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7 Sequences and Series

Our �rst goal in this chapter is to introduce the notion of a convergent sequence and to discuss the closely related
concept of a series. We give a de�nition for �in�nite series�, and then to discuss how to calculate the value of in�nite
sums in some cases.

We then turn our attention to the question of whether a given in�nite series converges. We discuss the most
commonly used convergence tests for positive series (the Integral Test, Comparison Tests, Ratio Test, and Root
Test) and then discuss general series whose terms may be positive or negative (in particular, alternating series) and
the ideas of absolute and conditional convergence.

We will not dwell extensively on the technical details involved in the justi�cations of all of the results: although
we will give proofs of the main results when feasible, learning the details of the proofs is far less important than
understanding how the results are used. Our goal is primarily to state the tests, illuminate the underlying ideas
behind them, and explain how they are used. To this end, we close our discussion with an extensive array of
examples illustrating the convergence tests.

7.1 Sequences and Convergence

• De�nition: A sequence is a (�nite or in�nite) ordered list of numbers a1, a2, a3, a4, ... , an, .... We will
usually be concerned with in�nite sequences.

◦ The sequence 1, 2, 3, 4, ... is the sequence of positive integers, whose nth term is de�ned as an = n.

◦ The sequence 1,
1

2
,
1

3
,
1

4
, ... is the sequence of reciprocals of positive integers, whose nth term is an =

1

n
.

◦ Another sequence is 1, −1, 1, −1, 1, −1, ..., whose nth term is an = (−1)n+1.



• One of the most immediate questions for an in�nite sequence is �how does this sequence behave as we go
further and further out?� In other words, what happens to an as n→∞?

◦ One possibility is that the terms could approach (closer and closer) to some �xed �limiting value� L.

Notice, for example, that the terms in the sequence 1,
1

2
,
1

3
,
1

4
, ... are getting closer and closer to 0.

◦ Another possibility is that the terms could grow without bound, like the terms in the sequence 1, 2, 3,
4, ....

◦ Yet another possibility is that the terms could just bounce around and not settle down to anything, like
the terms in the sequence 1, −1, 1, −1, 1, −1, ....
◦ Ultimately, we are asking about whether this sequence �converges to a limit�. This is very much the same
question we could ask about a function f(x): namely, what happens to the value of f(x) as x→∞?

• De�nition: We say a sequence a1, a2, ... converges to the limit L if, for any ε > 0 (no matter how small) there
exists some positive integer N such that for every n ≥ N , it is true that |an − L| < ε. If there is no value of
L such that the sequence an converges to L, then we say the sequence an diverges.

◦ Intuitively, the de�nition says that the sequence converges to L if the terms of the sequence eventually
get and stay arbitrarily close to L.

◦ This de�nition is almost identical to the formal ε− δ de�nition of the limit of a function. Like with that
de�nition, we use it primarily as a starting point.

◦ Example: The sequence 1,
1

2
,
1

3
,
1

4
,
1

5
, ... whose nth term is an =

1

n
converges to 0 .

∗ In the formal de�nition, we can take N = 2/ε: then for any n ≥ N , we see that |an − L| =
∣∣∣∣ 1n
∣∣∣∣ ≤

1

N
≤ ε

2
< ε, as desired.

◦ Example: The sequence −1, 1, −1, 1, −1, ... whose nth term is an = (−1)n diverges , since it alternates

forever between +1 and −1.
∗ This series, in an imprecise way, really is trying to converge to 'two values' (namely, 1 and −1).

◦ Remark: The convergence of a sequence is not a�ected if we remove a �nite number of terms from the
sequence. So, for example, the sequence a1, a2, a3, a4, a5, · · · has exactly the same convergence properties
as the sequence a5, a6, a7, · · · .

• As with limits of a function, the limit of a sequence obeys a number of simple rules (sometimes collectively
called the �Limit Laws�).

• Theorem (Limit Laws for Sequences): Let {an} and {bn} be sequences of real numbers and A,B be real
numbers. If lim

n→∞
an = A and lim

n→∞
bn = B, then the following properties hold:

◦ The addition rule: lim
n→∞

[an + bn] = A+B.

◦ The subtraction rule: lim
n→∞

[an − bn] = A−B.

◦ The multiplication rule: lim
n→∞

[an · bn] = A ·B.

∗ Note that the multiplication rule yields as a special case (when bn is identically equal to a constant
c) the constant-multiplication rule: lim

n→∞
[c · an] = c ·A, where c is any real number.

◦ The division rule: lim
n→∞

[
an
bn

]
=
A

B
. provided that B is not zero.

◦ The squeeze rule (also called the sandwich rule): If an ≤ bn ≤ cn and lim
n→∞

an = L = lim
n→∞

cn (meaning

that both limits exist and are equal to L) then lim
n→∞

bn exists and is also L.

◦ The proofs of these results follow in the same way as for limits of functions. We omit the details.

• We also have a few additional results concerning limits of sequences:



◦ The Monotone Convergence Theorem: If the sequence a1, a2, ... is monotone increasing and bounded
above, then it converges.

∗ A sequence is monotone increasing if a1 < a2 < a3 < · · · , and a sequence is bounded above if there
exists some M with all ai ≤M .

∗ This property is almost equivalent to part of the de�nition of the real numbers: it follows from what
is called the least upper bound property.

∗ By multiplying everything by−1, the theorem also says that if a sequence of real numbers is monotone
decreasing and bounded below, then it has a limit.

∗ Example: The sequence an with an = 1− 1

n2
converges , because the terms are monotone increasing,

and they are all bounded above by 1 because the square is always positive. (In fact, the limit of this
sequence is 1.)

◦ The Continuous Function Theorem: If f(x) is any continuous function and {an} is any convergent se-
quence with lim

n→∞
an = A, then lim

n→∞
f(an) = f(A).

∗ This theorem is intuitively very natural: for a function to be continuous, it must be the case that as
we approach any point x = A, the value of the function must get closer and closer to f(A). This is
precisely the behavior captured by the convergent sequence.

∗ Example: The sequence bn with bn = 21/n converges to 1 , because if we set an =
1

n
and f(x) = 2x,

then bn = f(an). Since lim
n→∞

an = 0, the Theorem indicates that lim
n→∞

f(an) = 20 = 1.

• Just like with limits of functions, we can sometimes be more precise about the way in which a sequence
diverges: if the terms grow very large and positive, for example, it is natural to want to say that the sequence
diverges to +∞.

◦ We will say that a sequence a1, a2, ... diverges to +∞ if for any M > 0 (no matter how large) there
exists some N such that for every n ≥ N , it is true that an > M .

◦ We will also say that a sequence a1, a2, ... diverges to −∞ if for any M > 0 (no matter how large) there
exists some N such that for every n ≥ N , it is true that an < −M .

◦ These are just formalisms that give a more careful meaning to the idea of �the terms get and stay
arbitrarily large and positive� or �the terms get and stay arbitrarily large and negative�.

