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9 Second-Order Di�erential Equations

• In this supplement, we will discuss second-order di�erential equations and some of their applications.

• As with �rst-order equations, it is impossible to give a method for solving a general second-order equation.
Therefore, we will only treat the simplest class of second-order equations: linear equations with constant
coe�cients. Such equations have the form ay′′ + by′ + cy = Q(x), for constants a, b, c, and an arbitrary
function Q(x).

• We start by examining homogeneous equations, with the simpler form ay′′+ by′+ cy = 0, and then show how
to use these methods to solve non-homogeneous equations. Then we discuss a few applications.

9.8 Second-Order: Existence-Uniqueness Theorem

• Like with �rst-order equations, there is also an existence-uniqueness theorem for second-order equations.

• Theorem (Existence-Uniqueness): If P1(x), P0(x), and Q(x) are functions continuous on an interval containing
a, then there is a unique solution (possibly on a smaller interval) to the initial value problem y′′ + P1(x) y

′ +
P0(x) y = Q(x), for any initial condition y(a) = b1, y

′(a) = b2. Additionally, every solution ygen to the general
equation may be written as ygen = ypar+ yhom, where ypar is any one particular solution to the equation, and
yhom is a solution to the homogeneous equation y′′ + P1(x) y

′ + P0(x) y = 0.

◦ What this theorem says is: in order to solve the general equation y′′ + P1(x) y
′ + P0(x) y = Q(x), it is

enough to �nd one solution to this equation along with the general solution to the homogeneous equation.

◦ The existence-uniqueness part of the theorem is hard, but the second part is fairly simple to show: y1
and y2 are solutions to the general equation, then their di�erence y1−y2 is a solution to the homogeneous
equation � to see this, just subtract the resulting equations and apply derivatives rules.

• Example: In order to solve the equation y′′(x) = ex, the theorem says we only need to �nd one function which
is a solution, and then solve the homogeneous equation y′′(x) = 0.

◦ We can just try simple functions until we discover that y(x) = ex has y′′(x) = ex.

◦ Then we need only solve the homogeneous equation y′′(x) = 0. We can just integrate both sides twice
to see that the solutions are y = Ax+B, for any constants A and B.

◦ Thus the general solution to the general equation y′′(x) = ex is y(x) = ex +Ax+B .

◦ We can also verify that if we impose the initial conditions y(0) = c1 and y
′(0) = c2, then (as the theorem

dictates) there is the unique solution y = ex + (c2 − 1)x+ (c1 − 1).
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9.9 Second-Order: Linear, Constant Coe�cients, Homogeneous

• The general second-order linear homogeneous di�erential equation with constant coe�cients is of the form
ay′′ + by′ + cy = 0, where a, b, and c are some constants.

• Theorem: There exist two linearly-independent functions y1(x) and y2(x) such that every solution to the
equation ay′′ + by′ + cy = 0 is of the form C1y1 + C2y2 for some constants C1 and C2.

◦ The term �linearly-independent� means that y1(x) is not a constant multiple of y2(x), as a function of
x. For example, 1 and x are linearly independent, as are x3 and ex, but ex and π · ex are not.

◦ In essence this theorem says that there are �two� di�erent solutions to this second-order equation, and
all other solutions are just a simple combination of these two.

◦ The proof of this theorem is more advanced than the things we will cover in this course. (But you'll
learn about it if you take a course on di�erential equations or linear algebra.)

• Based on solving �rst-order linear homogeneous equations (like y′ = ky), we expect the solutions to involve
exponentials. If we try setting y = erx then after some arithmetic we end up with ar2erx + brerx + cerx = 0.

Multiplying both sides by e−rx and cancelling yields the characteristic equation ar2 + br + c = 0 . So if we
can �nd two values of r satisfying this much easier quadratic equation � e.g., by using the quadratic formula

which says we get r =
−b±

√
b2 − 4ac

2a
� we will get solutions to the original di�erential equation.

• There are three kinds of behavior to the values of r we get, based on the discriminant D = b2 − 4ac of the
quadratic:

◦ Case D > 0. In this case we get the two unequal real numbers r1 =
−b−

√
D

2a
and r2 =

−b+
√
D

2a
, and

the general solution is y = C1e
r1x + C2e

r2x .

