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8 Power Series and Taylor Series

In this chapter, we continue our discussion of in�nite series from the previous chapter. However, we will narrow

our focus to a particular kind of in�nite series, called a power series, which has the general form

∞∑
n=0

an(x− c)n

for real numbers an and c, and a parameter x. We will discuss the basic theory of power series and methods for
representing functions as power series.

We will then turn our attention to Taylor series, which are a special type of power series that arise in trying to
�nd good polynomial approximations to arbitrary functions, and conclude by outlining some of the more important
applications of Taylor series.

8.1 Power Series

• De�nition: A power series centered at x = c is a series of the form

∞∑
n=0

an(x− c)n, where the center c and the

coe�cients ai are constants.

◦ We will usually be interested in power series centered at x = 0, which have the simpler form

∞∑
n=0

anx
n.

• We will generally think of a given power series

∞∑
n=0

an(x− c)n as a function of x.

◦ Our initial goal is to study for which x this power series converges.
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◦ We will then turn our attention to describing the resulting function of x (de�ned where the series
converges).

• Example: The geometric series

∞∑
n=0

xn is a power series centered at x = 0 all of whose coe�cients are equal

to 1.

◦ From our earlier analysis of geometric series, we know this series will converge to the limit
1

1− x
whenever

−1 < x < 1, and that it will diverge for other x.

◦ By the de�nition of convergent series, this says that the sequence of polynomials 1, 1 + x, 1 + x + x2,

1 + x+ x2 + x3, ... converges to the value
1

1− x
whenever −1 < x < 1.

◦ We can see this convergence explicitly from the graphs (the functions are 1+x, 1+x+x2, 1+x+x2+x3,

1 + x+ x2 + x3 + x4, and
1

1− x
from bottom to top):
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8.1.1 Convergence of Power Series

• In general, we can typically determine where a power series converges by using the Ratio or Root Tests.
A useful technique is to combine the Ratio/Root Tests with the Absolute Convergence Theorem to obtain
versions which apply to general series (possibly with negative terms):

◦ Strengthened Ratio Test: If {bn} has the property that lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ exists and equals some constant ρ,

then the sum

∞∑
n=1

bn converges if ρ < 1, and diverges if ρ > 1.

◦ Strengthened Root Test: If {bn} has the property that lim
n→∞

n
√
|bn| exists and equals some constant ρ,

then the sum

∞∑
n=1

bn converges if ρ < 1, and diverges if ρ > 1.

◦ For both tests, if ρ = 1 then the test is inconclusive, while if ρ =∞ then the series diverges.

• Example: Determine the values of x for which the power series

∞∑
n=1

1

n2
xn converges.

◦ We use the Ratio Test: with bn =
xn

n2
, we have

∣∣∣∣bn+1

bn

∣∣∣∣ = ∣∣∣∣xn+1/(n+ 1)2

xn/n2

∣∣∣∣ = |x| · (n+ 1

n

)2

.

◦ Then lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = |x|.
◦ Thus, by the (strengthened) Ratio Test, we see that the series converges whenever |x| < 1 and diverges
whenever |x| > 1.

◦ There are two cases where the test is inconclusive: x = 1 and x = −1.

◦ When x = 1, the series is

∞∑
n=1

1

n2
, which is a convergent p-series.
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◦ When x = −1, the series is

∞∑
n=1

(−1)n

n2
, which converges by the Alternating Series Test (or by the fact

that its absolute value series is the one we just saw above).

◦ Therefore, the power series converges for − 1 ≤ x ≤ 1 and diverges for other x.

• Example: Determine the values of x for which the power series

∞∑
n=1

1

3n
(x− 2)

n
converges.

◦ We use the Root Test: with bn =
(x− 2)

n

3n
, we have n

√
|bn| =

∣∣∣∣x− 2

3

∣∣∣∣.
◦ Then lim

n→∞
n
√
|bn| =

∣∣∣∣x− 2

3

∣∣∣∣.
◦ Thus, by the (strengthened) Ratio Test, we see that the series converges whenever

∣∣∣∣x− 2

3

∣∣∣∣ < 1 and

diverges whenever

∣∣∣∣x− 2

3

∣∣∣∣ > 1, while the test is inconclusive when

∣∣∣∣x− 2

3

∣∣∣∣ = 1.

◦ Notice that

∣∣∣∣x− 2

3

∣∣∣∣ < 1 is equivalent to −1 < x− 2

3
< 1, which is the same as −1 < x < 5.

◦ When x = −1, the series is
∞∑
n=1

(−3)n

3n
=

∞∑
n=1

(−1)n, which diverges.

◦ When x = 5, the series is

∞∑
n=1

3n

3n
=

∞∑
n=1

1, which also diverges.

◦ Therefore, the power series converges for − 1 < x < 5 and diverges for other x.

◦ Notice, in particular, that the region of convergence is the interval (−1, 5), and its midpoint is the center
of the power series.

• Example: Determine the values of x for which the power series

∞∑
n=0

1

n!
xn converges.

◦ We use the Ratio Test: with bn =
1

n!
xn, we have

∣∣∣∣bn+1

bn

∣∣∣∣ = ∣∣∣∣xn+1/(n+ 1)!

xn/n!

∣∣∣∣ = ∣∣∣∣x · n!

(n+ 1)!

∣∣∣∣ = |x|
n+ 1

.

◦ Then, for any �xed value of x, we see that lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

|x|
n+ 1

= 0.

◦ Thus, by the (strengthened) Ratio Test, we see that the series converges for all x .

• Example: Determine the values of x for which the power series

∞∑
n=0

n! · xn converges.

◦ We use the Ratio Test: with bn = n!·xn, we have
∣∣∣∣bn+1

bn

∣∣∣∣ = ∣∣∣∣ (n+ 1)! · xn+1

n! · xn

∣∣∣∣ = ∣∣∣∣x · (n+ 1)!

n!

∣∣∣∣ = |x|·(n+1).

◦ Then, for any nonzero value of x, we see that lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

(n+ 1) |x| = +∞. If x = 0, then the

limit is clearly zero.

◦ Thus, by the (strengthened) Ratio Test, we see that the series converges only for x = 0 .

• In each of the examples above, notice that the set of x for which the power series

∞∑
n=0

an(x− c)n converged

was an interval whose midpoint was the center x = c of the power series.
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◦ Note that we have included the case of the degenerate �interval� [0, 0] consisting of a single point, as well
as the in�nite interval (−∞,∞).

• In fact, the region of convergence is always an interval. To show this, we �rst need a preliminary result:

• Proposition: If the power series

∞∑
n=0

anx
n converges for x = d, then it converges absolutely for all x with

|x| < |d|.

◦ Proof: Since the series

∞∑
n=0

and
n converges, by the �Test for Divergence� we know that lim

n→∞
and

n = 0.

◦ By the de�nition of limit, in particular this implies that for large enough N ,
∣∣aNdN ∣∣ ≤ 1: therefore,

|aN | ≤ d−N .

◦ But then

∞∑
n=N

|anxn| ≤
∞∑
n=N

∣∣∣x
d

∣∣∣n, and this last series is a convergent geometric series when
∣∣∣x
d

∣∣∣ < 1. This

implies the original series converges absolutely for
∣∣∣x
d

∣∣∣ < 1 � i.e., whenever |x| < d.

• From this, we can conclude that the set of convergence of a power series must have a very particular form:

• Theorem (Power Series Convergence): For any power series

∞∑
n=0

an(x− c)n, precisely one of the following three

things holds:

1. The series converges absolutely for every x.

2. The series converges at x = c and diverges for other x.

3. There exists a positive real number R such that the series converges absolutely for x with |x− c| < R
and diverges for |x− c| > R. The series may or may not converge at the two endpoints x = c±R.

