
Calculus II (part 1): Techniques of Integration (by Evan Dummit, 2012, v. 1.25)
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5 Techniques of Integration

We discuss a number standard techniques for computing integrals: substitution methods, integration by parts,
partial fractions, and improper integrals.

5.1 Basic Antiderivatives

• Here is a list of common inde�nite integrals that should already be familiar:

ˆ
xn dx =

xn+1

n+ 1
+ C, n 6= −1

ˆ
x−1 dx = ln(x) + C

ˆ
ex dx = ex + C

ˆ
sin(x) dx = − cos(x) + C

ˆ
cos(x) dx = sin(x) + C

ˆ
sec2(x) dx = tan(x) + C

ˆ
sec(x) tan(x) dx = sec(x) + C

ˆ
1√

1− x2
dx = sin−1(x) + C

ˆ
1

1 + x2
dx = tan−1(x) + C

ˆ
1

x
√
x2 − 1

dx = sec−1(x) + C
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• Here are some other slightly more di�cult antiderivatives that crop up occasionally:

ˆ
ln(x) dx = x ln(x)− x+ C

ˆ
tan(x) dx = − ln(cos(x)) + C

ˆ
sec(x) dx = ln(sec(x) + tan(x)) + C

ˆ
csc(x) dx = − ln(csc(x) + cot(x)) + C

ˆ
cot(x) dx = ln(sin(x)) + C

5.2 Substitution

• The general substitution formula states that

ˆ
f ′(g(x)) · g′(x) dx = f(g(x)) + C . It is just the Chain Rule,

written in terms of integration via the Fundamental Theorem of Calculus. We generally don't use the formula
written this way. To do a substitution, follow this procedure:

◦ Step 1: Choose a substitution u = g(x).

◦ Step 2: Compute the di�erential du = g′(x) dx.

◦ Step 3: Rewrite the original integral in terms of u:

∗ 3a: Rewrite the integral to peel o� what will become the new di�erential du.

∗ 3b: Write the remaining portion of the integrand in terms of u.

∗ 3c: Find the new limits of integration in terms of u, if the integral is a de�nite integral. [If the old
limits are x = a and x = b, the new ones will be u = g(a) and u = g(b). In a very concrete sense,
these are �the same� points.]

∗ 3d: Write down the new integral. If the integral is inde�nite, substitute back in for the original
variable.

• Substitution is best learned by doing examples:

• Example: Evaluate
´ 3
0
2x ex

2

dx.

◦ Step 1: The exponential has a 'complicated' argument x2, so we try setting u = x2.

◦ Step 2: The di�erential is du = 2x dx.

◦ Step 3a: We can rearrange the integral as
´ 3
0
ex

2 · (2x dx).

◦ Step 3b: The �remaining portion� of the integrand is ex
2

, which is just eu.

◦ Step 3c: We see that x = 0 corresponds to u = 02 and x = 3 corresponds to u = 32.

◦ Step 3d: Putting it all together gives
´ 9
0
eu du = eu|9u=0 = e9 − 1 .

• Example: Evaluate
´ e
1

(ln(x))2

x
dx.

◦ Step 1: It might not look like any function has a 'complicated' argument, but if we think carefully we
can see that the numerator is what we get if we plug in ln(x) to the squaring function. So we try setting
u = ln(x).

◦ Step 2: The di�erential is du =
1

x
dx.

◦ Step 3a: We can rearrange the integral as
´ 3
0
[ln(x)]

2 ·
(
1

x
dx

)
.
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◦ Step 3b: The �remaining portion� of the integrand is [ln(x)]
2
, which is just u2.

◦ Step 3c: We see that x = 1 corresponds to u = ln(1) = 0 and x = e corresponds to u = ln(e) = 1.

◦ Step 3d: Putting it all together gives
´ 1
0
u2 du =

1

3
u3|1u=0 =

1

3
.

• Example: Evaluate
´ 1
0
x
√
3x2 + 1 dx.

◦ Step 1: Here we see that the square root function has the 'complicated' argument 3x2 + 1 so we try
u = 3x2 + 1.

◦ Step 2: The di�erential is du = 6x dx.

◦ Step 3a: We can rearrange the integral as
´ 1
0

√
3x2 + 1 · 1

6
· (6x dx). Note that we introduced a factor of

6 · 1
6
, which is okay since it's just multiplication by 1.

◦ Step 3b: The �remaining portion� of the integrand is
√
3x2 + 1 · 1

6
, which is just

1

6
u1/2.

◦ Step 3c: We see that x = 0 corresponds to u = 1 and x = 1 corresponds to u = 4.

