Calculus II (part 1): Techniques of Integration (by Evan Dummit, 2012, v. 1.25)

Contents

5	Tecl	hniques of Integration	1
	5.1	Basic Antiderivatives	1
	5.2	Substitution	2
	5.3	Integration by Parts	3
	5.4	Trigonometric Substitution	5
	5.5	Partial Fractions	5
	5.6	The Weierstrass Substitution	7
	5.7	Improper Integration	7

5 Techniques of Integration

We discuss a number standard techniques for computing integrals: substitution methods, integration by parts, partial fractions, and improper integrals.

5.1 Basic Antiderivatives

• Here is a list of common indefinite integrals that should already be familiar:

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$\int x^{-1} dx = \ln(x) + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin(x) dx = -\cos(x) + C$$

$$\int \cos(x) dx = \sin(x) + C$$

$$\int \sec^2(x) dx = \tan(x) + C$$

$$\int \sec^2(x) \tan(x) dx = \sec(x) + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}(x) + C$$

$$\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + C$$

$$\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1}(x) + C$$

• Here are some other slightly more difficult antiderivatives that crop up occasionally:

$$\int \ln(x) dx = x \ln(x) - x + C$$

$$\int \tan(x) dx = -\ln(\cos(x)) + C$$

$$\int \sec(x) dx = \ln(\sec(x) + \tan(x)) + C$$

$$\int \csc(x) dx = -\ln(\csc(x) + \cot(x)) + C$$

$$\int \cot(x) dx = \ln(\sin(x)) + C$$

5.2 Substitution

• The general substitution formula states that $\int f'(g(x)) \cdot g'(x) \, dx = f(g(x)) + C$. It is just the Chain Rule,

written in terms of integration via the Fundamental Theorem of Calculus. We generally don't use the formula written this way. To do a substitution, follow this procedure:

- <u>Step 1</u>: Choose a substitution u = g(x).
- <u>Step 2</u>: Compute the differential du = g'(x) dx.
- <u>Step 3</u>: Rewrite the original integral in terms of u:
 - * 3a: Rewrite the integral to peel off what will become the new differential du.
 - * 3b: Write the remaining portion of the integrand in terms of u.
 - * 3c: Find the new limits of integration in terms of u, if the integral is a definite integral. [If the old limits are x = a and x = b, the new ones will be u = g(a) and u = g(b). In a very concrete sense, these are "the same" points.]
 - * 3d: Write down the new integral. If the integral is indefinite, substitute back in for the original variable.
- Substitution is best learned by doing examples:
- <u>Example</u>: Evaluate $\int_0^3 2x \, e^{x^2} \, dx$.
 - Step 1: The exponential has a 'complicated' argument x^2 , so we try setting $u = x^2$.
 - Step 2: The differential is $du = 2x \, dx$.
 - Step 3a: We can rearrange the integral as $\int_0^3 e^{x^2} \cdot (2x \, dx)$.
 - Step 3b: The "remaining portion" of the integrand is e^{x^2} , which is just e^u .
 - Step 3c: We see that x = 0 corresponds to $u = 0^2$ and x = 3 corresponds to $u = 3^2$.
 - Step 3d: Putting it all together gives $\int_0^9 e^u du = e^u |_{u=0}^9 = \boxed{e^9 1}$.
- <u>Example</u>: Evaluate $\int_1^e \frac{(\ln(x))^2}{x} dx$.
 - Step 1: It might not look like any function has a 'complicated' argument, but if we think carefully we can see that the numerator is what we get if we plug in $\ln(x)$ to the squaring function. So we try setting $u = \ln(x)$.
 - Step 2: The differential is $du = \frac{1}{x} dx$.

• Step 3a: We can rearrange the integral as $\int_0^3 [\ln(x)]^2 \cdot \left(\frac{1}{x} dx\right)$.