◦ Remark: The value of R is called the radius of convergence for the power series. It is conventional to say
that R = ∞ in the �rst case and to say that R = 0 in the second case. (Thus, for example, the radius

of convergence of the power series

∞∑
n=0

xn is 1, while the radius of convergence of

∞∑
n=0

1

n!
xn is ∞.)

◦ Proof: Let u = x− c: then the power series has the form

∞∑
n=0

anu
n.

∗ Consider the set of values of |u| such that this series converges: if there is no upper bound, then
(by the previous proposition applied to an increasing sequence of values of u) we conclude that the
series converges absolutely for every value of u.

∗ Otherwise, there is some upper bound on the values of u where the series converges, hence (by an
axiomatic property of the real numbers) there is some least upper bound R. If R = 0, then the series
converges only when u = 0 � namely, for x = c.

∗ If R > 0, then the series converges for values of u an arbitrarily small distance below R. By applying
the proposition above, we conclude that the series converges absolutely whenever |u| < R � namely,
for |x− c| < R.

∗ Finally, by the de�nition of R, the series will diverge whenever |u| > R. (Otherwise, R would not
be the least upper bound of the set of values of u where the series converges.)

• Example: Find the radius of convergence of the power series

∞∑
n=0

xn

2n+ 1
, and also determine where it converges

absolutely, where it converges conditionally, and where it diverges.

◦ We use the Ratio Test: with bn =
xn

2n+ 1
, we have

∣∣∣∣bn+1

bn

∣∣∣∣ = ∣∣∣∣xn+1/(2n+ 3)

xn/(2n+ 1)

∣∣∣∣ = |x| · (2n+ 1

2n+ 3

)
.
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◦ Then lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = |x|.
◦ Thus, by the (strengthened) Ratio Test, we see that the series converges whenever |x| < 1 and diverges
whenever |x| > 1.

◦ By the Power Series Convergence Theorem, we conclude that the radius of convergence is 1 and that

the series is absolutely convergent when |x| < 1.

◦ There are two cases where the test is inconclusive: x = 1 and x = −1.

◦ When x = 1, the series is

∞∑
n=0

1

2n+ 1
. This series diverges, either by the Integral Test, or by comparison

to the divergent p-series

∞∑
n=1

1

n
.

◦ When x = −1, the series is
∞∑
n=0

(−1)n

2n+ 1
. It is easy to check that this series converges by the Alternating

Series Test. Its absolute value series is the divergent series we just analyzed above, so the series is
conditionally convergent.

◦ Therefore,

∞∑
n=0

xn

2n+ 1
is absolutely convergent for − 1 < x < 1 , conditionally convergent at x = −1 ,

and divergent for x < −1 and x ≥ 1 .

8.1.2 Power Series as Functions

• We now consider the power series

∞∑
n=0

an(x− c)n as a function f(x), de�ned inside its interval of convergence.

Our �rst goal is to determine whether f(x) is di�erentiable, and how to compute its derivatives:

• Theorem (Power Series Di�erentiation): If the power series f(x) =

∞∑
n=0

an(x− c)n has radius of convergence

R > 0, then the function f(x) is di�erentiable and its derivative is f ′(x) =

∞∑
n=1

nan(x− c)n−1, valid for

|x− c| < R. The radius of convergence of the power series for f ′(x) is also equal to R.

◦ What this means is that we can compute the derivative of a power series simply by di�erentiating
�term-by-term�: namely, by taking the derivative of each term of the power series individually, and then
summing them.

◦ Observe that the expression for the derivative can equivalently be written as f ′(x) =

∞∑
n=0

(n+ 1) an+1(x− c)n.

∗ This result is obtained simply by shifting the index n by 1. One reason this formulation is sometimes
preferable is because the power of (x− c) is n rather than n− 1.

◦ The proof of this theorem follows by manipulating the di�erence quotient for the derivative and rear-
ranging the terms of the relevant in�nite series, which is allowable since they converge absolutely. (We
will omit the precise technical details, since they are not especially enlightening.)

• Since the radius of convergence for f ′(x) is the same as for f(x), iterating the result of the Theorem shows
that f in fact has derivatives of all orders, and that they all have radius of convergence R around x = c.

• Example: Find the derivative of the power series

∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + · · ·.

◦ We simply di�erentiate term-by term to obtain the series

∞∑
n=1

nxn−1 = 1 + 2x+ 3x2 + 4x3 + · · · .
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◦ We can in fact sum this series by breaking it apart as a sum of geometric series, each of which we can
compute:

1 + 2x+ 3x2 + 4x3 + · · · = (1 + x+ x2 + x3 + · · · ) + (x+ x2 + x3 + · · · ) + (x2 + x3 + · · · ) + (x3 + · · · ) + · · ·

=
1

1− x
+

x

1− x
+

x2

1− x
+

x3

1− x
+ · · ·

=
1 + x+ x2 + x3 + · · ·

1− x
=

1/(1− x)
1− x

=
1

(1− x)2

and these manipulations are valid whenever |x| < 1, since all we needed was for the series 1 + x+ x2 +
x3 + · · · to converge.

◦ Indeed, since we know that the geometric series

∞∑
n=0

xn converges to the function f(x) =
1

1− x
when

|x| < 1, the theorem above tells us that the series for the derivative should converge to the actual

derivative f ′(x) =
1

(1− x)2
whenever |x| < 1. (And this is precisely what we obtained above!)

◦ Notice, in particular, that we can evaluate some new in�nite series by plugging in speci�c values of x.

For example, setting x =
1

2
yields

∞∑
n=1

n

2n−1
= f ′(

1

2
) =

1

(1− 1/2)2
= 4.

◦ In other words, the in�nite series 1 +
2

2
+

3

4
+

4

8
+

5

16
+

6

32
+ · · · has sum equal to 4.

• Example: Find the derivative of the power series

∞∑
n=0

1

n!
xn = 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · ·.

◦ With an =
1

n!
, we apply the �shifted� form to see that

f ′(x) =

∞∑
n=0

(n+ 1) an+1x
n =

∞∑
n=0

n+ 1

(n+ 1)!
xn

=

∞∑
n=0

1

n!
xn = 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · .

◦ Notice in particular that the derivative series is exactly the same as the original series! In other words,
this function satis�es the di�erential equation f ′(x) = f(x). (As we will see soon, this is because f(x) is
actually equal to ex.)

• Now that we have analyzed how to di�erentiate power series, we can ask about integrating power series. This
turns out to be just as straightforward:

• Theorem (Power Series Integration): If the power series f(x) =

∞∑
n=0

an(x− c)n has radius of convergence

R > 0, then the function f(x) has general antiderivative
´
f(x) dx = C +

∞∑
n=0

an
n+ 1

(x− c)n+1, valid for

|x− c| < R. The radius of convergence of the power series for the antiderivative is also equal to R.

◦ In other words, we can integrate a power series simply �term-by-term�, in the same way we can take a
derivative.

◦ By shifting the index n by 1, the expression for the antiderivative can also be written as
´
f(x) dx =

C +

∞∑
n=1

an−1
n

(x− c)n.

◦ The proof of this theorem mostly follows from the di�erentiation theorem: all that needs to be veri-
�ed is that the power series expression for the antiderivative actually converges for |x− c| < R, since
di�erentiating it term-by-term clearly gives f(x). (Again, we will omit the technical details.)
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• Example: Find a power series expansion for tan−1(x) centered at x = 0.

◦ Recalling the fact that tan−1(x) is an antiderivative of
1

1 + x2
, we will �rst �nd a power series expansion

for
1

1 + x2
, and then integrate it.

◦ From the geometric series expansion
1

1− y
= 1 + y + y2 + y3 + · · · =

∞∑
n=0

yn, we set y = −x2 to obtain

1

1 + x2
= 1− x2 + x4 − x6 +− · · · =

∞∑
n=0

(−1)nx2n, valid for |x| < 1.