◦ Case D = 0. In this case both roots are equal, so we only get one value r =
−b
2a

yielding the solution

y = erx. We know there must be another solution, and (based on what we see occurs in the simple
example of y′′ = 0) we can verify that y = xerx also works. Therefore we have a general solution of

y = C1e
rx + C2xe

rx .

◦ Case D < 0. In this case we get two complex conjugate values of r, namely r1 = α+ βi and r2 = α− βi

with α = − b

2a
and β =

√
|D|
2a

. As in case 1, we could just write down er1x and er2x as our solutions,

but we really want real-valued solutions, and er1x and er2x have complex numbers in the exponents.

Using the identities eαx sin(βx) =
1

2i
[er1x − er2x] and eαx cos(βx) =

1

2
[er1x + er2x], we can show that

the general real-valued solution is y = C1e
αx sin(βx) + C2e

αx cos(βx) .

• Therefore, to solve the general second-order linear homogeneous di�erential equation with constant coe�cients,
follow these steps:

◦ Step 1: Rewrite the di�erential equation in the form ay′′ + by′ + cy = 0.

◦ Step 2: Solve the characteristic equation ar2 + br + c = 0.

◦ Step 3: Determine which of the 3 cases applies, and write down the general solution.

◦ Step 4: If given additional conditions, solve for the constants C1 and C2 using the conditions.

• Example: Find all functions y such that y′′ + y′ − 6 = 0.

◦ Step 2: The characteristic equation is r2 + r − 6 = 0 which has roots r = 2 and r = −3.

◦ Step 3: We are in CaseD > 0 since there are unequal real roots. So the general solution is y = C1e
2x + C2e

−3x .

• Example: Find all functions y such that y′′ − 2y′ + 1 = 0, with y(0) = 1 and y′(0) = 2.
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◦ Step 2: The characteristic equation is r2 − 2r + 1 = 0 which has the single root r = 1.

◦ Step 3: We are in Case D = 0 since there is a repeated real root. So the general solution is y =
C1e

x + C2xe
x.

◦ Step 4: Plugging in the two conditions gives 1 = C1 · e0 + C2 · 0, and 2 = C1e
0 + C2

[
(0 + 1)e0

]
from

which C1 = 1 and C2 = 1. Hence the particular solution requested is y = ex + xex .

• Example: Find all real-valued functions y such that y′′ = −4y.

◦ Step 1: The standard form here is y′′ + 4y = 0.

◦ Step 2: The characteristic equation is r2 + 4 = 0 which has roots r = 2i and r = −2i.
◦ Step 3: We are in Case D < 0 since there are two nonreal roots. Since the problem asks for real-valued
functions we write er1x = cos(2x)+i sin(2x) and er2x = cos(2x)−i sin(2x) to see that the general solution
is y = C1 cos(2x) + C2 sin(2x) .

9.10 Second-Order: Linear, Constant Coe�cients, Non-Homogeneous

• The general second-order linear nonhomogeneous di�erential equation with constant coe�cients is of the form
ay′′ + by′ + cy = R(x), where a, b, and c are some constants, and Q(x) is some function of x.

• From the Existence-Uniqueness Theorem, all we need to do is �nd one solution to the general equation, and
�nd all solutions to the homogeneous equation. Since we know how to solve the homogeneous equation in full
generality, we just need to develop some techniques for �nding one solution to the general equation.

• There are essentially two ways of doing this.

◦ The Method of Undetermined Coe�cients is just a fancy way of making an an educated guess about
what the form of the solution will be and then checking if it works. It will work whenever the function
Q(x) is a sum of terms of the form xkeαx cos(βx) or xkeαx sin(βx), where k is an integer and α and β
are real numbers. Thus, for example, we could use the method for a function like Q(x) = x3e8x cos(x)−
4 sin(x) + x10, but not a function like Q(x) = tan(x).

◦ Variation of Parameters is a more complicated method which uses some linear algebra and cleverness to
use the solutions of the homogeneous equation to �nd a solution to the non-homogeneous equation. It
will always work, for any function Q(x), but generally requires more setup and computation.

9.10.1 Undetermined Coe�cients

• The idea behind the method of undetermined coe�cients is that we can guess what our solution should
look like (up to some coe�cients we have to solve for), if Q(x) involves sums and products of polynomials,
exponentials, and trigonometric functions. Speci�cally, we try a solution y = [stu�], where the 'stu�' is a sum
of things similar to the terms in Q(x).