- Step 3b: The "remaining portion" of the integrand is $[\ln(x)]^2$, which is just u^2 .
- Step 3c: We see that x = 1 corresponds to $u = \ln(1) = 0$ and x = e corresponds to $u = \ln(e) = 1$.
- Step 3d: Putting it all together gives $\int_0^1 u^2 du = \frac{1}{3} u^3 |_{u=0}^1 = \left\lfloor \frac{1}{3} \right\rfloor$
- <u>Example</u>: Evaluate $\int_0^1 x \sqrt{3x^2 + 1} \, dx$.
 - Step 1: Here we see that the square root function has the 'complicated' argument $3x^2 + 1$ so we try $u = 3x^2 + 1$.
 - Step 2: The differential is $du = 6x \, dx$.
 - Step 3a: We can rearrange the integral as $\int_0^1 \sqrt{3x^2 + 1} \cdot \frac{1}{6} \cdot (6x \, dx)$. Note that we introduced a factor of $6 \cdot \frac{1}{6}$, which is okay since it's just multiplication by 1.
 - Step 3b: The "remaining portion" of the integrand is $\sqrt{3x^2+1} \cdot \frac{1}{6}$, which is just $\frac{1}{6}u^{1/2}$.
 - Step 3c: We see that x = 0 corresponds to u = 1 and x = 1 corresponds to u = 4.
 - Step 3d: Putting it all together gives $\int_1^4 \frac{1}{6} u^{1/2} du = \frac{1}{6} \cdot \frac{2}{3} u^{3/2} \Big|_{u=1}^4 = \left\lfloor \frac{7}{9} \right\rfloor$
- <u>Example</u>: Evaluate $\int_2^3 \frac{2x}{x^2 1} dx$.
 - Step 1: Try the denominator: $u = x^2 1$.
 - Step 2: The differential is $du = 2x \, dx$.
 - Step 3a: We can rearrange the integral as $\int_2^3 \frac{1}{x^2 1} \cdot (2x \, dx)$.
 - Step 3b: The "remaining portion" of the integrand is $\frac{1}{x^2-1}$, which is just u^{-1} .
 - Step 3c: We see that x = 2 corresponds to u = 3 and x = 3 corresponds to u = 8.
 - Step 3d: Putting it all together gives $\int_3^8 u^{-1} du = \ln(u)|_{u=3}^8 = \ln 8 \ln 3$.
 - <u>Remark</u>: It's possible to do this one without substitution, by using partial fractions to see that $\frac{2x}{x^2-1} = \frac{1}{x+1} + \frac{1}{x-1}$. This gives $I = [\ln(x+1) + \ln(x-1)]|_{x=2}^3 = \ln(4) + \ln(2) \ln(3) = \ln(8) \ln(3)$ as before.

5.3 Integration by Parts

• The integration by parts formula states $\int f' \cdot g \, dx = f \cdot g - \int f \cdot g' \, dx$. It is just the Product Rule, re-

arranged and rewritten in terms of integrals using the Fundamental Theorem of Calculus. To perform an integration by parts, all that is required is to pick a function f(x) and a function g(x) such that the product $f'(x) \cdot g(x)$ is equal to the original integrand. Examples will make everything clear.

- <u>Example</u>: Evaluate $\int_0^1 x e^x dx$.
 - The integrand $x \cdot e^x$ is an obvious product, and so we need to decide which of x and e^x should be f'. Since x gets more complicated if we take its antiderivative (since we'd get $\frac{1}{2}x^2$) we try $f' = e^x$ and g = x, to get $f = e^x$ and g' = 1. Plugging into the formula gives $\int_0^1 x e^x dx = x e^x |_{x=0}^1 - \int_0^1 1 \cdot e^x dx = (x e^x - e^x)|_{x=0}^1 = 1$.
- <u>Example</u>: Evaluate $\int_1^e [\ln(x)]^2 dx$.