◦ Now we integrate both sides to obtain tan−1(x) = C +

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = C + x− x3

3
+
x5

5
− x7

7
+ · · · ,

for some constant C.

◦ If we set x = 0, we see that C = 0, so our result is tan−1(x) =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+
x5

5
− x7

7
+ · · · ,

valid for |x| < 1.

• Another question we could ask is: can we do arithmetic with power series? It turns out the answer is yes:

• Theorem (Power Series Arithmetic): If the power series f(x) =

∞∑
n=0

an(x− c)n and

∞∑
n=0

bn(x− c)n both

converge absolutely for |x− c| < R, then the function f(x)+ g(x) has power series

∞∑
n=0

[an + bn] (x− c)n, and

the function f(x) · g(x) has power series
∞∑
n=0

dn(x− c)n, where dn = a0bn + a1bn−1 + · · · + an−1b1 + anb0 =

n∑
k=0

akbn−k, both convergent absolutely for |x− c| < R.

◦ The �rst part of the theorem says that we can add two power series term by term.

◦ The second part of the theorem says that we can multiply two power series essentially using the distribu-
tive law, as long as we collect the terms appropriately. (The expression for the coe�cients are exactly
the same as those given by multiplying out two polynomials.)

◦ Both results essentially follow from the fact that we may rearrange terms in an absolutely convergent
series. (We will again omit the details, since they are not enlightening.)

• Example: Find a power series expansion for x2 tan−1(x) centered at x = 0.

◦ We use the multiplication result on f(x) = x2 and g(x) =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+
x5

5
− x7

7
+ · · · .

◦ In this case, we immediately see that the power series is simply the series for tan−1(x) but with each

term multiplied by x2:

∞∑
n=0

(−1)n

2n+ 1
x2n+3 = x3 − x5

3
+
x7

5
− x9

7
+ · · · .

• Example: Find a power series expansion for
1

(1− x)2
centered at x = 0.

◦ We use the multiplication result on f(x) =
1

1− x
=

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · and g(x) = 1

1− x
=

∞∑
n=0

xn.
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◦ Here, an = bn = 1 for all n, so we easily can �nd that dn = a0bn+a1bn−1+ · · ·+anb0 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n+1 ones

=

n+ 1.

◦ Therefore, we conclude that the power series for
1

(1− x)2
is given by

∞∑
n=0

(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + · · · .

◦ Observe that we already found this same result earlier, by di�erentiating the series
1

1− x
term-by-term.

• Example: Find the terms through degree 4 in a power series expansion for
tan−1(x)

(1− x)2
centered at x = 0.

◦ We use the multiplication result on f(x) = tan−1(x) =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+
x5

5
− x7

7
+ · · · and

g(x) =
1

1− x
=

∞∑
n=0

(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + · · · .

◦ We could in principle write down a general expression for the terms in the product series using the
formula.

◦ However, with complicated series, it is often faster just to multiply out the product of the two power
series using the distributive law, and then collect terms of each degree (which ultimately amounts to the
same thing, but is easier to do by hand).

◦ Explicitly multiplying out

(
x− x3

3
+
x5

5
− x7

7
+ · · ·

)
·
(
1 + 2x+ 3x2 + 4x3 + · · ·

)
yields

(
x+ 2x2 + 3x3 + 4x4 + · · ·

)
+

(
−x

3

3
− 2x4

3
− 3x5

3
− 4x6

3

)
+

(
x6

5
+

2x7

5
+

3x8

5
+

4x9

5
+ · · ·

)
+

(
−x

8

7
− 2x9

7
− 3x10

7
− 4x11

7
+ · · ·

)
+ · · ·

and collecting terms of the same degree gives an expansion starting x+ 2x2 +
8

3
x3 +

10

3
x4 + · · · .

◦ Thus, the power series expansion for for
tan−1(x)

(1− x)2
at x = 0 begins x+ 2x2 +

8

3
x3 +

10

3
x4 + · · · .

8.2 Taylor Series

• We have already seen that a few functions can be represented as power series, such as the function
1

1− x
=

∞∑
n=0

xn, and that any power series is in�nitely di�erentiable on its interval of convergence. We would now like

to turn the question the other way around, namely: if we have an in�nitely di�erentiable function f(x), can
it be represented as a power series, and if so, what are its coe�cients?

◦ Suppose that f(x) =

∞∑
n=0

an(x− c)n = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + a4(x − c)4 + · · · is

representable by a power series with a positive radius of convergence.

◦ Then, by di�erentiating term-by-term, we obtain

f(x) = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + a4(x− c)4 + · · ·
f ′(x) = a1 + 2a2(x− c) + 3a3(x− c)2 + 4a4(x− c)3 + · · ·
f ′′(x) = 2a2 + 3 · 2 · a3(x− c) + 4 · 3 · a4(x− c)2 + 5 · 4 · a5(x− c)3 + · · ·
f ′′′(x) = 3 · 2 · a3 + 4 · 3 · 2 · a4(x− c) + 5 · 4 · 3 · a5(x− c)2 + · · ·
f ′′′′(x) = 4 · 3 · 2 · a4 + 5 · 4 · 3 · 2 · a5(x− c) + · · ·

...
...

...
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◦ Now, if we set x = c in each of these expressions (which is allowed because x = c is always inside the
interval of convergence), all of the positive-degree terms will vanish, and we obtain the equalities

f(c) = a0

f ′(c) = a1

f ′′(c) = 2a2

f ′′′(c) = 3 · 2 · a3
f ′′′′(c) = 4 · 3 · 2 · a4

...
...

...

◦ We see immediately that an must necessarily be equal to
f (n)(c)

n!
, where f (n) denotes the nth derivative

(as always).

◦ Thus, if the function f(x) can be represented as a power series (which is not necessarily the case!), the

series must be of the form

∞∑
n=0

f (n)(c)

n!
(x− c)n.

◦ It therefore seems worthwhile to study power series having this form.

• De�nition: If f is a function whose nth derivative at x = a exists for every n, then the Taylor series for f(x) at x = a

is the series

∞∑
n=0

fn(a)

n!
(x− a)n, where f (n) is the nth derivative of f .

◦ The �rst few terms of the expansion are f(a) + f ′(a) · (x− a) + f ′′(a)

2
(x− a)2 + f ′′′(a)

6
(x− a)3 + · · · .

◦ It is most common to deal with Taylor series at x = 0, since the terms in the power series are simplest
to write in this case. Such series are often called Maclaurin series (though there is no need to give them
a special name).

◦ Since Taylor series are special cases of power series, all of our results about power series automatically
apply to them: thus, for example, the Taylor series for f ′(x) is obtained by di�erentiating the Taylor
series for f(x) term-by-term.

◦ At the moment, we do not have the ability to determine whether the Taylor series for a function actually
converges to that function or not. (We will return to this question soon.)

• Example: Find the Taylor series for f(x) = ex at x = 0, and at x = 1.

◦ Since f (n)(x) = ex for all n, we have f (n)(0) = 1 and f (n)(1) = e for all n.

◦ Thus, the Taylor series for ex at x = 0 is

∞∑
n=0

xn

n!
=1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · · , while the Taylor series

for ex at x = 1 is

∞∑
n=0

e

n!
(x− 1)n = e+ e(x− 1) +

e2

2!
(x− 1)2 + · · · .

◦ Here are plots of y = ex along with the partial sums 1+x, 1+x+
x2

2!
, 1+x+

x2

2!
+
x3

3!
, and 1+x+

x2

2!
+
x3

3!
+
x4

4!
of its Taylor series at x = 0:

-1 0 1 2 3

2

4

6

8

10

12

14

-1 0 1 2 3 4

2

4

6

8

10

12

14

-1 0 1 2 3 4

2

4

6

8

10

12

14

-1 0 1 2 3 4

2

4

6

8

10

12

14

◦ As can be seen from the graphs, the successive partial sums approach the graph more and more closely.
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• Example: Find the Taylor series for f(x) = sin(x) and g(x) = cos(x) at x = 0.