• Frequently, in computing limits of sequences, the terms of the sequence are the values f(1), f(2), f(3), ... for
some simple function f(x). There is a very natural relation between the limit of the sequence and the limit
of the function:

• Proposition: If f(x) is any function such that lim
x→∞

f(x) = L, then the limit of the sequence f(1), f(2), f(3),

... is equal to L. Also, if the limit of the function is ∞ (or −∞), then so is the limit of the sequence.

◦ The idea is simply that if the sequence f(1), f(2), f(3), ... did not have limit L, then this would
contradict the statement that lim

x→∞
f(x) = L, since both notions of convergence are capturing the idea

that the values of f(x) must get and stay close to L for large x.

◦ Example: The sequence 1,
1

2
,
1

3
, ... whose nth term is an =

1

n
converges to 0 : it is the sequence f(1),

f(2), f(3), ... with f(x) =
1

x
, and lim

x→∞

1

x
= 0.

◦ Example: The sequence 1, 2, 4, ... whose nth term is an = 2n diverges to +∞ : it is the sequence f(1),

f(2), f(3), ... with f(x) = 2x, and lim
x→∞

2x =∞.

• Frequently, it is useful to invoke L'Hôpital's Rule in combination with this result.

◦ Recall that L'Hôpital's Rule says that if f and g are di�erentiable functions, and lim
n→∞

f(n)

g(n)
is of the

form
0

0
or
∞
∞

, then lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)
, assuming the second limit exists.



◦ The result above says that we can use L'Hôpital's Rule to compute limits of sequences, provided they
are a quotient of the necessary form.

◦ Example: The sequence
1

2
,
3

3
,
5

4
,
7

5
,
9

6
, ... whose nth term is an =

2n− 1

n+ 1
converges to 2 : it is the

sequence f(1), f(2), f(3), ... with f(x) =
2n− 1

n+ 1
. We then compute lim

n→∞

2n− 1

n+ 1

l'H
= lim

x→∞

2

1
= 2, where

we used l'Hôpital's rule in the equality labeled �l'H�.

7.2 In�nite Series

• If a1, a2, ... is a sequence, recall the summation notation

k∑
n=1

an = a1 + a2 + · · · + ak: it means �add up all

terms of the form an, where n runs from 1 to k�.

◦ We would like to give meaning to an �in�nite sum�: something like

∞∑
n=1

an = a1 + a2 + · · ·+ ak + · · · .

◦ As written, this doesn't really make sense: how do we add in�nitely many things? The answer is: we
add the �rst k of them, and then consider what happens as k →∞.

• De�nition: If a1, a2, a3, ... is an in�nite sequence, we de�ne the value (or sum) of the in�nite series

∞∑
n=1

an

to be the limit lim
k→∞

Sk, where Sk =

k∑
n=1

an is the kth partial sum of the series (namely, the sum of the �rst n

terms in the series). We say the series converges to L if the limit lim
k→∞

Sk exists and equals L, and we say it

diverges otherwise. (We also include the possibility that it could diverge to ∞ or to −∞.)

◦ Important Note: Notice that a series is di�erent from a sequence: a series is a sum, while a sequence is
a list of numbers.

◦ Example: The series

∞∑
n=1

1

2n
converges to 1 : the sequence of partial sums is

1

2
,
3

4
,
7

8
,
15

16
,
31

32
,
63

64
, . . . . We

see that the kth partial sum is Sk = 1− 1

2k
, and since lim

k→∞
Sk = lim

k→∞

(
1− 1

2k

)
= 1, the series converges

to 1.

◦ Example: The series

∞∑
n=1

(−1)n diverges : the sequence of partial sums is −1, 0,−1, 0,−1, 0, . . . , which

alternates forever and does not converge.

◦ Example: The series

∞∑
n=1

2n diverges to +∞ : the sequence of partial sums is 2, 6, 14, 30, 62, . . . . We

see that the kth partial sum is Sk = 2k+1 − 2, which diverges to ∞. (Alternatively, if we didn't see the
pattern, clearly the kth term is bigger than k.)

• In order for a series to converge, the terms of the series must eventually be small. Explicitly:

• Test (�Divergence� Test): The series

∞∑
n=1

an diverges if lim
n→∞

an 6= 0. If the limit exists and is positive, then

the series diverges to +∞; if it is negative, the series diverges to −∞.

◦ The �limit does not equal zero� part includes the case where the limit doesn't exist.

◦ Intuitively, if the terms aren't eventually very small, then the partial sums will bounce around too much
to converge to a limit L. This is the essence of the proof of the test.

◦ Note that this test is only a test for divergence, not a test for convergence.

◦ Important Warning: The converse of the theorem is FALSE! Even if the terms an tend to 0, the series
doesn't have to converge. (We will give an example in a moment.)



• Example: Determine whether the series

∞∑
n=1

n

n+ 1
converges.

◦ We see that lim
n→∞

n

n+ 1

l'Hô
= lim

n→∞

1

1
= 1, where we used l'Hôpital's rule in the middle.

◦ Since this is not zero, this series diverges . (In fact, it diverges to +∞.)

• Example: Determine whether the series

∞∑
n=1

(−1)nn2√
n4 + 1

converges.

◦ We see that lim
n→∞

(−1)nn2√
n4 + 1

= lim
n→∞

(−1)n√
1 + 1/n4

= lim
n→∞

(−1)n, and this last limit does not exist.

◦ Thus, this series diverges .

• Example: Determine whether the series
1

2
+

1

2
+

1

4
+

1

4
+

1

4
+

1

4︸ ︷︷ ︸
4 times

+ · · ·+ 1

2n
+ · · ·+ 1

2n︸ ︷︷ ︸
2n times

+ · · · converges.

◦ Notice that the terms in this series do approach zero; nonetheless, we claim that this series diverges!

◦ We just group all of the equal terms together: when we add all of the 2n copies of
1

2n
that show up, we

get 1.

◦ Thus, the partial sum including all terms whose denominator is
1

2n
or smaller is equal to 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

=

n, since there are n such �blocks� of terms.

◦ Since this goes to +∞, we conclude that the series diverges to +∞ .

• There are two simple types of series for which we can write down easy summation formulas: geometric series
and telescoping series.

7.2.1 Geometric Series

• De�nition: A geometric sequence is of the form a, ar, ar2, ... , for some initial value a and some common
ratio r. We are interested in summing the corresponding geometric series a+ ar + ar2 + ar3 + · · · .

◦ Consider the partial sum Sk = a+ ar+ ar2 + ar3 + · · ·+ ark. Then rSk = ar+ ar2 + ar3 + · · ·+ ark+1,
and so Sk − rSk = a− ark+1.

◦ Therefore, Sk = a · 1− r
k+1

1− r
is the sum of the �nite geometric series

k∑
n=0

arn, provided r 6= 1.

• Proposition: If −1 < r < 1, then the in�nite geometric series

∞∑
n=0

arn converges to the value
a

1− r
. If r ≥ 1,

then the series diverges to +∞ if a > 0 and to −∞ if a < 0. Finally, if r ≤ −1 and a 6= 0, then the series
diverges (in an oscillatory way).