• Note that the method of undetermined coe�cients really does not care whether the equation is second-order
or not, as long as it has constant coe�cients. It's possible to use the same ideas to solve di�erential equations
of higher order (as long as they have constant coe�cients), too.

• Here is the procedure for generating the trial solution:

◦ Step 1: Generate the ��rst guess� for the trial solution as follows:

∗ Replace all numerical coe�cients of terms in Q(x) with variable coe�cients. If there is a sine (or
cosine) term, add in the companion cosine (or sine) terms, if they are missing. Then group terms
of R(x) into �blocks� of terms which are the same up to a power of x, and add in any missing
lower-degree terms in each �block�.

∗ Thus, if a term of the form xnerx appears inQ(x), �ll in the terms of the form erx·[A0 +A1x+ · · ·+Anx
n],

and if a term of the form xneαx sin(βx) or xneαx cos(βx) appears in Q(x), �ll in the terms of the
form eαx cos(βx) · [D0 +D1x+ · · ·+Dnx

n] + eαx sin(βx) [E0 + E1x+ · · ·+ Enx
n].
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◦ Step 2: Solve the homogeneous equation, and write down the general solution.

◦ Step 3: Compare the ��rst guess� for the trial solution with the solutions to the homogeneous equation.
If any terms overlap, multiply all terms in the overlapping �block� by the appropriate power of x which
will remove the duplication.

• Here is a series of examples demonstrating the procedure for generating the trial solution:

◦ Example: y′′ − y = x.

∗ Step 1: We �ll in the missing constant term in Q(x) to get D0 +D1x.

∗ Step 2: The homogeneous solution is A1e
x +A2e

−x.

∗ Step 3: There is no overlap, so the trial solution is D0 +D1x .

◦ Example: y′′ + y′ = x− 2.

∗ Step 1: Replacing terms in Q(x) gives D0 +D1x.

∗ Step 2: The homogeneous solution is A+Be−x.

∗ Step 3: There is an overlap (the solution D0) so we multiply the corresponding trial solution terms

by x, to get D0x+D1x
2. Now there is no overlap, so D0x+D1x

2 is the trial solution.

◦ Example: y′′ − y = ex.

∗ Step 1: Replacing terms in Q(x) gives D0e
x.

∗ Step 2: The homogeneous solution is Aex +Be−x.

∗ Step 3: There is an overlap (the solution D0e
x) so we multiply the trial solution term by x, to get

D0xe
x. Now there is no overlap, so D0xe

x is the trial solution.

◦ Example: y′′ − 2y′ + y = 3ex.

∗ Step 1: Replacing terms in Q(x) gives D0e
x.

∗ Step 2: The homogeneous solution is Aex +Bxex.

∗ Step 3: There is an overlap (the solution D0e
x) so we multiply the trial solution term by x2, to get

rid of the overlap, giving us the trial solution D0x
2ex .

◦ Example: y′′ − 2y′ + y = x3ex.

∗ Step 1: We �ll in the lower-degree terms to get D0e
x +D1xe

x +D2x
2ex +D3x

3ex.

∗ Step 2: The homogeneous solution is A0e
x +A1xe

x.

∗ Step 3: There is an overlap (namely D0e
x+D1xe

x) so we multiply the trial solution terms by x2 to

get D0x
2ex +D1x

3ex +D2x
4ex +D3x

5ex as the trial solution.

◦ Example: y′′ + y = sin(x).

∗ Step 1: We �ll in the missing cosine term to get D0 cos(x) + E0 sin(x).

∗ Step 2: The homogeneous solution is A cos(x) +B sin(x).

∗ Step 3: There is an overlap (all of D0 cos(x) + E0 sin(x)) so we multiply the trial solution terms by

x to get D0x cos(x) + E0x sin(x). There is now no overlap so D0x cos(x) + E0x sin(x) is the trial

solution.

◦ Example: y′′ + y = x sin(x).

∗ Step 1: We �ll in the missing cosine term and then all the lower-degree terms to get D0 cos(x) +
E0 sin(x) +D1x cos(x) + E1x sin(x).

∗ Step 2: The general homogeneous solution is A cos(x) +B sin(x).

∗ Step 3: There is an overlap (all of D0 cos(x) + E0 sin(x)) so we multiply the trial solution terms

in that group by x to get D0x cos(x) + E0x sin(x) +D1x
2 cos(x) + E1x

2 sin(x) , which is the trial

solution since now there is no overlap.