◦ For sine, we have f(x) = sin(x), f ′(x) = cos(x), f ′′(x) = − sin(x), f ′′′(x) = − cos(x), f (4) = sin(x),
f (5)(x) = cos(x), and so forth. Evaluating at x = 0 yields (respectively) the values 0, 1, 0, −1, 0, 1, 0,
−1, ....

◦ Thus, the �rst few terms in the Taylor series for sin(x) are x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

◦ To write the general term of the series, we note that only odd-degree terms show up, and they alternate

in sign. Writing down the terms yields the expression

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

◦ For cosine, we can simply take the derivative term-by-term to obtain

∞∑
n=0

(−1)n

(2n)!
x2n = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

◦ Here are plots of the partial sums 1− x2

2!
, 1− x2

2!
+
x4

4!
, and 1− x2

2
+
x4

4!
− x6

6!
for the Taylor series for

cosine:

-6 -4 -2 2 4 6

-2

-1

1

2

-6 -4 -2 2 4 6

-2

-1

1

2

-6 -4 -2 2 4 6

-2

-1

1

2

◦ As can be seen from the graphs, the successive Taylor series align with the graph on larger and larger
intervals around 0.

• Example: Find the Taylor series for f(x) = (1 + x)k at x = 0, in terms of k.

◦ We have f ′(x) = k · (1 + x)k−1, f ′′(x) = k(k − 1) · (1 + x)k−2, f ′′′(x) = k(k − 1)(k − 2) · (1 + x)k−3, and
in general, f (n)(x) = k(k − 1) · · · (k − n+ 1) · (1 + x)k−n.

◦ Thus, f (n)(0) = k(k − 1) · · · (k − n+ 1), so the nth Taylor coe�cient is an =
k(k − 1) · · · (k − n+ 1)

n!
.

◦ The traditional notation for the expression an =
k(k − 1) · · · (k − n+ 1)

n!
is

(
k

n

)
, and it is called a

binomial coe�cient.

◦ Thus, the Taylor series is

∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · · , and it is known

as the binomial series.

◦ For k a positive integer, the coe�cients are eventually zero (starting with the k+1st coe�cient, since it
contains a k−k term in the numerator), and we will recover the �nite binomial expansion. For example,
writing out the series with k = 2 yields the familiar (1 + x)2 = 1 + 2x+ x2.

• Example: Find the Taylor series for f(x) =
1

x
at x = 3.

◦ We have f ′(x) = − 1

x2
, f ′′(x) =

2

x3
, f ′′′(x) =

−3!
x4

, f (4)(x) =
4!

x5
, f (5)(x) =

−5!
x6

, and so forth.

◦ Following the pattern indicates that the nth derivative is f (n)(x) =
(−1)nn!
xn+1

, meaning that f (n)(3) =

(−1)nn!
3n+1

.

◦ Thus, the Taylor series for f(x) =
1

x
at x = 3 is

∞∑
n=0

(−1)n

3n+1
(x− 3)n = 1− 1

3
(x− 3) +

1

9
(x− 3)2 − 1

27
(x− 3)3 + · · · .
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• Example: Find the Taylor series for f(x) =
1

1− x
at x = 0.

◦ We have f ′(x) =
1

(1− x)2
, f ′′(x) =

2

(1− x)3
, f ′′′(x) =

3!

(1− x)4
, and in general, f (n)(x) =

n!

(1− x)n+1
,

meaning that f (n)(0) = n!.

◦ Thus, the Taylor series is simply

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · .

◦ As we have already seen several times, this power series does actually converge to the value
1

1− x
for

|x| < 1.

• Example: Find the Taylor series for f(x) = x3 sin(x) at x = 0, and then �nd f (10)(0).

◦ This is simply x3 times the series for sin(x):

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+4 = x4 − x6

3!
+
x8

5!
− x10

7!
+ · · · .

◦ From the series expansion, we know immediately that the value of the tenth derivative f (10)(0) at x = 0

is equal to 10! times the coe�cient of x10: thus, f (10)(0) = −10!

7!
= −720 .

◦ Note that it is not at all easy to compute the value of f (10)(0) simply by taking derivatives: we have
f ′(x) = x3 cos(x) + 3x2 sin(x), f ′′(x) = −x3 sin(x) + 6x2 cos(x) + 6x sin(x), f ′′′(x) = −x3 cos(x) −
9x2 sin(x)+ 18x cos(x)+ 6 sin(x), and each subsequent derivative requires three more applications of the
Product Rule.

• Example: Find the Taylor series for ex sin(x) at x = 0 up through degree 5.

◦ We can obtain this series by multiplying out the series for ex with the series for sin(x).

◦ Explicitly multiplying out

(
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

)
·
(
x− x3

3!
+
x5

5!
+ · · ·

)
yields

(
x+ x2 +

x3

2!
+
x4

3!
+
x5

5!
· · ·
)
+

(
−x

3

3!
− x4

3!
− x5

2! · 3!
− · · ·

)
+

(
x5

5!
+
x6

5!
+

x7

2! · 5!
+ · · ·

)
+ · · ·

and then collecting terms of the same degree yields the start of the series as x+ x2 +
x3

3
− x5

30
+ · · · .

◦ Thus, the desired Taylor series up through degree 5 is x+ x2 +
x3

3
− x5

30
+ · · · .

• Example: Find the Taylor series for f(x) = sin(x) cos(x) at x = 0.

◦ We could �nd this series by multiplying out the series for sin(x) and cos(x).

◦ However, it is much easier to apply the double-angle identity sin(x) cos(x) =
1

2
sin(2x), and instead

compute the Taylor series for sin(2x).

◦ We can obtain the series for sin(2x) simply by plugging in 2x in place of x for the Taylor series of sin(x).

◦ This gives the series

∞∑
n=0

(−1)n

(2n+ 1)!
(2x)2n+1 =

∞∑
n=0

(−1)n22n+1

(2n+ 1)!
x2n+1 = 2x− (2x)3

3!
+

(2x)5

5!
− (2x)7

7!
+ · · · .

◦ Dividing by 2 yields the requested series as

∞∑
n=0

(−1)n22n

(2n+ 1)!
x2n+1 = x− 22

3!
x3 +

24

5!
x5 − 26

7!
x7 + · · · .

• Example: Find the Taylor series for the function f(x) =

{
e−1/x

2

for x 6= 0

0 for x = 0
, centered at x = 0.
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◦ By the limit de�nition of derivative, f ′(0) = lim
x→0

e−1/x
2

x
= lim
u→±∞

e−u
2

1/u
= lim
u→±∞

u

eu2 = 0, since the ex-

ponential will dominate the polynomial. (We substituted u = 1/x in the middle step.)

◦ By the Chain Rule, f ′(x) =
e−1/x

2

x3
, so again by the de�nition, f ′′(0) = lim

x→0

e−1/x
2

/x3

x
= lim
x→0

e−1/x
2

x4
. In

the same way as before, we can make a substitution to show that this limit is also equal to 0.

◦ Next, we have f ′′(x) =
2− 3x2

x6
e−1/x

2

, so like before, f ′′′(0) = lim
x→0

2− 3x2

x7
e−1/x

2

, and a slightly lengthier

computation eventually shows this limit is also equal to 0.

◦ In fact, if we continue calculating derivatives of this function at x = 0, we will see that they are all equal
to zero! Thus, the Taylor series for this function is 0 + 0x+ 0x2 + 0x3 + 0x4 + · · · = 0 .