◦ Proof: Write the summation formula as Sk =
a

1− r
− a

1− r
rk+1 for r 6= 1.

∗ If −1 < r < 1, then the limit as n→∞ of the second term is zero, so the series converges to
a

1− r
.

∗ If r = 1, then the series is just a+ a+ a+ · · · , which diverges to +∞ if a > 0 and to −∞ if a < 0.

∗ If r > 1, then the limit of the second term is +∞ if a > 0 and −∞ if a < 0.

∗ If r = −1, then the series is just a− a+ a− a+ · · · , which diverges for a 6= 0.

∗ If r < −1, then the second term oscillates between positive and negative, and grows larger (in
magnitude) as n grows, so the series diverges.



• Example: We sum the series

∞∑
n=0

1

2n
= 1 +

1

2
+

1

4
+

1

8
+ · · · = 1

1− 1/2
= 2 .

• Example: We sum the series

∞∑
n=1

9

10n
=

9

10
+

9

100
+

9

1000
+ · · · = 9/10

1− 1/10
= 1 .

◦ In other words, the in�nite repeating decimal 0.9999999... is actually equal to 1!

• Example: The series

∞∑
n=0

2n = 1 + 2 + 4 + 8 + · · · diverges to +∞ .

• Example: The series

∞∑
n=0

(−2)n = 1− 2 + 4− 8 + 16− 32 +− · · · diverges .

7.2.2 Telescoping Series

• A telescoping series is of the form [f(1) − f(2)] + [f(2) − f(3)] + [f(3) − f(4)] + · · · =
∞∑

n=1

[f(n)− f(n+ 1)],

for some function f(x).

◦ We can see just by removing the parentheses and cancelling that

k∑
n=1

[f(n)− f(n+ 1)] = f(1)− f(k + 1).

◦ Thus, to compute the sum of the in�nite series

∞∑
n=1

[f(n)− f(n+ 1)], we simply take the limit as k →∞

of the partial sum f(1)− f(k + 1). (If the sum diverges, then so does the series.)

• Example: Find the sum of the in�nite series

∞∑
n=1

1

n2 + n
.

◦ We use partial fraction decomposition to see that
1

n2 + n
=

1

n
− 1

n+ 1
.

◦ Then we can write

k∑
n=1

1

n2 + n
=

k∑
n=1

[
1

n
− 1

n+ 1

]
= 1− 1

k + 1
.

◦ As k →∞, the sum therefore converges to 1 .

• Example: Find the sum of the in�nite series

∞∑
n=1

ln

(
1 +

1

n

)
.

◦ We use logarithms properties to write ln

(
1 +

1

n

)
= ln

(
n+ 1

n

)
= ln(n+ 1)− ln(n).

◦ Then we can write

k∑
n=1

ln

(
1 +

1

n

)
=

k∑
n=1

[ln(n+ 1)− ln(n)] = ln(k + 1)− ln(1) = ln(k + 1).

◦ As k →∞, the sum therefore diverges to ∞ .

7.3 Positive Series: Integral Test, Comparison Tests, Ratio and Root Tests

• In general, it is di�cult (and frequently, impossible) to give �closed-form�, simple expressions for the sums of
in�nite series.



• We are therefore willing to settle for determining whether or not a given series converges to a �nite value. If
we can see that it does converge, then usually with only a little more e�ort we can (in principle, most of the
time) compute the value to as much accuracy as we want using a computer.

• There is a fairly extensive array of �series convergence tests�, giving various criteria for when a series will
converge or diverge. In this section, we will discuss the most commonly used tests for series whose terms are
all positive. (In the next section, we will treat sequences with negative terms.)

• The fundamental idea behind each of these series tests is to compare the given series to something else that
is easier to understand: either an integral, or a similar (but simpler) series.

• Note also that if all the terms of a series are positive, either the series diverges to +∞, or it is bounded above.
In the latter case, the Monotone Convergence Theorem implies that the series converges to a �nite limit.
Thus, we need only determine whether the series converges or diverges.

7.3.1 Integral Test

• Test (Integral Test): If f(x) is a decreasing, positive function, then the series

∞∑
n=1

f(n) converges if and only

if the integral

ˆ ∞
1

f(x) dx converges.

◦ Almost always we will use this theorem to say something about the sum, by computing (or at the least,
checking convergence of) the integral. The theorem is useful because sums are hard to evaluate exactly,
but integrals are often easier.

◦ Proof: The essence of the proof is contained in the following two 'staircase' diagrams:

∗ In the picture on the left, the red region is the area under the curve y = f(x) on the interval [1, k+1],
while the blue region is composed of k rectangles each of width 1, having height f(n + 1) on the
interval [n, n+1] for each integer 1 ≤ n ≤ k. It is easy to see that the area of the blue region is equal

to the sum

k+1∑
n=2

f(n+ 1), while the area of the red region is equal to the integral

ˆ k+1

1

f(x) dx. Since

f(x) is decreasing, the blue region is contained in the red region, so

k+1∑
n=1

f(n+ 1) ≤
ˆ k+1

1

f(x) dx.

∗ In the picture on the right, the red region is the area under the curve y = f(x) on the interval
[1, k + 1], while the blue region is composed of k rectangles each of width 1, having height f(n) on

the interval [n, n+ 1]. This time, the area of the blue region is equal to the sum

k∑
n=1

f(n), while the

area of the red region is equal to the integral

ˆ k+1

1

f(x) dx. Since f(x) is decreasing, the blue region

contains the red region, so

ˆ k+1

1

f(x) dx ≤
k∑

n=1

f(n).

∗ Combining the two inequalities gives

k+1∑
n=2

f(n+ 1) ≤
ˆ k+1

1

f(x) dx ≤
k∑

n=1

f(n). Taking the limit as



k → ∞ shows that

[ ∞∑
n=1

f(n)

]
− f(1) ≤

[ˆ ∞
1

f(x) dx

]
≤

[ ∞∑
n=1

f(n)

]
. Thus, we see that the sum

being �nite forces the integral to be �nite, and vice versa.

◦ We also remark that we do not need to start the summation at 1, since the convergence of a series is not
a�ected if we remove a �nite number of terms. We may replace 1 with any integer and the result will
still hold.

• Our proof of the Integral Test also gives us a technique for bounding the value of a series. Explicitly:

• Corollary: If f(x) is a decreasing positive function and S =

∞∑
n=1

f(n) is �nite, then for Sk =

k∑
n=1

f(n) we have

the inequality Sk +

ˆ ∞
k+1

f(x) dx ≤ S ≤ Sk +

ˆ ∞
k

f(x) dx.

◦ We can rearrange this to see that |S − Sk| ≤
ˆ ∞
k

f(x) dx.

◦ Hence, if we want to estimate the value of S within an error of ε, we simply need to �nd the smallest k

such that

ˆ ∞
k

f(x) dx ≤ ε: then Sk will be within ε of S.

• Example (p-series): For each positive real number p, determine whether the series

∞∑
n=1

1

np
converges.

◦ We apply the Integral Test: we thus need to determine the convergence of the integral is
´∞
1

1

xp
dx =´∞

1
x−p dx.