• Here is a series of examples �nding the general trial solution and then solving for the coe�cients:
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◦ Example: Find a function y such that y′′ + y′ + y = x.

∗ The procedure produces our trial solution as y = D0 + D1x, because there is no overlap with the
solutions to the homogeneous equation.

∗ We plug in and get 0 + (D1) + (D1x+D0) = x, so that D1 = 1 and D0 = −1.
∗ So our solution is y = x− 1 .

◦ Example: Find a function y such that y′′ − y = 2ex.

∗ The procedure gives the trial solution as y = D0xe
x, since D0e

x overlaps with the solution to the
homogeneous equation.

∗ If y = D0xe
x then y′′ = D0(x+ 2)ex so plugging in yields y′′ − y = [D0(x+ 2)ex]− [D1x e

x] = 2ex.

Solving yields D0 = 1, so our solution is y = xex .

◦ Example: Find a function y such that y′′ − 2y′ + y = x+ sin(x).

∗ The procedure gives the trial solution as y = (D0 +D1x) + (D2 cos(x) +D3 sin(x)), by �lling in the
missing constant term and cosine term, and because there is no overlap with the solutions to the
homogeneous equation.

∗ Then we have y′′ = −D2 cos(x)−D3 sin(x) and y
′ = D1−D2 sin(x)+D3 cos(x) so plugging in yields

y′′−2y′+y = [−D2 cos(x)−D3 sin(x)]−2 [D1 −D2 sin(x) +D3 cos(x)]+[D0 +D1x+D2 cos(x) +D3 sin(x)]

and setting this equal to x + sin(x) then requires D0 − 2D1 = 0, D1 = 1, D2 + 2D3 − D2 = 1,

D3 − 2D2 −D3 = 0, so our solution is y = x+ 2 +
1

2
cos(x) .

◦ Example: Find all functions y such that y′′ + y = sin(x).

∗ The solutions to the homogeneous system y′′ + y = 0 are y = C1 cos(x) + C2 sin(x).

∗ Then the procedure gives the trial solution for the non-homogeneous equation as y = D0x cos(x) +
D1x sin(x), by �lling in the missing cosine term and then multiplying both by x due to the overlap
with the solutions to the homogeneous equation.

∗ We can compute (eventually) that y′′ = −D0x cos(x)− 2D0 sin(x)−D1x sin(x) + 2D1 cos(x).

∗ Plugging in yields y′′+y = (−D0x cos(x)− 2D0 sin(x)−D1x sin(x) + 2D1 cos(x))+(D0x sin(x) +D1x cos(x)),

and so setting this equal to sin(x), we obtain D0 = 0 and D1 = −1

2
.

∗ Therefore the set of solutions is y = −1

2
x cos(x) + C1 cos(x) + C2 sin(x) , for constants C1 and C2.

9.10.2 Variation of Parameters

• This method requires more thought, but less computation, than the method of undetermined coe�cients.
However, it will work for a general function Q(x). The derivation is not terribly enlightening, so we will just
give the steps to follow to solve ay′′ + by′ + cy = Q(x).

◦ Step 1: Solve the corresponding homogeneous equation ay′′ + by′ + cy = 0 and �nd two (linearly inde-
pendent) solutions y1 and y2. Also calculate y′1 and y′2.

◦ Step 2: Look for functions v1 and v2 making yp = v1 · y1 + v2 · y2 a solution to the original equation: do
this by requiring v′1 and v′2 to satisfy the two equations

v′1 · y1 + v′2 · y2 = 0

v′1 · y′1 + v′2 · y′2 = Q(x)/a

Solve the relations for v′1 and v′2 in any way you would normally solve a system of two linear equations
in two variables. (Cramer's Rule will work, or you can just multiply the �rst equation by y′1, the second
by y1, and subtract.) Or, even easier, plug in to these explicit formulas:

∗ v′1 =

∣∣∣∣ 0 y2
Q(x)/a y′2

∣∣∣∣ / ∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = −y2 ·Q(x)/a

y1y′2 − y′1y2
and
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∗ v′2 =

∣∣∣∣ y1 0
y′1 Q(x)/a

∣∣∣∣ / ∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = +y1 ·Q(x)/a

y1y′2 − y′1y2
.

◦ Step 3: Integrate to �nd v1 and v2. (Ignore constants of integration.)