◦ What is happening here is that the function is so �at near the origin that all its derivatives are actually
equal to zero, as can be seen from the graph of y = f(x):

-2 -1 1 2

0.2

0.4

0.6

8.3 Taylor Polynomials and Convergence of Taylor Series

• We now know how to compute Taylor series, but we have still not answered a very important question: when
does an in�nite Taylor series actually converge to the original function?

◦ Explicitly, we are asking: if f(x) is a function, for which values of x does the power series T (x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n converge to f(x)?

◦ We have already seen an example where the Taylor series converges to the function for some but not all

values of x � like for f(x) =
1

1− x
, if |x| < 1.

◦ We have also seen an example where the Taylor series almost never converges to the value of the function:
the ��at� function f(x) = e−1/x

2

for x 6= 0, with f(0) = 0, has its Taylor series identically equal to zero,
but the function is only zero at x = 0.

◦ It would be nice if we could tell when we are dealing with a function that converges to its Taylor series,
so as to avoid badly-behaved examples like e−1/x

2

.

• The partial sums of a Taylor series will be very important in our discussion, so we will give them a name:

• De�nition: The kth Taylor polynomial for f(x) at x = a is the kth partial sum Tk(x) =

k∑
n=0

f (n)(a)

n!
(x− a)n

of the Taylor series for f(x).

◦ In other words, it is the Taylor series summed �up to the kth power�. Thus for example, T2(x) =

f(a) + f ′(a) · (x− a) + f ′′(a)

2
(x− a)2.

◦ Example: The degree-4 Taylor polynomial for f(x) = cos(x) at x = 0 is T4(x) = 1− x2

2!
+
x4

4!
.

◦ Notice that the formula for the linearization of the function y = f(x) at x = a is the linear (degree-1)
Taylor polynomial.

◦ The degree-k Taylor polynomial agrees with the value of f and its �rst k derivatives at x = a, meaning

that T
(d)
k (a) = f (d)(a) for 0 ≤ d ≤ k.
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8.3.1 Taylor's Theorem

• We are interested in the size of the �remainder term� Rk(x) = f(x) that shows up when we approximate a
function f(x) by one of its Taylor polynomials Tk(x).

• Theorem (Taylor's Theorem): Suppose f(x) is a function whose (k+1)st derivative is continuous. If Tk(x) is
the kth Taylor polynomial for f(x) at x = a, and Rk(x) = Tk(x)− f(x) is the �remainder term�, then for any
value b, we have

|Rk(b)| ≤M ·
|b− a|k+1

(k + 1)!
,

where M is any constant such that
∣∣f (k+1)(x)

∣∣ ≤M for all x in the interval [a, b].

◦ There are a number of di�erent formulas for the remainder term in Taylor's Theorem.

∗ The �integral form� of the remainder estimate is: if f (k+1)(x) is continuous on [a, b], then Rk(b) =
1

k!

´ b
a
(b− t)kf (k+1)(t) dt.

∗ Notice that the case k = 0 of the integral form says that f(b) − f(a) = 1

1!

´ b
a
f ′(t) dt, which is the

Fundamental Theorem of Calculus.

∗ Lagrange's form of the remainder estimate is: if f (k+1)(x) is continuous on [a, b], then there exists a

number ζ in (a, b) such that Rk(b) =
(b− a)k+1

(k + 1)!
· f (k+1)(ζ).

∗ Notice that the case k = 0 of Lagrange's estimate says that there exists a number ζ in (a, b) such
that f(b)− f(a) = (b− a) · f ′(ζ), which is equivalent to the Mean Value Theorem.

◦ Proof (k = 1 case with b > a): By hypothesis, |f ′′(x)| ≤M for all x in [a, b], so in particular, f ′′(x) ≤M .

∗ By integrating both sides on the interval [a, x], we see that
´ x
a
f ′′(t) dt ≤

´ x
a
M dt.

∗ Evaluating the integrals gives f ′(x)− f ′(a) ≤M(x− a), or equivalently, f ′(x) ≤ f ′(a) +M(x− a).
∗ Integrating both sides on the interval [a, b] then yields

´ b
a
f ′(x) dx ≤

´ b
a
[f ′(a) +M(x− a)] dx.

∗ Evaluating the integrals gives f(b)− f(a) ≤ (b− a)f ′(a) +M · (b− a)
2

2!
.

∗ Rearranging yields Rk(b) ≤M ·
(b− a)2

2!
.

∗ In a similar manner, we can obtain the lower bound −M · (b− a)
2

2!
≤ Rk(b) by integrating the

inequality −M ≤ f ′′(x). Together, these give the desired bound.

◦ The proof where b < a is essentially the same (just with the endpoints reversed), and the proof for
general k follows in the same way by integrating k + 1 times.

• Taylor's Theorem implies that the kth Taylor polynomial Tk(x) gives the best approximation to the function
f(x) near x = a, among all polynomials of degree k.

◦ Explicitly, the theorem implies that Tk(x) is the only polynomial p(x) such that as x→ a, the di�erence
f(x)− p(x) shrinks faster than (x− a)k.

8.3.2 Convergence of Common Taylor Series

• The estimate given by Taylor's Theorem is powerful enough to prove that the Taylor series for a number of
common functions will actually converge to the function's value.

◦ The idea behind most of these proofs is to prove that the remainder term Rk(x) goes to zero as k →∞.

• Example: Show that the Taylor series

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 converges to sin(x) for all x.
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◦ We note that

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 is the Taylor series for sin(x) at x = 0, so we will set a = 0.

◦ In order to apply Taylor's Theorem, we �rst have to �nd a constant M such that
∣∣f (k+1)(x)

∣∣ ≤ M for
all x in the interval [0, b].

◦ Since the derivatives of f are all either ± sin(x) or ± cos(x), we see that for any k and any x, it is always
true that

∣∣f (k+1)(x)
∣∣ ≤ 1. Therefore, we can take M = 1.

◦ Then, applying Taylor's Theorem to f(x) = sin(x) with a = 0 yields the bound |Rk(b)| ≤
|b|k+1

(k + 1)!
.

◦ As k →∞, for any value of b, the value of
|b|k+1

(k + 1)!
tends to 0, since the factorial grows faster than any

polynomial.

◦ Therefore, as k →∞, the remainder term tends to zero, meaning that T (b) = f(b) = sin(b), as claimed.

• Example: Show that the Taylor series

∞∑
n=0

(−1)n

(2n)!
x2n converges to cos(x) for all x.

◦ From the previous example, we know that sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1. As we saw earlier, the radius of

convergence for this power series is R =∞.

◦ Di�erentiating both sides immediately yields that cos(x) =

∞∑
n=0

(−1)n

(2n)!
x2n for all x, because we are

allowed to di�erentiate a power series term-by-term within its radius of convergence.

◦ Of course, we could also have made a similar argument using Taylor's Theorem like we did for sine, but
it was not necessary to duplicate the calculation we already made.

• Example: Show that the Taylor series

∞∑
n=0

1

n!
xn converges to ex for all x.

◦ We note that

∞∑
n=0

1

n!
xn is the Taylor series for ex at x = 0, so we will set a = 0.

◦ In order to apply Taylor's Theorem, we �rst have to �nd a constant M such that
∣∣f (k+1)(x)

∣∣ ≤ M for
all x in the interval [0, b].

◦ Since f (k+1)(x) = ex for any k, we see that
∣∣f (k+1)(x)

∣∣ ≤ eb on the interval [0, b] if b > 0, and
∣∣f (k+1)(x)

∣∣ ≤
1 ≤ e−b on the interval [b, 0] if b < 0. To cover both cases at once, we can take M = e|b|.

◦ Then, applying Taylor's Theorem to f(x) = ex with a = 0 yields the bound |Rk(b)| ≤ e|b|
|b|k+1

(k + 1)!
.

◦ As k → ∞, for any value of b, the value of e|b|
|b|k+1

(k + 1)!
tends to 0, since the factorial grows faster than

any polynomial. (Note that e|b| does not depend on k, so it acts like a constant.)