• We can write $[\ln(x)]^2 = \ln(x) \cdot \ln(x)$, but this doesn't help unless we remember the antiderivative of $\ln(x)$. Instead we write the integrand as $1 \cdot [\ln(x)]^2$, so as to take f' = 1 and $g = [\ln(x)]^2$. Then we get f = x and $g' = 2 \cdot \ln(x) \cdot \frac{1}{x}$ by the Chain Rule. So plugging in will yields

$$\int_{1}^{e} [\ln(x)]^{2} dx = x \cdot \ln(x)^{2} |_{1}^{e} - \int_{1}^{e} x \cdot 2\ln(x) \cdot \frac{1}{x} dx$$

$$= e - \int_{1}^{e} 2\ln(x)$$

$$= e - \left[2x \cdot \ln x |_{1}^{e} - \int_{1}^{e} 2x \cdot \frac{1}{x} dx \right] \quad \text{(IBP again)}$$

$$= e - [2e - (2e - 2)]$$

$$= \boxed{e - 2}.$$

- <u>Example</u>: Evaluate $\int_0^1 (x^2 2x + 2)e^{3x} dx$.
 - We want g to be the thing which gets simpler when we differentiate. The polynomial $x^2 2x + 2$ gets much simpler if we differentiate it, while the exponential e^{3x} stays basically the same. So we should take $g = x^2 2x + 2$ and $f' = e^{3x}$, so that g' = 2x 2 and $f = \frac{1}{3}e^{3x}$. Then integrating by parts yields an expression which we can't evaluate directly we have to integrate by parts again:

$$\int_{0}^{1} (x^{2} - 2x + 2)e^{3x} dx = (x^{2} - 2x + 2) \cdot \frac{1}{3}e^{3x}|_{0}^{1} - \int_{0}^{1} (2x - 2) \cdot \frac{1}{3}e^{3x} dx \quad \text{(IBP once)}$$

$$= \left(\frac{2}{3}e^{3} - \frac{2}{3}\right) - \int_{0}^{1} (2x - 2) \cdot \frac{1}{3}e^{3x} dx$$

$$= \left(\frac{2}{3}e^{3} - \frac{2}{3}\right) - \left[(2x - 2) \cdot \frac{1}{9}e^{3x}|_{0}^{1} - \int_{0}^{1} 2 \cdot \frac{1}{9}e^{3x} dx\right] \quad \text{(IBP again)}$$

$$= \left(\frac{2}{3}e^{3} - \frac{2}{3}\right) - \left[\frac{2}{9} - \left[\frac{2}{27}e^{3} - \frac{2}{27}\right]\right]$$

$$= \left[\frac{20}{27}e^{3} - \frac{26}{27}\right].$$

- <u>Example</u>: Evaluate $\int x^3 \sin(x) dx$.
 - Here we just need to integrate by parts repeatedly. We get

$$\int x^{3} \sin(x) dx = -x^{3} \cos(x) + \int 3x^{2} \cos(x) dx \quad \text{(IBP once)}$$

= $-x^{3} \cos(x) + \left[3x^{2} \sin(x) - \int 6x \sin(x) dx \right] \quad \text{(IBP again)}$
= $-x^{3} \cos(x) + 3x^{2} \sin(x) - \left[-6x \cos(x) + \int 6 \cos(x) dx \right] \quad \text{(IBP again)}$
= $\left[-x^{3} \cos(x) + 3x^{2} \sin(x) + 6x \cos(x) + 6 \sin(x) + C \right]$

- <u>Example</u>: Find $\int x^3 \sin(x^2) dx$.
 - o First we look for a substitution. We try the argument of the sine: u = x². The differential is du = 2x dx, and we can rearrange the integral as ∫ x² sin(x²) · ¹/₂ · (2x dx) = ∫ u sin(u) · ¹/₂ du.
 o Now we integrate by parts, to get -¹/₂u cos(u) + ∫ ¹/₂ cos(u) du = ¹/₂ [-u cos(u) + sin(u)] + C.
 o Finally substitute back for x to get ¹/₂ [-x² cos(x²) + sin(x²)] + C.

5.4 Trigonometric Substitution

- Some kinds of integrals require a more clever sort of substitution to evaluate, one that's sort of 'backwards' from the usual way we try to do substitutions: instead of u = f(x) we try x = f(u) for some appropriate (trigonometric) function f. The idea is to use one of the Pythagorean relations (e.g., $\sin^2(x) + \cos^2(x) = 1$) to simplify something more complicated. As always, examples make everything clear.
- Example: Evaluate $\int \sqrt{1-x^2} dx$.
 - Traditional substitution along the lines of $u = 1 x^2 \text{doesn't}$ work like we'd hope.
 - Instead we try $x = \sin(u)$; then $dx = \cos(u) du$.
 - So we get $\int \sqrt{1 \sin^2(u)} \cdot \cos(u) \, du = \int \sqrt{\cos^2(u)} \cdot \cos(u) \, du = \int \cos^2(u) \, du$.