◦ Step 4: Write down the particular solution to the nonhomogeneous equation, yp = v1 · y1 + v2 · y2 .

◦ Step 5: If asked, the general solution to the nonhomogeneous equation is y = yp + C1y1 + C2y2 . If

there are any initial conditions, plug them in to solve for the constants C1 and C2.

• Example: Find all functions y for which y′′ + y = sec(x).

◦ Step 1: The homogeneous equation is y′′+ y = 0 which has two solutions of y1 = cos(x) and y2 = sin(x).
Observe y′1 = − sin(x) and y′2 = cos(x).

◦ Step 2: We have Q(x)/a = sec(x). Also we have y1y
′
2 − y′1y2 = cos(x) · cos(x) − (− sin(x)) · sin(x) = 1.

Thus plugging in to the formulas gives v′1 = − sin(x) · sec(x) = − tan(x) and v′2 = cos(x) · sec(x) = 1.

◦ Step 3: Integrating yields v1 = ln(cos(x)) and v2 = x.

◦ Step 4: We obtain the particular solution of yp = ln(cos(x)) · cos(x) + x · sin(x).

◦ Step 5: The general solution is, therefore, given by y = [ln(cos(x)) · cos(x) + x · sin(x)] + C1 sin(x) + C2 cos(x) .

• Example: Find a function y for which y′′ − y = ex.

◦ We could use undetermined coe�cients to solve this � we would end up with
1

2
x ex � but let's use

variation of parameters instead.

◦ Step 1: The homogeneous equation is y′′ − y = 0 which has two solutions of y1 = e−x and y2 = ex; then
y′1 = −e−x and y′2 = ex.

◦ Step 2: We have G(x)/a = ex. Also we have y1y
′
2 − y′1y2 = e−x · (ex)− (−e−x)ex = 2. Thus plugging in

to the formulas gives v′1 = −ex · ex/2 = −e2x/2 and v′2 = e−x · ex/2 = 1/2.

◦ Step 3: Integrating yields v1 = −e2x/4 and v2 = x/2.

◦ Step 4: We obtain the particular solution of yp = e−x(−e2x/4) + ex(x/2) = −1

4
ex +

1

2
x ex .

9.11 Second-Order: Applications to Newtonian Mechanics

• One of the applications we somewhat care about is the use of second-order di�erential equations to solve
certain physics problems. Most of the examples involve springs, because springs are easy to talk about.

◦ Note: Second-order linear equations also arise often in basic circuit problems in physics and electrical
engineering. All of the discussion of the behaviors of the solutions to these second-order equations also
carries over to that setup.

9.11.1 Spring Problems and Damping

• Basic setup: An object is attached to one end of a spring whose other end is �xed. The mass is displaced
some amount from the equilibrium position, and the problem is to �nd the object's position as a function of
time.

◦ Various modi�cations to this basic setup include any or all of (i) the object slides across a surface thus
adding a force (friction) depending on the object's velocity or position, (ii) the object hangs vertically thus
adding a constant gravitational force, (iii) a motor or other device imparts some additional nonconstant
force (varying with time) to the object.

• In order to solve problems like this one, follow these steps:
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◦ Step 1: Draw a diagram and label the quantity or quantities of interest (typically, it is the position of a
moving object) and identify and label all forces acting on those quantities.

◦ Step 2: Find the values of the forces involved, and then use Newton's Second Law (F = ma) to write
down a di�erential equation modeling the problem. Also use any information given to write down initial
conditions.

∗ In the above, F is the net force on the object � i.e., the sum of each of the individual forces acting on
the mass (with the proper sign) � whilem is the mass of the object, and a is the object's acceleration.

∗ Remember that acceleration is the second derivative of position with respect to time � thus, if y(t)
is the object's position, acceleration is y′′(t).

∗ You may need to do additional work to solve for unknown constants � e.g., for a spring constant, if
it is not explicitly given to you � before you can fully set up the problem.

◦ Step 3: Solve the di�erential equation and �nd its general solution.

◦ Step 4: Plug in any initial conditions to �nd the speci�c solution.

◦ Step 5: Check that the answer obtained makes sense in the physical context of the problem.

∗ In other words, if you have an object attached to a �xed spring sliding on a frictionless surface,
you should expect the position to be sinusoidal, something like C1 sin(ωt)+C2 cos(ωt)+D for some
constants C1, C2, ω,D.

