginary axis. More generally, picking the imaginary part in
[α, α+ 2π) will put the branch cut along the ray θ = α, where θ represents the usual polar angle.

• We claim that the principal complex logarithm (and indeed any other possible choice of complex-valued
logarithm function) is continuous and holomorphic except along its branch cut.

◦ This claim follows immediately from the rule for di�erentiating inverse functions.

◦ Explicitly, suppose that f(z) is one-to-one and holomorphic on a region R, so that f−1 exists. Suppose
f(z0) = w0, that z0 is an interior point of R, and that f ′(z0) 6= 0.

◦ Then we have (f−1)′(w0) = limw→w0

f−1(w)− f−1(w0)

w − w0
= limz→z0

z − z0
f(z)− f(z0)

=
1

f ′(z0)
=

1

f ′(f−1(w0))
by making the substitution4 w = f(z).

◦ Applying this calculation where f(z) = ez restricted to an appropriate region R where it is one-to-one

shows that for g(z) = f−1(z), we have g′(z) =
1

f ′(f−1(z))
=

1

eLog(z)
=

1

z
for all z such that f−1(z) lies

in the interior of R (which is equivalent to saying that z is not on the branch cut), as expected.

◦ In particular, the principal complex logarithm is holomorphic on C\[0,∞) with derivative Log′(z) =
1

z
,

and hence it is also continuous there.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2022. You may not reproduce or distribute this material
without my express permission.

4One may object that this calculation presupposes the continuity of f−1 at w0. However, continuity of f−1 follows from the fact
that f is di�erentiable and one-to-one: this can be proven directly but it is rather painful to do; in our situation it is essentially the
Inverse Function Theorem for R2.
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