◦ If p < 1 then the integral is

(
x1−p

1− p

)
|∞x=1 , which diverges to ∞ , because x1−p tends to ∞ as x does,

since 1− p > 0.

◦ If p = 1 then the integral is (ln(x)) |∞x=1 , which diverges to ∞ , because ln(x) tends to ∞ as x→∞.

◦ If p > 1 then the integral is

(
x1−p

1− p

)
|∞x=1 =

1

1− p
, since 1−p < 0. The integral converges, and therefore

the sum converges .

◦ Remark: The sum

∞∑
n=1

1

n
, the p-series with p = 1, is called the harmonic series. It is the simplest example

of a non-convergent series whose terms nonetheless shrink to zero.

• Example: Give an estimate for the value of the series

∞∑
n=1

1

n3
that is accurate to (at least) two decimal places.

◦ We know this series converges by the previous example. The corollary tells us to �nd the value of k such

that

ˆ ∞
k

1

x3
dx ≤ 0.01.

◦ We compute

ˆ ∞
k

1

x3
dx = −1

2
x−2 |∞x=k =

1

2
k−2. Thus we want to pick k such that

1

2
k−2 ≤ 0.01.

◦ If we choose k = 8, then
1

2
k−2 =

1

128
< 0.01.

◦ Hence the partial sum S8 =

8∑
n=1

1

n3
= 1 +

1

23
+

1

33
+ · · ·+ 1

83
≈ 1.195 is guaranteed to be within 0.01

of the full in�nite sum.

• Example: Determine whether the series

∞∑
n=2

1

n ln(n)
is convergent or divergent.



◦ Applying the Integral Test indicates we should determine the convergence of the integral

ˆ ∞
2

1

x · (ln(x))
dx.

◦ Upon making the substitution u = ln(x), with du =
1

x
dx, we obtain

´∞
2

1

x · (ln(x))
dx =

´∞
ln(2)

1

u
du =

ln(u)
∣∣∣∞u=ln(2) =∞, since the natural logarithm goes to ∞.

◦ Since the integral diverges to ∞, by the Integral Test we conclude that the sum diverges to ∞ .

• Example: Determine whether the series

∞∑
n=1

n

en
is convergent or divergent.

◦ Applying the Integral Test indicates we should determine the convergence of the integral

ˆ ∞
1

x

ex
dx =

ˆ ∞
1

x e−x dx.

◦ Now we integrate by parts: recall that the integration by parts formula says
´
f ′(x) g(x) dx = f(x) g(x)−´

f(x) g′(x) dx.

◦ We take f ′(x) = e−x with f(x) = −e−x, and g(x) = x with g′(x) = 1.

◦ This yields
´
x e−x dx = −x e−x −

´
(−e−x) · 1 dx = −x e−x +

´
e−x dx = −x e−x − e−x + C.

◦ Hence

ˆ ∞
1

x e−x dx =
[
−x e−x − e−x

]
|∞x=1 =

1

e
+
1

e
=

2

e
, where we computed lim

x→∞
−xe−x = lim

x→−∞
− x

ex
= 0

via L'Hôpital's Rule.

◦ Since the integral converges, by the Integral Test we conclude that the sum converges .

7.3.2 Comparison Test

• Test (Comparison Test): Given two sequences {an} and {bn} of positive numbers such that an < bn for all n,

if

∞∑
n=1

bn converges then so does

∞∑
n=1

an. Also, if

∞∑
n=1

an diverges then so does

∞∑
n=1

bn.

◦ This just says that if a (positive) series converges, then any other series with smaller (positive) terms
also converges.

◦ Similarly, if a (positive) series diverges, then any other series with bigger terms also diverges.

◦ The proof of the test is merely these observations applied to the sequence of partial sums of the two
series, along with an appeal to the Monotone Convergence Theorem.

• Example: Determine whether the series

∞∑
n=2

n

n2 − 1
is convergent or divergent.

◦ We observe that
n

n2 − 1
>

n

n2
=

1

n
.

◦ Since the sum

∞∑
n=2

1

n
diverges by the Integral Test, the Comparison Test says that

∞∑
n=2

n

n2 − 1
diverges

as well.

• Example: Determine whether the series

∞∑
n=1

|sin(n)|
3n2 + 5

is convergent or divergent.

◦ We observe that |sin(n)| ≤ 1 for any n, and 3n2 + 5 > 3n2.

◦ Hence we have
|sin(n)|
3n2 + 5

≤ 1

3n2 + 5
≤ 1

3n2
.

◦ Since the sum

∞∑
n=1

1

3n2
converges by the Integral Test, the Comparison Test says that

∞∑
n=1

|sin(n)|
3n2 + 5

converges .



7.3.3 Limit Comparison Test

• Test (Limit Comparison Test): Given sequences {an} and {bn} of positive numbers, if lim
n→∞

an
bn

is some positive

constant c, then

∞∑
n=1

an converges if and only if

∞∑
n=1

bn converges.

◦ This just says that if the terms in two series are (fairly close) to being a positive constant times the
other, then the two series either both converge or both diverge. The proof of the test is essentially just
this idea, done carefully.

◦ In general, to use the Limit Comparison Test, the idea is to �nd a simpler series bn such that lim
n→∞

an
bn

is �nite and positive, such that bn is easier to analyze.

• Example: Determine whether the series

∞∑
n=1

2n− 1

n3 + 5
is convergent or divergent.

◦ For large n, the numerator will be dominated by the 2n term and the denominator will be dominated by

the n3 term. Thus, we will try comparing the given series to the series with bn =
2n

n3
=

2

n2
.

◦ For an =
2n− 1

n3 + 5
and bn =

2

n2
, we have lim

n→∞

an
bn

= lim
n→∞

(2n− 1)/(n3 + 5)

2/n2
= lim

n→∞

2n3 − n2

2n3 + 10
= 1, by

standard limit properties (or L'Hôpital's Rule applied three times).

◦ So, because we know that

∞∑
n=1

bn =

∞∑
n=1

2

n2
converges by the Integral Test, the Limit Comparison Test

says that

∞∑
n=1

an also converges .

• Example: Determine whether the series

∞∑
n=1

n− sin(n)

n2 + ln(n)
is convergent or divergent.

◦ We will deal with the numerator and denominator separately by making two comparisons.

◦ First, the numerator will be dominated by the n term, because sine is between −1 and 1, so we begin by

comparing the given series to the series with bn =
n

n2 + ln(n)
.

◦ For an =
n− sin(n)

n2 + ln(n)
and bn =

n

n2 + ln(n)
, we have

lim
n→∞

an
bn

= lim
n→∞

(n− sin(n))/(n2 + ln(n))

n/(n2 + ln(n))
= lim

n→∞

n− sin(n)

n
= lim

n→∞

(
1− sin(n)

n

)
= 1,

where in the last step we used the squeeze theorem (since sine is bounded as n→∞).

◦ So we are reduced to determining whether

∞∑
n=1

bn =

∞∑
n=1

n

n2 + ln(n)
converges.