∗ If you have an object on a spring sliding on a surface imparting friction, you should expect the
position to tend to some equilibrium value as t grows to ∞, since the object should be 'slowing
down' as time goes on.

• Basic Example: An object, mass m, is attached to a spring of spring constant k whose other end is �xed. The
object is displaced a distance d from the equilibrium position of the spring, and is let go with velocity v0 at
time t = 0. If the object is restricted to sliding horizontally on a frictionless surface, �nd the position of the
object as a function of time.

◦ Step 1: Take y(t) to be the displacement of the object from the equilibrium
position. The only force acting on the object is from the spring, Fspring.

◦ Step 2: We know that Fspring = −k · y from Hooke's Law (aka, the only thing we know about springs).
Therefore we have the di�erential equation −k · y = m · y′′. We are also given the initial conditions
y(0) = d and y′(0) = v0.

◦ Step 3: We can rewrite the di�erential equation as m · y′′ + k · y = 0, or as y′′ +
k

m
· y = 0. The

characteristic equation is then r2 +
k

m
= 0 with roots r = ±

√
k

m
i. Hence the general solution is

y = C1 cos(ωt) + C2 sin(ωt) , where ω =

√
k

m
.

◦ Step 4: The initial conditions give d = y(0) = C1 and v0 = y′(0) = ωC2 hence C1 = d and C2 = v0/ω.

Hence the solution we want is y = d · cos(ωt) + v0
ω
· sin(ωt) .

◦ Step 5: The solution we have obtained makes sense in the context of this problem, since on a frictionless
surface we should expect that the object's motion would be purely oscillatory � it should just bounce
back and forth along the spring forever since there is nothing to slow its motion. We can even see that the

form of the solution agrees with our intuition: the fact that the frequency ω =

√
k

m
increases with bigger

spring constant but decreases with bigger mass makes sense � a stronger spring with larger k should pull
back harder on the object and cause it to oscillate more quickly, while a heavier object should resist the
spring's force and oscillate more slowly.
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• Most General Example: An object, mass m, is attached to a spring of spring constant k whose other end is
�xed. The object is displaced a distance d from the equilibrium position of the spring, and is let go with
velocity v0 at time t = 0. A motor attached to the object imparts a force along its direction of motion given
by R(t). If the object is restricted to sliding horizontally on a surface which imparts a frictional force of µ
times the velocity of the object (opposite to the object's motion), set up a di�erential equation modeling the
problem.

◦ Here is the diagram: .

◦ As before we take y(t) to be the displacement of the object from the equilibrium position. The forces
acting on the object are from the spring, Fspring, from friction, Ffriction, and from the motor, Fmotor.

◦ We know that Fspring = −k · y from Hooke's Law (aka, the only thing we know about springs). We are
also given that Ffric = −µ · y′, since the force acts opposite to the direction of motion and velocity is
given by y′. And we are just given Fmotor = R(t).

◦ Plugging in gives us the di�erential equation −k · y − µ · y′ + R(t) = m · y′′, which in standard form is

m · y′′ + µ · y′ + k · y = R(t) . We are also given the initial conditions y(0) = d and y′(0) = v0.

• Some Terminology: If we were to solve the di�erential equation m · y′′ + µ · y′ + k · y = 0 (here we assume
that there is no outside force acting on the object, other than the spring and friction), we would observe a
few di�erent kinds of behavior depending on the parameters m, µ, and k.

◦ Overdamped Case: If µ2 − 4mk > 0 and R(t) = 0, we would end up with general solutions of the form
C1e

−r1t+C2e
−r2t, which when graphed is just a sum of two exponentially-decaying functions. Physically,

as we can see from the condition µ2−4mk > 0, this means we have 'too much' friction, since we can just
see from the form of the solution function that the position of the object will just slide back towards its
equilibrium at y = 0 without oscillating at all. This is the �overdamped� case. [�Overdamped� because
there is 'too much' damping.]

◦ Critically Damped Case: If µ2 − 4mk = 0 and R(t) = 0, we would end up with general solutions of the
form (C1 + C2t)e

−rt, which when graphed is a slightly-slower-decaying exponential function that still
does not oscillate, but could possibly cross the position y = 0 once, depending on the values of C1 and
C2. This is the �critically damped� case. [�Critically� because we give the name 'critical' to values where
some kind of behavior transitions from one thing to another.]