◦ Therefore, as k →∞, the remainder term tends to zero, meaning that T (b) = f(b) = eb, as claimed.

◦ Note in particular that if we set x = 1 in the Taylor series expansion, we obtain the interesting fact that

e =

∞∑
n=0

1

n!
= 1 +

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · ·.

• Example: Show that, for any k, the binomial series

∞∑
n=0

(
k

n

)
xn converges to (1 + x)k whenever |x| < 1.

◦ Although it is possible to show this result using Taylor's Theorem to bound the size of the remainder
term, it is very di�cult. (The problem is that it is not so easy to get a su�ciently good estimate on the
magnitude of the n+ 1st derivative as n→∞.)
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◦ We will instead use a di�erent method: let B(x) =

∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 + · · · .

◦ First, observe that for an =

(
k

n

)
xn we have lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣k − nn+ 1
x

∣∣∣∣ = |x|, so by the Ratio Test

the power series converges for |x| < 1.

◦ Next, di�erentiate B(x) term-by-term to see that B′(x) = k + (k − 1)x+
k(k − 1)(k − 2)

2!
x2 + · · · .

◦ Then, by multiplying out and collecting terms, we see that

(1+x)B′(x) = (1+x)·
(
k + (k − 1)x+

k(k − 1)(k − 2)

2!
x2 + · · ·

)
= k+k2x+

k2(k − 1)

2!
x2+· · · = k·B(x).

◦ Now notice that the derivative of (1+x)−kB(x) is−k(1+x)−k−1B(x)+(1+x)−kB(x) =
(1 + x)B′(x)− kB(x)

(1 + x)k+1
=

0.

◦ Therefore, the derivative of (1 + x)−kB(x) is identically zero, meaning that (1 + x)−kB(x) is a constant
function for |x| < 1.

◦ Since B(0) = 1, we conclude that B(x) = (1 + x)k whenever |x| < 1.

8.3.3 Table of Common Taylor Series

• For reference, here is a table of the most commonly used Taylor series:

Function Series Initial Terms Converges for

1

1− x

∞∑
n=0

xn 1 + x+ x2 + x3 + x4 + · · · −1 < x < 1

ex
∞∑
n=0

xn

n!
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · · All x

sin(x)

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 x− x3

3!
+
x5

5!
− x7

7!
+ · · · All x

cos(x)

∞∑
n=0

(−1)n

(2n)!
x2n 1− x2

2!
+
x4

4!
− x6

6!
+ · · · All x

tan−1(x)

∞∑
n=0

(−1)n

2n+ 1
x2n+1 x− x3

3
+
x5

5
− x7

7
+ · · · −1 ≤ x ≤ 1

ln(1 + x)

∞∑
n=0

(−1)n−1

n
xn x− x2

2
+
x3

3
− x4

4
+ · · · −1 < x ≤ 1

(1 + x)k
∞∑
n=0

(
k

n

)
xn 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · · −1 < x < 1

• We have centered each of these series at x = 0, since the terms are easiest to write down there.

◦ We have already found the Taylor series for all of the functions listed above. We omit the details of the
veri�cations that the remaining Taylor series converge to the function values.

8.4 Applications of Taylor Series

• Taylor series are used extensively in the physical sciences owing to their ability to closely approximate com-
plicated functions with simpler ones (namely, polynomials). This is especially true in physics, where it is very
common to end up with functions that are too hard to analyze exactly. In order to be able to analyze the
relevant behavior, a common procedure is to use a Taylor polynomial of small degree to get an approximate
result.
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◦ As an example, Planck's law says that the spectral radiance of a black body at frequency ν and temper-

ature T is given by the formula B(ν, T ) =
2hν3

c2
·
(
e
hν
kT − 1

)−1
, where k is Boltzmann's constant, h is

Planck's constant, and c is the speed of light.

◦ It is of interest to understand the behavior of this function when ν → 0 (the �low-frequency limit�), and
when ν → ∞ (the �high-frequency limit�) since previous models were unable to capture both behaviors
correctly.

◦ By expanding the function B(ν, T ) as a Taylor series in ν at ν = 0, it is easy to analyze the behavior as

ν → 0: one obtains B(ν, T ) ≈ 2kT

c2
ν2, a result known as the Rayleigh-Jeans law.

◦ In a similar way, one see that for large ν, it is true that B(ν, T ) ≈ 2hν3

c2
e−

hν
kT , a result known as the

Wein approximation.

8.4.1 Summing Series Using Taylor Expansions

• Taylor's Theorem gives us a new way to evaluate in�nite series: if we recognize that a series is actually a
Taylor series of some function evaluated at some point, then (provided the Taylor series converges to the value
of the function) the value of the function is the sum of the series.

◦ Even if the series is not absolutely convergent at the given point, the error estimate from Taylor's Theorem
might be strong enough to allow us to determine the value of the series anyway.

• Example: Find the Taylor series for ln(1 + x) at x = 0, and then write down an in�nite series for ln(2).

◦ We have f ′(x) =
1

1 + x
, f ′′(x) =

−1
(1 + x)2

, f ′′′(x) =
2

(1 + x)3
, f (4)(x) =

−3!
(1 + x)4

, and in general,

f (n)(x) =
(−1)n−1 · (n− 1)!

(1 + x)n
, meaning that f (n)(0) = (−1)n−1 · (n− 1)! for n ≥ 1.

◦ Thus, the Taylor series for ln(1 + x) at x = 0 is

∞∑
n=1

(−1)n−1

n
= x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · · .

◦ Now we will use Taylor's Theorem, with f(x) = ln(1 + x), a = 0, and b = 1.

◦ On the interval [0, 1], the function f (n+1)(x) takes its maximum absolute value at x = 0, and the
maximum is (−1)n · n!. Thus, we can take M = n!, and then Taylor's Theorem implies that

|Tk(1)− ln(2)| ≤ M · |b− a|n+1

(n+ 1)!
=
n! · 1n+1

(n+ 1)!
=

1

n+ 1
.

◦ In other words, the partial sum 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·+ (−1)k

k
, is within

1

k + 1
of ln(2).

∗ For example, if we take k = 99, our result says that 1− 1

2
+

1

3
− 1

4
+ · · · − 1

99
= 0.6982 is within 0.01

of ln(2) = 0.6931, which indeed it is.

◦ Taking the limit as k →∞ provides a proof that ln(2) =

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · .

(Notice that this is simply the alternating harmonic series.)

◦ Note that the Alternating Series Test can be applied to show that the alternating harmonic series con-
verges (and it gives the same error bound on partial sums), but it does not say anything about the actual
value.

◦ Taylor's Theorem, then, has given us a very nontrivial piece of new information: namely, the actual value
of the alternating harmonic series.
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• Example: Show that the series

∞∑
n=0

2n

n!
converges, and then �nd its sum.

◦ It is an easy matter to apply the Ratio Test to see that this series converges, since, if an =
2n

n!
, then

an+1

an
=

2

n+ 1
, which goes to 0 as n→∞. However, the Ratio Test (or any other convergence test) will

shed no light on the actual value of the series.

◦ To �nd the value, we try to recognize this series as the value of a Taylor series: in this case, we see that

it is the Taylor series

∞∑
n=0

xn

n!
evaluated at x = 2.

◦ We know that

∞∑
n=0

xn

n!
is the Taylor series for ex, and that this series converges to ex for all x. We then

set x = 2 to conclude that

∞∑
n=0

2n

n!
= e2 .

• Example: Show that the series

∞∑
n=1

1

n · 2n
converges, and then �nd its sum.

◦ It is an easy matter to apply the Comparison Test to see that this series converges, since
1

n · 2n
≤ 1

2n
,

and

∞∑
n=1

1

2n
converges.