◦ Step 3d: Putting it all together gives
´ 4
1

1

6
u1/2 du =

1

6
· 2
3
u3/2|4u=1 =

7

9
.

• Example: Evaluate
´ 3
2

2x

x2 − 1
dx.

◦ Step 1: Try the denominator: u = x2 − 1.

◦ Step 2: The di�erential is du = 2x dx.

◦ Step 3a: We can rearrange the integral as
´ 3
2

1

x2 − 1
· (2x dx).

◦ Step 3b: The �remaining portion� of the integrand is
1

x2 − 1
, which is just u−1.

◦ Step 3c: We see that x = 2 corresponds to u = 3 and x = 3 corresponds to u = 8.

◦ Step 3d: Putting it all together gives
´ 8
3
u−1 du = ln(u)|8u=3 = ln 8− ln 3 .

◦ Remark: It's possible to do this one without substitution, by using partial fractions to see that
2x

x2 − 1
=

1

x+ 1
+

1

x− 1
. This gives I = [ln(x+ 1) + ln(x− 1)] |3x=2 = ln(4)+ln(2)− ln(3) = ln(8)− ln(3) as before.

5.3 Integration by Parts

• The integration by parts formula states

ˆ
f ′ · g dx = f · g −

ˆ
f · g′ dx . It is just the Product Rule, re-

arranged and rewritten in terms of integrals using the Fundamental Theorem of Calculus. To perform an
integration by parts, all that is required is to pick a function f(x) and a function g(x) such that the product
f ′(x) · g(x) is equal to the original integrand. Examples will make everything clear.

• Example: Evaluate
´ 1
0
x ex dx.

◦ The integrand x · ex is an obvious product, and so we need to decide which of x and ex should be f ′.
Since x gets more complicated if we take its antiderivative (since we'd get 1

2x
2) we try f ′ = ex and

g = x, to get f = ex and g′ = 1. Plugging into the formula gives
´ 1
0
x ex dx = x ex|1x=0 −

´ 1
0
1 · ex dx =

(x ex − ex)|1x=0 = 1 .

• Example: Evaluate
´ e
1
[ln(x)]

2
dx.
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◦ We can write [ln(x)]
2
= ln(x) · ln(x), but this doesn't help unless we remember the antiderivative of ln(x).

Instead we write the integrand as 1 · [ln(x)]2, so as to take f ′ = 1 and g = [ln(x)]
2
. Then we get f = x

and g′ = 2 · ln(x) · 1
x
by the Chain Rule. So plugging in will yields

ˆ e

1

[ln(x)]
2
dx = x · ln(x)2|e1 −

ˆ e

1

x · 2 ln(x) · 1
x
dx

= e−
ˆ e

1

2 ln(x)

= e−
[
2x · lnx|e1 −

ˆ e

1

2x · 1
x
dx

]
(IBP again)

= e− [2e− (2e− 2)]

= e− 2 .

• Example: Evaluate
´ 1
0
(x2 − 2x+ 2)e3x dx.

◦ We want g to be the thing which gets simpler when we di�erentiate. The polynomial x2 − 2x + 2 gets
much simpler if we di�erentiate it, while the exponential e3x stays basically the same. So we should take
g = x2 − 2x + 2 and f ′ = e3x, so that g′ = 2x − 2 and f = 1

3e
3x. Then integrating by parts yields an

expression which we can't evaluate directly � we have to integrate by parts again:

ˆ 1

0

(x2 − 2x+ 2)e3x dx = (x2 − 2x+ 2) · 1
3
e3x|10 −

ˆ 1

0

(2x− 2) · 1
3
e3x dx (IBP once)

=

(
2

3
e3 − 2

3

)
−
ˆ 1

0

(2x− 2) · 1
3
e3x dx

=

(
2

3
e3 − 2

3

)
−
[
(2x− 2) · 1

9
e3x|10 −

ˆ 1

0

2 · 1
9
e3x dx

]
(IBP again)

=

(
2

3
e3 − 2

3

)
−
[
2

9
−
[
2

27
e3 − 2

27

]]
=

20

27
e3 − 26

27
.

• Example: Evaluate
´
x3 sin(x) dx.

◦ Here we just need to integrate by parts repeatedly. We get

ˆ
x3 sin(x) dx = −x3 cos(x) +

ˆ
3x2 cos(x) dx (IBP once)

= −x3 cos(x) +

[
3x2 sin(x)−

ˆ
6x sin(x) dx

]
(IBP again)

= −x3 cos(x) + 3x2 sin(x)−
[
−6x cos(x) +

ˆ
6 cos(x) dx

]
(IBP again)

= −x3 cos(x) + 3x2 sin(x) + 6x cos(x) + 6 sin(x) + C

• Example: Find
´
x3 sin(x2) dx.