◦ We do the same procedure for this series: the denominator will be dominated by the n2 term, so we will

compare to the series with cn =
n

n2
=

1

n
.

◦ For bn =
n

n2 + ln(n)
and cn =

1

n
, we have lim

n→∞

bn
cn

= lim
n→∞

n/(n2 + ln(n))

1/n
= lim

n→∞

n2

n2 + ln(n)
= 1 by a

few applications of L'Hôpital's Rule.

◦ Finally, since

∞∑
n=1

cn =

∞∑
n=1

1

n
diverges by the Integral Test, we conclude that

∞∑
n=1

an also diverges .



7.3.4 Ratio Test

• Test (Ratio Test): If the sequence {an} of positive real numbers has the property that lim
n→∞

an+1

an
exists and

equals some constant ρ, then the sum

∞∑
n=1

an converges if ρ < 1, and diverges if ρ > 1. If ρ = 1 then the test

is inconclusive, while if ρ =∞ then the series diverges.

◦ The idea behind the proof of the test is to compare the sequence {an} to a geometric series with common
ratio ρ.

◦ Proof: First suppose that the limit lim
n→∞

an+1

an
= ρ is less than 1.

∗ Let ε =
1− ρ
2

. By de�nition, there exists some N such that
an+1

an
≤ 1 − ε for every n ≥ N . (This

follows because 1− ε is equal to ρ+ ε, whereas the fact that the limit lim
n→∞

an+1

an
is equal to ρ means

that there cannot be in�nitely many terms with
an+1

an
> 1− ε.)

∗ Thus we have aN+1 ≤ (1−ε)aN , aN+2 ≤ (1−ε)aN+1 ≤ (1−ε)2aN , and, by repeating this argument,
aN+k ≤ (1− ε)kaN .

∗ Therefore, we have the upper bound

∞∑
n=N

an ≤
∞∑

n=N

(1− ε)n−NaN = aN ·
1

ε
, since this last sequence

is a geometric series with common ratio 1− ε. We conclude that

∞∑
n=1

an is bounded above, so by the

Monotone Convergence Theorem it converges.

∗ If the value of ρ is bigger than 1, then we can use essentially the same argument to compare the
series to a geometric series with common ratio larger than 1, to see that the series diverges. (We
will omit the details.)

• Example: Determine whether the series

∞∑
n=1

en

n!
is convergent or divergent.

◦ We see that for an =
en

n!
we have

an+1

an
=
en+1/(n+ 1)!

en/n!
=

en+1 · n!
en · (n+ 1)!

=
e

n+ 1
, so lim

n→∞

an+1

an
= 0.

◦ Therefore the series converges by the Ratio Test.

• Example: Determine whether the series

∞∑
n=1

(2n)!

(n!)2
is convergent or divergent.

◦ We see that for an =
(2n)!

(n!)2
we have

an+1

an
=

(2n+ 2)!/ [(n+ 1)!]
2

(2n)!/[n!]2
=

(2n+ 2)(2n+ 1)

(n+ 1)(n+ 1)
=

4n2 + 6n+ 2

n2 + 2n+ 1
.

◦ Now we see that lim
n→∞

an+1

an
= 4, either by basic limits or two applications of L'Hôpital's Rule.

◦ Therefore the series diverges by the Ratio Test.

7.3.5 Root Test

• Test (Root Test): If the sequence {an} of positive real numbers has the property that lim
n→∞

n
√
an exists and

equals some constant ρ, then the sum

∞∑
n=1

an converges if ρ < 1, and diverges if ρ > 1. If ρ = 1 the test is

inconclusive, while if ρ =∞ then the series diverges.

◦ This test is like the Ratio Test but can work better for certain types of series. The idea of the proof is
the same, though: it compares the sequence {an} to a geometric series with common ratio ρ.



◦ Proof: First suppose that the limit lim
n→∞

n
√
an = ρ is less than 1.

∗ Let ε =
1− ρ
2

. By de�nition, there exists some N such that n
√
an ≤ 1 − ε for every n ≥ N . (This

follows because 1− ε is equal to ρ+ ε, whereas the fact that the limit lim
n→∞

n
√
an is equal to ρ means

that there cannot be in�nitely many terms with n
√
an > 1− ε.)

∗ Hence, for any n ≥ N , we have an ≤ (1− ε)n.

∗ Therefore, we have the upper bound

∞∑
n=N

an ≤
∞∑

n=N

(1− ε)n =
(1− ε)N

ε
, since this last sequence is

a geometric series with common ratio 1 − ε. We conclude that

∞∑
n=1

an is bounded above, so by the

Monotone Convergence Theorem it converges.

∗ If the value of ρ is bigger than 1, then we can use essentially the same argument to compare the
series to a geometric series with common ratio larger than 1, to see that the series diverges. (We
will omit the details.)

• Example: Determine whether the series

∞∑
n=1

en

nn
is convergent or divergent.

◦ For an =
en

nn
, we see that n

√
an =

e

n
, and so lim

n→∞
n
√
an = 0.

◦ Therefore the series converges by the Root Test.

• Example: Determine whether the series

∞∑
n=1

2n
2

nn
is convergent or divergent.

◦ For an =
2n

2

nn
, we see that n

√
an =

2n

n
. Then lim

n→∞
n
√
an = lim

n→∞

2n

n
=∞ by basic limit properties or an

application of L'Hôpital's Rule.

◦ Therefore the series diverges by the Root Test.

7.4 General Series: Alternating Series Test, Absolute and Conditional Convergence

• Up until now we have dealt primarily with series whose terms are positive, but we will now broaden our
analysis to series which have both positive and negative terms.

• The most common of these are alternating series, which are of the form

∞∑
n=0

(−1)nun = u0−u1+u2−u3+− · · · ,

with each un > 0.

• We will �rst analyze alternating series, and then broaden our discussion to general series.

7.4.1 Alternating Series Test

• We have a special convergence test for alternating series:

• Test (Alternating Series Test): Suppose

∞∑
n=0

(−1)nun is an alternating series with un > un+1 > 0 for all n,

and lim
n→∞

un = 0. Then the series

∞∑
n=0

(−1)nun converges. Furthermore, if S is the value of the in�nite series

and Sk is the kth partial sum, then |S − Sk| ≤ uk+1 for every k.

◦ Note: If lim
n→∞

un 6= 0, then the alternating series diverges by our earlier results.



◦ The idea behind the proof of this test is that the partial sums alternate above and below the limit of
the sum. Since the partial sums get closer and closer to each other, eventually they must converge
in on a single limiting value. Here is an illustration of this phenomenon for the alternating series

1− 1

3
+

1

5
− 1

7
+

1

9
− · · · :

0 5 10 15 20 25 30
0.6

0.7

0.8

0.9

1.0

◦ Proof of Test: Let Sk denote the kth partial sum.

∗ First, observe that S2k+1 + (u2k+2 − u2k+3) = S2k+3. Since the term in the parentheses is positive,
by the assumption that un > un+1 for all n, we conclude that S2k+1 < S2k+3 for every k. Thus,
S1 < S3 < S5 < S7 < · · · , so the odd-numbered partial sums form an increasing sequence.