• Remembering
$$\cos^2(u) = \frac{1 + \cos(2u)}{2}$$
 we can evaluate the integral to get $\frac{u}{2} + \frac{\sin(2u)}{4} + C$

- Finally substitute back for $u = \sin^{-1}(x)$ to obtain $\boxed{\frac{\sin^{-1}(x)}{2} + \frac{\sin(2\sin^{-1}(x))}{4} + C}_{4}$. If desired, we can simplify this to the equivalent form $\boxed{\frac{\sin^{-1}(x)}{2} + \frac{x\sqrt{1-x^2}}{2} + C}_{2}$.
- <u>Example</u>: Evaluate $\int \frac{1}{(1+x^2)^2} dx$.
 - This time we think of the arctangent antiderivative and try $x = \tan(u)$. Then $dx = \sec^2(u) du$.
 - We obtain $\int \frac{1}{(1 + \tan^2(u))^2} \cdot \sec^2(u) \, du = \int \frac{1}{\sec^4(u)} \cdot \sec^2(u) \, du = \int \cos^2(u) \, du.$
 - Remembering the identity $\cos^2(u) = \frac{1 + \cos(2u)}{2}$ we can evaluate the integral to get $\frac{u}{2} + \frac{\sin(2u)}{4} + C$.

• Finally substitute back for $u = \tan^{-1}(x)$ to obtain $\boxed{\frac{\tan^{-1}(x)}{2} + \frac{\sin(2\tan^{-1}(u))}{4} + C}$. If desired, we can simplify this to the equivalent form $\boxed{\frac{\tan^{-1}(x)}{2} + \frac{x}{2(1+x^2)} + C}$.

- <u>Example</u>: Evaluate $\int \frac{2-x}{\sqrt{4-x^2}} dx$.
 - We'd like to do the $x = \sin(u)$ substitution again but it doesn't quite work, since then $\sqrt{4 x^2}$ isn't nice.
 - Instead we have to try $x = 2\sin(u)$, since then $\sqrt{4-x^2} = \sqrt{4-4\sin^2(u)} = 2\cos(u)$, and we're much happier.
 - Then we have $dx = 2\cos(u) \, du$, so we get $\int \frac{2-2\sin(u)}{2\cos(u)} \cdot 2\cos(u) \, du = \int [2-2\sin(u)] \, du = 2u + 2\cos(u) + C$.

• Substituting back yields $2\sin^{-1}(x) + 2\cos(\sin^{-1}(x)) + C$, or equivalently, $2\sin^{-1}(x) + 2\sqrt{1-x^2} + C$

5.5 Partial Fractions

- Generally, it is difficult to integrate rational functions without rearranging them in some way first. (Try finding the antiderivative of $\frac{2x}{x^3 + x^2 + x + 1}$ directly.)
- There is a general technique for evaluating such integrals, called <u>partial fraction decomposition</u> (PFD): the idea is to break down rational functions into simpler parts which we know how to integrate. To find partial fraction decompositions, follow these steps:

- $\circ\,$ Step 1: Factor the denominator.
- Step 2: Find the form of the PFD:
 - * For each term $(x+a)^n$ the PFD has terms $\frac{C_1}{x+a} + \frac{C_2}{(x+a)^2} + \dots + \frac{C_n}{(x+a)^n}$.

* For each non-factorable term $(x^2 + ax + b)^n$, the PFD has terms $\frac{C_1x + D_1}{x^2 + ax + b} + \frac{C_2x + D_2}{(x^2 + ax + b)^2} + C_2x + D_3$

$$\cdots + \frac{C_n x + D_n}{(x^2 + ax + b)^n}.$$

• Step 3: Solve for the coefficients C_1, C_2, \ldots, C_n .