◦ To �nd the value, we try to recognize this series as the value of a Taylor series: in this case, we see that

it is the Taylor series

∞∑
n=1

xn

n
evaluated at x =

1

2
.

◦ Now notice that the derivative of

∞∑
n=1

xn

n
is

∞∑
n=0

xn =
1

1− x
, which converges for |x| < 1.

◦ Then for some C, we have

∞∑
n=1

xn

n
=

ˆ
1

1− x
dx = − ln(1− x) + C, valid for |x| < 1. To �nd C, we

simply set x = 0 to obtain C = 0.

◦ Hence,

∞∑
n=1

xn

n
is the Taylor series for f(x) = − ln(1− x), convergent for |x| < 1.

◦ So we can set x = 1/2 to obtain

∞∑
n=1

1

n · 2n
= − ln(1/2) = ln(2) .

8.4.2 Numerical Approximations Via Taylor Series

• The error estimate from Taylor's Theorem allows us to make arbitrarily good estimates of function values
using a power series expansion.

◦ Exponentials, logarithms, radicals, and trigonometric functions are generally impossible to compute by
hand directly. (For example, what is ln(3.22)?)

◦ However, if we replace such a function with its Taylor series (centered at a nearby location to make
computation easy), then we can use the Taylor expansion to compute the value of the function, within
a bounded error tolerance.

◦ This is, almost exactly, how computing devices actually evaluate expressions like e1.402: they use a small
amount of stored data (like e1 = 2.71828...) combined with the necessary series expansions and error
estimates to �nd values between their stored data points.
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• Example: Calculate the value of
√
1.01 to six decimal places, by hand.

◦ The Taylor series for
√
x at x = 1 is 1+

1

2
(x−1)− 1

8
(x−1)2+ 1

16
(x−1)3+· · · , by repeated di�erentiation.

∗ This is also an example of the binomial expansion, applied to (1 + x)1/2.

◦ Therefore, for f(x) =
√
x, a = 1, b = 1.01, and k = 2, we see that on the interval [1, 1.01], the function

f ′′′(x) =
3

8
x−5/2 is bounded above by its value at 1: namely,

3

8
.

◦ Then Taylor's Theorem tells us that
∣∣T2(1.01)−√1.01∣∣ ≤ 3

8
· |1.01− 1|3

3!
=

10−6

16
< 10−7.

◦ But T2(1.01) = 1 +
1

2
(0.01)− 1

8
(0.01)2 = 1 + 0.005− 0.0000125 = 1.0049875.

◦ Because we know that the error is less than 10−7, we conclude that
√
1.01 ≈ 1.004988 to six decimal

places.

• Example: Calculate the value of e0.03 to eight decimal places.

◦ The Taylor series for ex at x = 0 is 1 + x+
x2

2
+
x3

6
+ · · · .

◦ We want to determine the number of terms we will need to estimate this value. Since f (n)(x) = ex, we
see that on the interval [0, 0.03], the maximum value of f (n)(x) is just e0.03 < e < 3. Thus, we can take
M = 3.

◦ Now we take f(x) = ex, a = 0, b = 0.03, and M = 3 in Taylor's Theorem: this yields the error bound

∣∣Tn(e0.03)− e0.03∣∣ ≤ 3
|0.03− 0|n+1

(n+ 1)!
= 3 · 0.03

n+1

(n+ 1)!
.

◦ If we try n = 4, the upper bound is 3 · 0.03
5

5!
=

36

120 · 1010
<

103

1012
= 10−9, so it will be accurate to at

least 8 decimal places.

◦ The desired approximation is T4(0.03) = 1 + 0.03 +
0.032

2
+

0.033

6
+

0.034

24
= 1.03045453375, which, to

eight decimal places, gives the approximation e0.03 ≈ 1.03045453 .

8.4.3 Approximating Functions by Polynomials

• On the most basic level, the fact that a function possesses a convergent Taylor series says that, on the interval
of convergence, the function can be approximated arbitrarily closely by a polynomial: namely, an appropriate
Taylor polynomial.

• For example, the fact that ex =

∞∑
n=0

xn

n!
for all real x means that the sequence of polynomials 1, 1 + x,

1+ x+
x2

2!
, 1+ x+

x2

2!
+
x3

3!
, ... will eventually approximate ex within any arbitrarily small accuracy, for any

�xed x.

◦ Moreover, we can obtain an upper bound on the size of the error on any interval [a, b] using Taylor's
Theorem.

◦ Having such a bound is useful because it allows us to write down uniform approximation to the function
ex on an entire interval, rather than merely �nding an approximate value at a single point.

• Example: Approximate the function f(x) =
√
x by a polynomial of degree 3 near x = 4. Then bound the

maximum error of the approximation on the interval [3, 5].

◦ We will use the degree-3 Taylor polynomial for
√
x at x = 4.
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◦ To �nd the coe�cients, we can compute f ′(x) =
1

2
x−1/2, f ′′(x) = −1

4
x−3/2, f ′′′(x) =

3

8
x−5/2, so that

f ′(4) =
1

4
, f ′′(4) = − 1

32
, and f ′′′(4) =

3

256
.

◦ Thus, the desired Taylor polynomial is
√
x ≈ T3(x) = 2 +

1

4
(x− 4)− 1

32
(x− 4)2 +

3

256
(x− 4)3 .

◦ To bound the error, we use Taylor's Theorem with f(x) =
√
x and a = 4.

◦ We need to �nd anM such that |f ′′′′(x)| ≤M for all x in [3, 5]. Since f ′′′′(x) = −15

16
x−7/2, the maximum

value occurs when x = 3, and so we can take M =
15

16
· 3−7/2.

◦ Then, for any b in the interval [3, 5], we have |b− 4| ≤ 1, so Taylor's Theorem gives |R3(x)| ≤ M ·
|b− 4|4

4!
≤ M

4!
< 8.35 · 10−4 .

• Example: Approximate the function f(x) = sin(x) by a polynomial on the interval [−π2 ,
π
2 ] such that the error

is at most 0.01 at any point in the interval.

◦ We will use a Taylor polynomial for sin(x) at x = 0: what we want is to determine how big we need to
take the degree to get the desired accuracy.

◦ The Taylor series for f(x) = sin(x) is

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 = x − x3

3!
+
x5

5!
− x7

7!
+ · · · , and we know it

converges to sin(x) for all real x.

◦ In order to apply Taylor's Theorem, we �rst need to �nd a constant M such that
∣∣f (k+1)(x)

∣∣ ≤M for all
x in the interval [−π, π]. As we saw when we proved that the Taylor series for sine converges to sin(x),
we can take M = 1 since each derivative is ± sin(x) or ± cos(x).

◦ Applying Taylor's Theorem to f(x) = sin(x) with a = 0 shows that

|Rk(b)| ≤
|b|k+1

(k + 1)!
≤ (π/2)k+1

(k + 1)!

for any b in the interval [−π2 ,
π
2 ], since |b| ≤

π
2 for any such b.

◦ We want to ensure that this quantity is at most 0.01. It can be checked with a calculator that
(π/2)6

6!
≈

0.00468, so we may take k = 6.

◦ The desired polynomial is then T6(x) = x− x3

3!
+
x5

5!
. At x = π/2, for example, its value is 1.0045, as

compared to sin(π/2) = 1.

8.4.4 Computing Integrals Using Series Expansions

• Unlike with di�erentiation, it is not always possible to compute a closed-form expression for arbitrary an-
tiderivatives of elementary functions in terms of other elementary functions.

◦ An elementary function is any combination of algebraic, trigonometric, or exponential functions (or their
inverses): thus, for example, esin(

√
x) and tan−1(ln(1− 3x3)) are elementary functions.