∗ In a similar way, we observe that S2k − (u2k+1 − u2k+1) = S2k+2. Again, since the term in the
parentheses is positive, we conclude that S2k > S2k+2 for every k. Thus, S2 > S4 > S6 > S7 < · · · ,
so the even-numbered partial sums form a decreasing sequence.

∗ Since S2k − u2k+1 = S2k+1, we obtain the chain of inequalities S1 < S3 < S5 < · · · < S6 < S4 < S2.

∗ In particular, the odd-numbered partial sums form an increasing sequence that is bounded above
by S2. Hence by the Monotone Convergence Theorem, the odd-numbered partial sums converge to
a limit L. Then we also have lim

k→∞
S2k = lim

k→∞
S2k−1 + lim

k→∞
u2k = L+ 0 = L, so the even-numbered

partial sums converge to the same limit.

∗ For the error estimate, we simply observe that S always lies between Sk and Sk+1 for any k, and
therefore |S − Sk| ≤ |Sk+1 − Sk| = uk+1.

• Example: Determine whether the series

∞∑
n=1

(−1)n+1

n
is convergent or divergent.

◦ Here un =
1

n
and we can see that the criteria un > un+1 > 0 and lim

n→∞
un = 0 for the Alternating Series

Test are both satis�ed.

◦ Therefore, by the Alternating Series Test, this series converges .

◦ Note: This series is called the alternating harmonic series; compare it to the (regular) harmonic series
∞∑

n=1

1

n
. Observe in particular that the regular harmonic series does not converge, but the alternating

harmonic series does converge.

• Example: Show that the series

∞∑
n=1

(−1)n+1

n2 + 1
is convergent and estimate its value within an error of 0.01.

◦ Here un =
1

n2 + 1
and we can see that the criteria un > un+1 > 0 and lim

n→∞
un = 0 for the Alternating

Series Test are both satis�ed. Therefore, by the Alternating Series Test, this series converges .

◦ For the estimation of the value, we know that |S − Sk| ≤ uk+1, so we want to choose k so that uk+1 ≤
1

100

(since this will give enough accuracy). Since u10 =
1

101
, we can take k = 9.

◦ The desired estimate is

9∑
n=1

(−1)n+1

n2 + 1
≈ 0.3694 : we are then guaranteed that the in�nite sum is within

0.01 of this value.



• Example: Determine whether the series

∞∑
n=1

(−1)n · n
n2 + 1

is convergent or divergent.

◦ Here un =
n

n2 + 1
and we can check that un > un+1 > 0 by observing that un =

1

n+ 1/n
, and noting

that (n+ 1) +
1

n+ 1
> n+ 1 > n+

1

n
.

◦ Since clearly lim
n→∞

un = 0, the Alternating Series Test applies and says that the series converges .

• Example: Determine whether the series

∞∑
n=1

(−1)n · n2

n2 + 1
is convergent or divergent.

◦ Here un =
n2

n2 + 1
. We try applying the Alternating Series Test, but we cannot, because lim

n→∞

n2

n2 + 1
= 1,

by basic limit properties (or L'Hôpital's Rule).

◦ From this limit we see that the terms of the series do not tend to zero: thus, the series actually diverges .

• Example: Estimate the value of the series

∞∑
n=0

(−1)n

n!
to four decimal places.

◦ It is easy to apply the Alternating Series Test to see that this series converges: we have un =
1

n!
, and

the terms are clearly positive and decrease to zero as n→∞.

◦ For the estimation of the value, we know that |S − Sk| ≤ uk+1, so we want to choose k so that uk+1 ≤ 10−4

(since this will give enough accuracy). Since 8! = 40320 we see that u8 < 10−4, so we can take k = 7.

◦ We obtain the estimate

7∑
n=0

(−1)n

n!
≈ 0.367857, so to four decimal places the sum is 0.3679 .

7.4.2 Absolute and Conditional Convergence

• Sometimes alternating series will converge because the terms un decrease in size so rapidly that the series
would have converged even if we summed the series without the alternating signs: namely, if the series
∞∑

n=0

|(−1)nun| = u0 + u1 + u2 + u3 + · · · is convergent. This idea is captured in the following theorem:

• Test (Absolute Convergence Test): If a1, a2, ... is a sequence of real numbers and the series

∞∑
n=0

|an| converges,

then so does the series

∞∑
n=0

an.

◦ The idea of the proof is to use the Comparison Test on

∞∑
n=0

an and

∞∑
n=0

|an|. In order to do this, however,

we need to modify the �rst series slightly to make its terms nonnegative.

◦ Proof: Suppose

∞∑
n=0

|an| converges and let bn = an + |an|.

∗ Notice that 0 ≤ an + |an| ≤ 2 |an| for each n, because |an| is either equal to an or to −an.

∗ By hypothesis, the sequence

∞∑
n=0

|an| converges hence so does the sequence

∞∑
n=0

2 |an|.

∗ Now because 0 ≤ bn ≤ 2 |an|, applying the Comparison Test shows that

∞∑
n=0

bn converges.



∗ Finally, since an = bn − |an|, we see that
∞∑

n=0

an =

∞∑
n=0

bn −
∞∑

n=0

|an| is a di�erence of two convergent

series, hence is convergent.

• De�nition: A series which still converges when we take the absolute values of all the terms is said to
converge absolutely. A series which itself converges but whose absolute-value series does not converge is
said to converge conditionally.

◦ The theorem above says that every absolutely convergent series converges.

◦ In general, absolutely convergent series are much better behaved than conditionally convergent series.

• Example: Determine whether the series

∞∑
n=1

(−1)n+1

n2
is absolutely convergent, conditionally convergent, or

divergent.

◦ We analyze the series of absolute values �rst.

◦ Notice that this series is

∞∑
n=1

1

n2
, and the Integral Test says that this series converges.

◦ Therefore, the original series converges absolutely .

• Example: Determine whether the alternating harmonic series

∞∑
n=1

(−1)n+1

n
is absolutely convergent, condi-

tionally convergent, or divergent.

◦ We analyze the series of absolute values �rst.

◦ Notice that this series is

∞∑
n=1

1

n
, which diverges by the Integral Test.

◦ For the original series, as we saw above, the Alternating Series Test implies that the series converges.

◦ Therefore, the series converges conditionally .

7.4.3 Rearrangements of In�nite Series

• Another topic we can investigate is what happens if we sum the terms of a convergent series in a di�erent
order.

◦ In other words: what happens if we rearrange the terms in the series? (For example, one rearrangement

of

∞∑
n=1

an is given by a1 + a3 + a15 + a36 + a5 + a7 + a80 + · · · .)

◦ Based on the behavior of �nite sums, it may seem that rearranging the terms cannot possibly make a
di�erence, since (for example) a+ b+ c+ d is equal to d+ c+ a+ b.

◦ However, this turns out not to be the case: it is (quite unexpectedly) possible to change the value of an
in�nite order by rearranging its terms!