◦ First we look for a substitution. We try the argument of the sine: u = x2. The di�erential is du = 2x dx,

and we can rearrange the integral as
´
x2 sin(x2) · 1

2
· (2x dx) =

´
u sin(u) · 1

2
du.

◦ Now we integrate by parts, to get −1

2
u cos(u) +

´ 1

2
cos(u) du =

1

2
[−u cos(u) + sin(u)] + C.

◦ Finally substitute back for x to get
1

2

[
−x2 cos(x2) + sin(x2)

]
+ C .
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5.4 Trigonometric Substitution

• Some kinds of integrals require a more clever sort of substitution to evaluate, one that's sort of 'backwards'
from the usual way we try to do substitutions: instead of u = f(x) we try x = f(u) for some appropriate
(trigonometric) function f . The idea is to use one of the Pythagorean relations (e.g., sin2(x) + cos2(x) = 1)
to simplify something more complicated. As always, examples make everything clear.

• Example: Evaluate
´ √

1− x2 dx.

◦ Traditional substitution � along the lines of u = 1− x2 � doesn't work like we'd hope.

◦ Instead we try x = sin(u); then dx = cos(u) du.

◦ So we get
´ √

1− sin2(u) · cos(u) du =
´ √

cos2(u) · cos(u) du =
´
cos2(u) du.

◦ Remembering cos2(u) =
1 + cos(2u)

2
we can evaluate the integral to get

u

2
+

sin(2u)

4
+ C.

◦ Finally substitute back for u = sin−1(x) to obtain
sin−1(x)

2
+

sin(2 sin−1(x))

4
+ C . If desired, we can

simplify this to the equivalent form
sin−1(x)

2
+

x
√
1− x2

2
+ C .

• Example: Evaluate
´ 1

(1 + x2)2
dx.

◦ This time we think of the arctangent antiderivative and try x = tan(u). Then dx = sec2(u) du.

◦ We obtain
´ 1

(1 + tan2(u))2
· sec2(u) du =

´ 1

sec4(u)
· sec2(u) du =

´
cos2(u) du.

◦ Remembering the identity cos2(u) =
1 + cos(2u)

2
we can evaluate the integral to get

u

2
+

sin(2u)

4
+ C.

◦ Finally substitute back for u = tan−1(x) to obtain
tan−1(x)

2
+

sin(2 tan−1(u))

4
+ C . If desired, we can

simplify this to the equivalent form
tan−1(x)

2
+

x

2(1 + x2)
+ C .

• Example: Evaluate
´ 2− x√

4− x2
dx.

◦ We'd like to do the x = sin(u) substitution again but it doesn't quite work, since then
√
4− x2 isn't nice.

◦ Instead we have to try x = 2 sin(u), since then
√
4− x2 =

√
4− 4 sin2(u) = 2 cos(u), and we're much

happier.

◦ Then we have dx = 2 cos(u) du, so we get
´ 2− 2 sin(u)

2 cos(u)
·2 cos(u) du =

´
[2− 2 sin(u)] du = 2u+2 cos(u)+

C.

◦ Substituting back yields 2 sin−1(x) + 2 cos(sin−1(x)) + C , or equivalently, 2 sin−1(x) + 2
√
1− x2 + C .

5.5 Partial Fractions

• Generally, it is di�cult to integrate rational functions without rearranging them in some way �rst. (Try

�nding the antiderivative of
2x

x3 + x2 + x+ 1
directly.)

• There is a general technique for evaluating such integrals, called partial fraction decomposition (PFD): the
idea is to break down rational functions into simpler parts which we know how to integrate. To �nd partial
fraction decompositions, follow these steps:
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◦ Step 1: Factor the denominator.

◦ Step 2: Find the form of the PFD:

∗ For each term (x+ a)n the PFD has terms
C1

x+ a
+

C2

(x+ a)2
+ · · ·+ Cn

(x+ a)n
.

∗ For each non-factorable term (x2 + ax + b)n, the PFD has terms
C1x+D1

x2 + ax+ b
+

C2x+D2

(x2 + ax+ b)2
+

· · ·+ Cnx+Dn

(x2 + ax+ b)n
.

◦ Step 3: Solve for the coe�cients C1, C2, . . . , Cn.