◦ Underdamped Case: If µ2 − 4mk < 0 and R(t) = 0, we end up with general solutions of the form

e−αt · [C1 cos(ωt) + C2 sin(ωt)], where α = − µ

2m
and ω2 =

4mk − µ2

4m2
. When graphed this is a sine

curve times an exponentially-decaying function. Physically, this means that there is some friction (the
exponential), but 'not enough' friction to eliminate the oscillations entirely � the position of the object
will still tend toward y = 0, but the sine and cosine terms will ensure that it continues oscillating. This
is the �underdamped� case. [�Underdamped� because there's not enough damping.]

◦ Undamped Case: If there is no friction (i.e., µ = 0), we saw earlier that the solutions are of the form
y = C1 cos(ωt) + C2 sin(ωt) where ω

2 = k/m. Since there is no friction, it is not a surprise that this is
referred to as the �undamped� case.

9.11.2 Resonance and Forcing

• Suppose an object of mass m (sliding on a frictionless surface) is oscillating on a spring with frequency ω.
Examine what happens to the object's motion if an external force F (t) = A cos(ωt) is applied which oscillates
at the same frequency ω.
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◦ From the solution to the �Basic Example� above, we know that ω =
√
k/m so we must have k = m · ω2.

◦ Then if y(t) is the position of the object once we add in this new force R(t) = A cos(ωt+ θ), Newton's
Second Law now gives −k · y +R(t) = m · y′′, or m · y′′ + k · y = R(t).

◦ If we divide through by m and put in k = m · ω2 we get y′′ + ω2y =
A

m
cos(ωt).

◦ Now we use the method of undetermined coe�cients to �nd a solution to this di�erential equation.

◦ We would like to try something of the form y = D1 cos(ωt) +D2 sin(ωt), but this will not work because
functions of that form are already solutions to the homogeneous equation y′′ + ω2y = 0.

◦ Instead the method instructs that the appropriate solution will be of the form y = D1t · cos(ωt) +
D2t · sin(ωt). We can use a trigonometric formula (the sum-to-product formula) to rewrite this as
y = D t · cos(ωt+φ), where φ is a �phase shift�. (We can solve for the coe�cients in terms of A,m,ω but
it will not be so useful.)

◦ We can see from this formula that as t grows, so does the �amplitude� D · t: in other words, as time goes
on, the object will continue oscillating with frequency ω around its equilibrium point, but the swings
back and forth will get larger and larger.

◦ You can observe this phenomenon for yourself if you sit in a rocking chair, or swing an object back and
forth � you will quickly �nd that the most e�ective way to rock the chair or swing the object is to push
back and forth at the same frequency that the object is already moving at.

• We may work out the same computation with an external force F (t) = A cos(ω1t) oscillating at a frequency
ω1 6= ω.

◦ In this case (using the same argument as above) we have y′′ + ω2y =
A

m
cos(ω1t).

◦ The trial solution (again by undetermined coe�cients) is y(t) = B cos(ω1t) , where B =
A/m

ω2 − ω2
1

.

◦ Thus the overall solution is B cos(ω1t), plus a solution to the homogeneous system.

◦ Now as we can see, if ω1 and ω are far apart (i.e., the driving force is oscillating at a very di�erent
frequency from the frequency of the original system) then B will be small, and so the overall change
B cos(ω1t) that the driving force adds will be relatively small.

◦ However, if ω1 and ω are very close to one another (i.e., the driving force is oscillating at a frequency
close to that of the original system) then B will be large, and so the driving force will cause the system
to oscillate with a much bigger amplitude.

◦ As ω1 approaches ω, the amplitude B will go to ∞, which agrees with the behavior seen in the previous
example (where we took ω1 = ω).

• Important Remark: Understanding how resonance arises (and how to minimize it!) is a very, very important
application of di�erential equations to structural engineering.

◦ A poor understanding of resonance is something which, at several times in the not-too-distant past, has
caused bridges to fall down, airplanes to crash, and buildings to fall over.

◦ We can see from the two examples that resonance arises when an external force acts on a system at (or
very close to) the same frequency that the system is already oscillating at.

◦ Of course, resonance is not always bad. The general principle, of applying an external driving force at (one
of) a system's �natural resonance frequencies�, is the underlying physical idea behind the construction of
many types of musical instruments.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2015. You may not reproduce or distribute this
material without my express permission.
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