◦ For an explicit example, let

S = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+ · · ·

be the alternating harmonic series.

◦ Now divide each of the terms by 2 and �pad� the series by including zeroes: we get

1

2
S = 0 +

1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ 0 +

1

10
+ · · · .



◦ Now add these two series together term-by-term. By the limit laws, the summed series is

3

2
S = 1 + 0 +

1

3
− 1

2
+

1

5
+ 0 +

1

7
− 1

4
+

1

9
+ 0 + · · ·

which, after removing the zero terms, yields

3

2
S = 1 +

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+ · · · .

◦ It is straightforward to verify that every term of the alternating harmonic series occurs exactly once.
(The sequence now has two positive terms followed by a negative term, rather than alternating.) But

notice that we have changed the sum by doing this rearrangement: it is now
3

2
of the original value!

• Theorem (Riemann Rearrangement Theorem): Suppose

∞∑
n=1

an is a convergent series. If the series

∞∑
n=1

an

converges absolutely, then any rearrangement

∞∑
n=1

bn of the series has the same sum. If the series

∞∑
n=1

an

converges conditionally, then there exists a rearrangement

∞∑
n=1

bn of the series that has any desired real

number value, +∞, or −∞.

◦ The non-intuitive behavior displayed by conditionally convergent series underscores the fact that in�nite
summation can be extremely (!) delicate.

◦ In general, it is of central importance to be scrupulously careful when dealing with in�nite series, because
even something as seemingly innocuous as rearranging the terms can completely change the behavior of
the series.

◦ Outline Proof (�rst part): Consider the kth partial sum Bk =

k∑
n=1

bn.

∗ Choose k large enough so that each of a1, a2, · · · , aN appear in the sum

k∑
n=1

bn.

∗ Then the di�erence between

∞∑
n=1

an and

k∑
n=1

bn is at most

∞∑
n=N+1

|an|, since the second sum contains

N∑
n=1

an.

∗ Taking N larger and larger shows that the partial sums

k∑
n=1

bn approach the value

∞∑
n=1

an, as claimed.

◦ Outline Proof (second part): First, we note that the sum of all of the negative terms in a conditionally
convergent series must be −∞.

∗ This follows because if the sum of all the negative terms were a �nite integer −N , then the series
∞∑

n=1

|an| would be equal to 2N +

∞∑
n=1

an, which converges. (This contradicts the assumption that the

series is not absolutely convergent.)

∗ Similarly, the sum of all the positive terms in the series must be +∞.

∗ Now, in order to get a rearrangement

∞∑
n=1

bn whose sum is r ≥ 0, we sum positive terms until the

sum exceeds r, then negative terms until the sum drops below r, then more positive terms until the
sum exceeds r, and so on. The nature of the summation will make the sum hone in on the value r,
since each partial sum is a distance at most at from r (where t is a parameter that increases as we
take partial sums farther out in the series), and the terms ai shrink to zero.



∗ For a negative sum, we simply sum negative terms �rst. To get a sum of +∞, we add positive terms
until the sum exceeds 2, then negative terms until the sum drops below 1, then positive terms until
the sum exceeds 4, then negative terms until the sum drops below 3, and so on and so forth. And
for −∞, we simply interchange positive and negative.

7.5 Further Examples of Series Convergence Tests

• In this section, we give a number of examples of series and apply the various series tests to determine absolute
/ conditional convergence of the corresponding series. We have included these examples in a separate section
to give additional practice for determining which tests to use on di�erent types of in�nite series.

• Here is a general list of steps to follow when trying to determine the convergence of a given series

∞∑
n=1

an:

◦ First, determine lim
n→∞

|an|: if this limit fails to exist, or exists but is nonzero, the series diverges.

◦ Next, examine the terms in the series. There are di�erent strategies depending on the form of the terms
of the series:

◦ Suppose �rst that the terms of the series are positive:

∗ If the series is a geometric series of the form

∞∑
n=1

arn, it can be summed directly. Also consider the

possibility that the series may be a telescoping series of the form

∞∑
n=1

[f(n)− f(n+ 1)] for some nice

function f(x), or a sum of several telescoping or geometric series.

∗ If an = q(n) where q(n) is a rational function (or more generally, an algebraic function, possibly
involving radicals), use the Limit Comparison Test to compare the series to an appropriate p-series
∞∑

n=1

1

np
.

∗ More generally, if the terms of an can be easily compared to a simpler function, use the Limit
Comparison Test to convert the problem to one about analyzing a simpler series.

∗ If an = f(n) where f(x) is a nice function (whose integral

ˆ ∞
1

f(x) dx is easily evaluated), use the

Integral Test.

∗ If an = (bn)
n where bn is simple, then try using the Root Test. Particularly worth noting is the fact

that lim
n→∞

n
√
n = 1 (which may be derived from L'Hôpital's Rule).

∗ If an involves factorials, exponentials, or other kinds of products, try using the Ratio Test. (Note that
using the Ratio Test on quotients of polynomials will never work, because the quotient q(n+1)/q(n)
of successive terms always tends to 1 for any rational function q(x).)

◦ Now suppose that the series has negative terms:

∗ First analyze the absolute value series

∞∑
n=1

|an| using the tests above: if this series converges, then so

does the original series.

∗ If the series is an alternating series of the form

∞∑
n=0

(−1)nun, try using the Alternating Series Test.

◦ In some cases, it may be necessary to make algebraic manipulations to simplify the terms of the series
before applying any of the tests.

• Example: Determine whether the series

∞∑
n=1

(−1)n · 3n
3n+ 1

is absolutely convergent, conditionally convergent, or

divergent.

◦ We compute lim
n→∞

|an| = lim
n→∞

3n

3n+ 1
= 1. Since this is nonzero, we conclude that the series is divergent .



• Example: Determine whether the series

∞∑
n=0

(−3)nn3

n!
is absolutely convergent, conditionally convergent, or

divergent.

◦ We examine lim
n→∞

|an| = lim
n→∞

3nn3

n!
. This limit will be zero because factorials grow faster than exponen-

tials and polynomial functions.

◦ Now we analyze the absolute value series

∞∑
n=0

3nn3

n!
, with bn =

3nn3

n!
.

◦ Since the terms bn =
3nn3

n!
involve factorials and exponentials, we try using the Ratio Test.

◦ We compute
bn+1

bn
=

3n+1(n+ 1)3/(n+ 1)!

3nn3/n!
=

3n+1(n+ 1)3 · n!
3nn3 · (n+ 1)!

=
3(n+ 1)2

n3
.

◦ As n→∞, we see that
bn+1

bn
→ 0, since the denominator has a higher degree than the numerator.

◦ Hence by the Ratio Test, the absolute value series converges. We conclude that the original series is

absolutely convergent .

• Example: Determine whether the series

∞∑
n=0

n!

2n2 is absolutely convergent, conditionally convergent, or diver-

gent.

◦ Since the terms of this series are positive, we only need to determine convergence.

◦ It is not immediate whether lim
n→∞

an = lim
n→∞

n!

2n2 converges to zero or not.