∗ The best way is to clear all denominators and then substitute 'intelligent' values for x (e.g., the roots
of the linear factors).

∗ Sometimes plugging in other values of x is necessary, in order to �nd the coe�cients of the higher
terms.

∗ One can also employ other more clever methods, such as taking derivatives.

◦ Step 4: Evaluate the integral.

∗ Terms of the form
C

(x+ a)n
can be integrated directly using the Power Rule.

∗ Terms of the form
Cx+D

(x2 + ax+ b)n
should be separated further as

E(2x+ a)

(x2 + ax+ b)n
+

F

(x2 + ax+ b)n
.

The �rst term can then be integrated by substituting u = x2 + ax+ b, and the second term can be

integrated by completing the square as (x+a/2)2+(b−a2/4) = (x+ c)2+d2 = d2

[(
x+ c

d

)2

+ 1

]
,

and then substituting tan(t) =
x+ c

d
.

• As ever, examples make the procedure clear.

• Example: Evaluate
´ 1

x2 + 3x
dx.

◦ We factor and get
1

x(x+ 3)
so we want to write

1

x(x+ 3)
=

A

x
+

B

x+ 3
.

∗ Clear denominators so that 1 = A(x+ 3) +B(x).

∗ Set x = 0 and x = −3 to see that 1 = 3A and 1 = −3B.

◦ Then
´ 1

x2 + 3x
dx =

´ [1/3
x
− 1/3

x+ 3

]
dx =

1

3
ln(x)− 1

3
ln(x+ 3) + C .

• Example: Evaluate
´ 1

x3 + x2
dx.

◦ We factor and get
1

x2(x+ 1)
so we want to write

1

x2(x+ 1)
=

A

x
+

B

x2
+

D

x+ 1
.

∗ Clear denominators so that 1 = Ax(x+ 1) +B(x+ 1) +Dx2.

∗ Set x = 0 to get 1 = B.

∗ Set x = −1 to get 1 = D.

∗ Set x = 1 to get 1 = 2A+ 2B +D so that A = −1.

◦ Then
´ 1

x3 + x2
dx =

´ [−1
x

+
1

x2
+

1

x+ 1

]
dx = − ln(x)− 1

x
+ ln(x+ 1) + C .

• Example: Evaluate
´ 2x

(x+ 1)(x2 + 1)
dx.

◦ We want
2x

(x+ 1)(x2 + 1)
=

A

x+ 1
+

Bx+D

x2 + 1
.
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∗ Clear denominators so that 2x = A(x2 + 1) + (Bx+D)(x+ 1).

∗ Set x = −1 to get −2 = 2A so that A = −1.
∗ So we want x2 + 2x+ 1 = (Bx+D)(x+ 1) so we see that we need B = D = 1.

◦ Then
´ 2x

(x+ 1)(x2 + 1)
dx =

´ [ −1
x+ 1

+
x

x2 + 1
+

1

x2 + 1

]
dx = − ln(x+ 1) +

1

2
ln(x2 + 1) + tan−1(x) + C .

5.6 The Weierstrass Substitution

• There is one additional substitution that deserves discussion.

◦ It is rarely covered at any length in modern textbooks, but it should be, since it allows one to integrate
any rational function in sin(x) and cos(x).

• The substitution is t = tan
(x
2

)
, which is called the Weierstrass substitution, or, occasionally, �the magic

substitution�, since it allows one to evaluate complicated trigonometric integrals.

◦ With this de�nition, one can check that cos(x) =
1− t2

1 + t2
, sin(t) =

2t

1 + t2
, and dx =

2

1 + t2
dt.

◦ Then as we can see, the trigonometric integral

ˆ
p(sin(x), cos(x))

q(sin(x), cos(x))
dx becomes the integral

´ p

(
1− t2

1 + t2
,

2t

1 + t2

)
q

(
1− t2

1 + t2
,

2t

1 + t2

) 2

1 + t2
dt

which is a rational function of t (though complicated).

◦ The magic substitution can also be used to reduce any problem involving trigonometric identities in
rational multiples of a single variable x to a �nite computation with rational functions. (In practice,
this is not as useful as it might seem, because the polynomial algebra is usually harder than using other
techniques like the angle-addition formulas.)

• Example: Find
´ 1

2 + cos(x)
dx.