◦ Also, even when a function does have an elementary antiderivative, it can sometimes be much more
complicated than the original function. For example,

ˆ √
tan(x) dx =

1√
8

[
2 tan−1

(√
2 tan(x)

1− tan(x)

)
+ ln

(
1−

√
2 tan(x) + tan(x)

1 +
√

2 tan(x) + tan(x)

)]
+ C.

• If f(x) is a function that has a Taylor series expansion, however, we can simply integrate term-by-term to
�nd its antiderivative. We will then usually be able to �nd an easy upper bound on the error, thus allowing
us to compute an approximation of the integral within any desired accuracy.
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• It is also worth noting that, unlike other numerical integration procedures like computing a Riemann sum or
using Simpson's Rule, using a Taylor series only requires us to evaluate polynomials (as opposed to evaluating
many general function values).

• Example: Find a series expansion for a function whose derivative is e−x
2

. Use the result to estimate the value

of

ˆ 1

0

e−x
2

dx to two decimal places.

◦ The Taylor series for ex is ex =

∞∑
n=0

xn

n!
, so to get a series for e−x

2

we simply plug in −x2 to obtain

e−x
2

=

∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n

n!
x2n = 1− x2 + x4

2!
− x6

3!
+
x8

4!
+ · · · .

◦ Integrating term-by-term gives the general antiderivative

ˆ
e−x

2

dx = C +

∞∑
n=0

(−1)n

n! · (2n+ 1)
x2n+1 = C + x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · · .

◦ We can set C = 0 to get a speci�c antiderivative F (x) = x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · · .

◦ To estimate the integral, we know by the Fundamental Theorem of Calculus that
´ 1
0
e−x

2

dx = F (1) −

F (0) = F (1) = 1− 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
− 1

11 · 5!
+ · · · .

◦ Since this is an alternating series whose terms are decreasing in magnitude, we know that the size of the
error is bounded by the next term of the series.

◦ Therefore, the estimate 1− 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
≈ 0.738 will be within

1

11 · 5!
<

1

1000
of the actual

value of the sum, and it will be an underestimate.

∗ Another approach for bounding the error would be to use Taylor's Remainder Theorem, but this is
trickier because it requires having an upper bound on the derivatives of e−x

2

.

◦ Thus, to two decimal places, the value of the integral is 0.74 .

• Example: Find a series expansion for the value of the integral

ˆ 1

0

√
1 + x3dx. Use the result to estimate the

value of the integral to two decimal places.

◦ First, we know that the binomial series expansion for
√
1 + x is

∞∑
n=0

(
1/2

n

)
xn = 1+

1

2
x− 1

8
x2+

1

16
x3−· · · ,

so the expansion for
√
1 + x3 is

∞∑
n=0

(
1/2

n

)
x3n = 1 +

1

2
x3 − 1

8
x6 +

1

16
x9 − · · · ,

◦ Integrating term-by-term shows that an antiderivative is F (x) =

∞∑
n=0

1

3n+ 1
·
(
1/2

n

)
x3n+1 = x+

1

8
x4 −

1

56
x7 +

1

160
x10 − · · · .

◦ Then

ˆ 1

0

√
1 + x3dx = F (1)− F (0) = F (1) =

∞∑
n=0

1

(3n+ 1)
·
(
1/2

n

)
.

◦ The �rst few terms in the series are 1 +
1

8
− 1

56
+

1

160
− 5

1664
+ · · · .

◦ After the �rst two terms, it is easy to see that this series is alternating and that the terms are decreasing

in magnitude, so by the Alternating Series Test, the estimate 1 +
1

8
− 1

56
+

1

160
≈ 1.1134 is within

5

1664
<

1

300
of the actual value, and it is an overestimate

◦ Hence, to two decimal places, the value of the integral is 1.11 .
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8.4.5 Computing Limits Using Series Expansions

• Using series expansions, we can compute limits.

◦ The basic idea for using Taylor series to compute a limit of the form lim
x→a

f(x)

g(x)
is to �nd Taylor series

expansions for both f and g at x = a, and then compare the relevant lowest-degree terms. (We can also
evaluate other limit forms as well in this manner, but a quotient is the most common.)

◦ Although in principle many such limits can also be handled with enough applications of L'Hôpital's Rule,
many computer algebra systems actually use Taylor series expansions to compute limits because it is
faster to compute series expansions.

◦ Furthermore, applying L'Hôpital's Rule many times can rapidly become very cumbersome if the functions
involved are at all complicated.

• Example: Find lim
x→0

ex − x− 1

cos(x)− 1
.

◦ Since the Taylor series for ex is 1+x+
x2

2!
+
x3

3!
+
x4

4!
+· · · , the Taylor series for ex−x−1 is x

2

2!
+
x3

3!
+
x4

4!
+· · · .

◦ Likewise, since the Taylor series for cos(x) is 1− x2

2!
+
x4

4!
− x6

6!
+ · · · , the Taylor series for cos(x)− 1 is

−x
2

2!
+
x4

4!
− x6

6!
+ · · · .

◦ Therefore, lim
x→0

ex − x− 1

cos(x)− 1
. = lim

x→0

1

2
x2 +

1

6
x3 +

1

24
x4 + · · ·

−1

2
x2 +

1

24
x4 − 1

720
x6 + · · ·

= lim
x→0

1

2
+

1

6
x+

1

24
x2 + · · ·

−1

2
+

1

24
x2 − 1

720
x4 + · · ·

= −1 ,

where we simply set x = 0 in the numerator and denominator at the last step.

◦ Note that these manipulations are valid because all of the power series involved are continuous at x = 0.

◦ We can also �nd the limit using L'Hôpital's Rule twice: lim
x→0

ex − x− 1

cos(x)− 1
= lim
x→0

ex − 1

− sin(x)
= lim
x→0

ex

− cos(x)
= −1 .

• Example: Find lim
x→0

x2 sin(2x3)

tan−1(x5)
.

◦ Since the Taylor series for sin(x) is x − x3

3!
+
x5

5!
− · · · , the Taylor series for x2 sin(2x3) is given by the

expression x2 ·
[
2x3 − (2x3)3

3!
+

(2x3)5

5!
− · · ·

]
= 2x5 − 23

3!
x11 +

25

5!
x17 − · · · .

◦ Similarly, since the Taylor series for tan−1(x) is x − x3

3
+
x5

5
− · · · , the Taylor series for tan−1(x5) is

x5 − x15

3
+
x25

5
− · · · .

◦ Therefore, lim
x→0

x2 sin(2x3)

tan−1(x5)
= lim
x→0

2x5 − 4

3
x11 +

4

15
x17 − · · ·

x5 − 1

3
x15 +

1

5
x25 − · · ·

= lim
x→0

2− 4

3
x6 +

4

15
x11 − · · ·

1− 1

3
x10 +

1

5
x15 − · · ·

= 2 , where

we simply set x = 0 in the numerator and denominator at the last step.

◦ Note that all of these manipulations are valid because all of the power series involved are continuous at
x = 0.

◦ It is of course possible to compute this limit using �ve applications of L'Hôpital's Rule, but the algebra
involved in computing the required �fth derivatives is quite extensive (and unpleasant to do without a
computer).
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8.4.6 Euler's Formula

• As our last example, we will show how Euler's Formula can be found very naturally using Taylor series.

• We know that ex =

∞∑
n=0

xn

n!
for any real number x. In fact, this formula also holds for any complex number x.

• Although we will omit the (rather lengthy) details, all of our results on convergence of series can be extended
to series of complex numbers as well.

• Setting x = iθ then produces

eiθ =

∞∑
n=0

(iθ)n

n!

= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− θ6

6!
− iθ7

7!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
.

• But now notice that the real part is the Taylor series for cos(θ), while the imaginary part is the Taylor series
for sin(θ).

• Thus, we obtain eiθ = cos(θ) + i sin(θ), which is precisely Euler's formula.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2015. You may not reproduce or distribute this
material without my express permission.
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