◦ Since the terms an =
n!

2n2 involve factorials and exponentials, we try using the Ratio Test.

◦ We compute
an+1

an
=

(n+ 1)!/2(n+1)2

n!/2n2 =
(n+ 1)! · 2n2

n! · 2n2+2n+1
=
n+ 1

22n+1
.

◦ As n→∞, we see that
an+1

an
→ 0, since the exponential in the denominator will dominate the numerator.

◦ Hence by the Ratio Test, the series is (absolutely) convergent .

• Example: Determine whether the series

∞∑
n=3

1

n1+1/n
is convergent or divergent.

◦ It is easy to see that lim
n→∞

an = lim
n→∞

1

n1+1/n
converges to zero, because the denominator is bigger than

n1 = n.

◦ The function f(x) =
1

x1+1/x
is not easy to integrate. It is also not easy to take the nth root of the terms,

nor is the ratio
an+1

an
particularly nice.

◦ We do notice that the terms are rather similar to the terms of the harmonic series

∞∑
n=3

1

n
. We will try

using the Limit Comparison Test with an =
1

n
and bn =

1

n1+1/n
.

◦ We see that
an
bn

=
1/n

1/n1+1/n
=
n1+1/n

n
= n
√
n.

◦ We know that lim
n→∞

n
√
n = 1, so the Limit Comparison Test says that our series is divergent , because

we know that the harmonic series is divergent. More speci�cally, it diverges to +∞ .



• Example: Determine whether the series

∞∑
n=0

(−1)n
3
√
n2 + 1√
n3 + 4

is absolutely convergent, conditionally convergent,

or divergent.

◦ We examine lim
n→∞

|an| = lim
n→∞

3
√
n2 + 1√
n3 + 4

. This limit will be zero because the denominator grows like n3/2

while the numerator grows like n2/3.

◦ Since the terms an =
3
√
n2 + 1√
n3 + 4

involve algebraic functions, we try using the Limit Comparison Test.

◦ By basic limit properties, lim
n→∞

3
√
n2 + 1
3
√
n2

= 1, and lim
n→∞

√
n3 + 4√
n3

= 1, so the terms an grow at essentially

the same rate as
3
√
n2√
n3

=
n2/3

n3/2
= n−5/6. Explicitly, by the limit laws, we deduce that lim

n→∞

an
n−5/6

= 1.

◦ But we know that

∞∑
n=1

n−5/6 diverges to∞ since it is a p-series. Hence the original series is not absolutely

convergent by the Limit Comparison Test.

◦ Now we examine the original series, which is an alternating series.

◦ We apply the Alternating Series Test with un =
3
√
n2 + 1√
n3 + 4

. It is a straightforward check that f(x) =

3
√
n2 + 1√
n3 + 4

is a decreasing function for large enough n, and as we saw above, lim
n→∞

un = 0. Hence by the

Alternating Series Test, the original series converges.

◦ We conclude that the original series is conditionally convergent .

• Example: Determine whether the series

∞∑
n=3

1

n
√
ln(n)

is convergent or divergent.

◦ Clearly, lim
n→∞

|an| = 0.

◦ The nth root of an is not especially nice, nor is
an+1

an
, so the Root and Ratio Tests are unlikely to

be useful. The only natural series for comparison is the harmonic series, but the limit of the ratio
an
1/n

=
1√
ln(n)

is zero as n→∞.

◦ We try the Integral Test: we compute

ˆ ∞
3

1

x
√
ln(x)

dx.

◦ We substitute u = ln(x) with du =
1

x
dx to obtain

´∞
ln(3)

1√
u
du = 2u1/2

∣∣∣∞u=ln(3) =∞.

◦ Hence, by the Integral Test, we conclude that the original series is divergent . More speci�cally, it

diverges to +∞ .

• Example: Determine whether the series

∞∑
n=0

(−1)n
[√
n+ 1−

√
n
]
is absolutely convergent, conditionally con-

vergent, or divergent.

◦ For this series, we �rst rewrite the terms using
√
a−
√
b =

a− b
√
a+
√
b
: this gives an =

(−1)n√
n+ 1 +

√
n
.

◦ Again, we start by analyzing the absolute value series with |an| =
1√

n+ 1 +
√
n
. By the Comparison

(or Limit Comparison) Test, the series

∞∑
n=0

|an| diverges, because we can compare it to the series

∞∑
n=1

bn

with bn =
2√
n
, which is a divergent p-series.



◦ For the original series, we apply the Alternating Series Test. Each of the hypotheses is easy to verify (we
skip the details), and so the test implies that the series converges. We conclude that the original series

is conditionally convergent .

• Example: Determine whether the series

∞∑
n=0

(−1)n
[
ln(2n2 + 3)− 2 ln(n)

]
is absolutely convergent, condition-

ally convergent, or divergent.

◦ For this series, we �rst combine the logarithms into a single term by writing ln(2n2 + 3) − 2 ln(n) =

ln(2n2 + 3)− ln(n2) = ln

(
2n2 + 3

n2

)
= ln

(
2 +

3

n2

)
.

◦ Now we compute lim
n→∞

|an| = lim
n→∞

ln

(
2 +

3

n2

)
= ln(2), since the term inside the logarithm tends to 2

and f(x) = ln(x) is continuous.

◦ Since the limit is not zero, we conclude that the original series is divergent .

• Example: Determine whether the series

∞∑
n=0

1− cos(3n)

n
√
n+ 2

is absolutely convergent, conditionally convergent,

or divergent.

◦ We compare the absolute value series to a simpler one. First, we observe that

∣∣∣∣1− cos(3n)

n
√
n+ 2

∣∣∣∣ = |1− cos(3n)|
n
√
n+ 2

≤
2

n
√
n+ 2

, because cosine is always between −1 and 1.

◦ Thus, by the Comparison Test, if the second series converges, then so does the �rst one.

◦ Now we use the Limit Comparison Test to compare

∞∑
n=0

2

n
√
n+ 2

with

∞∑
n=0

2

n
√
n
: since the limit of the

ratio is lim
n→∞

2/(n
√
n)

2/(n
√
n+ 2)

= lim
n→∞

n
√
n+ 2

n
√
n

= 1, and the second series is a convergent p-series, we see

that

∞∑
n=0

2

n
√
n+ 2

converges.

◦ Thus, by the Comparison Test, the original series is absolutely convergent .

• Example: Determine whether the series

∞∑
n=0

3n + 4n

5n
is convergent or divergent.

◦ Here, we observe that 3n ≤ 4n, so an ≤
2 · 4n

5n
.

◦ Then we apply the Root Test to see that lim
n→∞

n
√
an ≤ lim

n→∞

n
√
2 · 4
5

=
4

5
.

◦ Since this limit is less than 1, the series converges .

◦ In fact, if we rewrite the series as

∞∑
n=0

(
3

5

)n

+

(
4

5

)n

, we see that it is the sum of two geometric series,

and that the exact value is
1

1− 3/5
+

1

1− 4/5
=

15

2
.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2015. You may not reproduce or distribute this
material without my express permission.