◦ We set t = tan
(x
2

)
, with cos(x) =

1− t2

1 + t2
and dx =

2

1 + t2
dt, to obtain

ˆ
1

2 + cos(x)
dx =

ˆ
1

2 +
1− t2

1 + t2

· 2

1 + t2
dt

=

ˆ
2

2(1 + t2) + (1− t2)
dt

=

ˆ
2

3 + t2
dt =

ˆ
2

3
· 1

1 + (t/
√
3)2

dt

◦ In this new integral we set u = t/
√
3 with du = dt/

√
3 to obtain

´ 2

3
·
√
3

1 + u2
du =

2√
3
tan−1(u) + C.

◦ Substituting back for t and then x yields the answer as
2√
3
tan−1

(
1√
3
tan

(x
2

))
+ C .

5.7 Improper Integration

• Sometimes we like to integrate to in�nity, by which we mean, take the limit as a limit of integration becomes
arbitrarily large.
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◦ In other words, we write
´∞
a

f(x) dx as shorthand for lim
q→∞

´ q
a
f(x) dx.

• Other times, we like to integrate through a 'singularity' of a function � that is, through a point where a
function is unde�ned because it blows up: for example, x = 0 for the function f(x) = 1/x.

◦ Again, we will write
´ 1
0

1

x
dx as shorthand for lim

q→0+

´ 1
q

1

x
dx.

• Integrals with either of these two kinds of 'bad behaviors' are called improper integrals. (Perhaps the termi-
nology stems from the fact that trying to evaluate such integrals is not something done in polite company.)

• Typically we will be interested in asking (i) if the integral actually converges to a �nite value, and (ii) if it
does, what the value is.

• There are roughly two ways to solve problems like this:

◦ Method 1: Find the inde�nite integral, and then evaluate the limit. If the limit is hard, try rewriting
the function to simplify the limit.

◦ Method 2: Compare the integrand to another function whose integral is easier to evaluate. We are aided
by the following theorem:

∗ Theorem (Comparison Test for Integrals): If 0 < f(x) < g(x) for all x in the interval [a, b] where

one or both of a and b can be in�nite, then if
´ b
a
f(x) dx diverges, so does

´ b
a
g(x) dx. If

´ b
a
g(x) dx

converges, then so does
´ b
a
f(x) dx.

∗ The idea behind the theorem is to say that if 0 < f(x) < g(x) then
´ b
a
f(x) dx <

´ b
a
g(x) dx, and

so if the f(x)-integral goes to ∞ then so must the g(x)-integral, and conversely if the g(x)-integral
stays �nite then so must the f(x)-integral.

• Example: Evaluate
´∞
0

e−x dx.

◦ We just evaluate to see
´∞
0

e−x dx = lim
q→∞

(−e−x)|qx=0 = lim
q→∞

[
−e−q + 1

]
= 1 .

• Example: Evaluate
´∞
1

1

x2 + x
dx.

◦ We do partial fractions to see
´ 1

x2 + x
dx = ln(x)− ln(x+ 1) + C.

◦ Now to take the limit as x→∞ is not so easy, unless we notice that we can rewrite the inde�nite integral

as ln

(
x

x+ 1

)
.

◦ Then we have
´∞
1

1

x2 + x
dx = lim

q→∞

[
ln

(
x

x+ 1

)]
|qx=1 = lim

q→∞

[
ln

(
x

x+ 1

)
− ln(

1

2
)

]
= ln(2) .

◦ If the problem had only asked about convergence, we could have observed that x2 + x > x2 for positive

x, so
1

x2 + x
<

1

x2
. Then the Comparison Test would have said that, because

´∞
1

1

x2
dx = − 1

x
|∞x=1 = 1

converges, then so does
´∞
1

1

x2 + x
dx. However, the Comparison Test doesn't help us in computing the

actual value.

• Example: Determine whether the integral
´∞
0

1

(x+ 1)(x+ 2)(x+ 3)(x+ 4)
dx converges.

◦ Doing partial fractions is too much work (although it does give the correct answer, if the trick in the
previous example is used repeatedly).

◦ But it's easier to notice that
1

x+ 4
<

1

x+ 3
<

1

x+ 2
<

1

x+ 1
.
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◦ Then
´ q
0

1

(x+ 1)(x+ 2)(x+ 3)(x+ 4)
dx <

´ q
0

1

(x+ 1)4
dx = −1

4
(x + 1)−3|qx=0. As q → ∞ this remains

�nite (in fact, it is
1

4
).

◦ Therefore this integral converges .

• Example: Determine whether the integral
´ 1
0

1

x
dx converges.

◦ We integrate to get
´ 1
q

1

x
dx = − ln(q).

◦ So as q → 0+ we see that this diverges to −∞.

◦ Therefore this integral diverges to −∞ .

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2015. You may not reproduce or distribute this
material without my express permission.
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