- * The best way is to clear all denominators and then substitute 'intelligent' values for x (e.g., the roots of the linear factors).
- * Sometimes plugging in other values of x is necessary, in order to find the coefficients of the higher terms.
- * One can also employ other more clever methods, such as taking derivatives.
- Step 4: Evaluate the integral.
 - * Terms of the form $\frac{C}{(x+a)^n}$ can be integrated directly using the Power Rule. * Terms of the form $\frac{Cx+D}{(x^2+ax+b)^n}$ should be separated further as $\frac{E(2x+a)}{(x^2+ax+b)^n} + \frac{F}{(x^2+ax+b)^n}$. The first term can then be integrated by substituting $u = x^2 + ax + b$, and the second term can be integrated by completing the square as $(x+a/2)^2 + (b-a^2/4) = (x+c)^2 + d^2 = d^2 \left[\left(\frac{x+c}{d} \right)^2 + 1 \right]$, and then substituting $\tan(t) = \frac{x+c}{d}$.
- As ever, examples make the procedure clear.
- <u>Example</u>: Evaluate $\int \frac{1}{x^2 + 3x} dx$.

• We factor and get $\frac{1}{x(x+3)}$ so we want to write $\frac{1}{x(x+3)} = \frac{A}{x} + \frac{B}{x+3}$.

- * Clear denominators so that 1 = A(x+3) + B(x).
- * Set x = 0 and x = -3 to see that 1 = 3A and 1 = -3B.

• Then
$$\int \frac{1}{x^2 + 3x} dx = \int \left[\frac{1/3}{x} - \frac{1/3}{x+3}\right] dx = \left[\frac{1}{3}\ln(x) - \frac{1}{3}\ln(x+3) + C\right]$$

• <u>Example</u>: Evaluate $\int \frac{1}{x^3 + x^2} dx$.

• We factor and get $\frac{1}{x^2(x+1)}$ so we want to write $\frac{1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{D}{x+1}$.

- * Clear denominators so that $1 = Ax(x+1) + B(x+1) + Dx^2$.
- * Set x = 0 to get 1 = B.
- * Set x = -1 to get 1 = D.

* Set
$$x = 1$$
 to get $1 = 2A + 2B + D$ so that $A = -1$

• Then
$$\int \frac{1}{x^3 + x^2} dx = \int \left[\frac{-1}{x} + \frac{1}{x^2} + \frac{1}{x+1} \right] dx = \left[-\ln(x) - \frac{1}{x} + \ln(x+1) + C \right]$$

• Example: Evaluate
$$\int \frac{2x}{(x+1)(x^2+1)} dx$$
.
• We want $\frac{2x}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+D}{x^2+1}$

- * Clear denominators so that $2x = A(x^2 + 1) + (Bx + D)(x + 1)$.
- * Set x = -1 to get -2 = 2A so that A = -1.
- * So we want $x^2 + 2x + 1 = (Bx + D)(x + 1)$ so we see that we need B = D = 1.

• Then
$$\int \frac{2x}{(x+1)(x^2+1)} dx = \int \left[\frac{-1}{x+1} + \frac{x}{x^2+1} + \frac{1}{x^2+1}\right] dx = \left[-\ln(x+1) + \frac{1}{2}\ln(x^2+1) + \tan^{-1}(x) + C\right]$$

5.6The Weierstrass Substitution

- There is one additional substitution that deserves discussion.
 - It is rarely covered at any length in modern textbooks, but it should be, since it allows one to integrate any rational function in $\sin(x)$ and $\cos(x)$.
- The substitution is $\left| t = \tan\left(\frac{x}{2}\right) \right|$, which is called the Weierstrass substitution, or, occasionally, "the magic

substitution", since it allows one to evaluate complicated trigonometric integrals.

• With this definition, one can check that $\cos(x) = \frac{1-t^2}{1+t^2}$, $\sin(t) = \frac{2t}{1+t^2}$, and $dx = \frac{2}{1+t^2} dt$. • Then as we can see, the trigonometric integral $\int \frac{p(\sin(x), \cos(x))}{q(\sin(x), \cos(x))} dx$ becomes the integral $\int \frac{p\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)}{q\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)} \frac{2}{1+t^2}$

which is a rational function of t (though complicated).

- The magic substitution can also be used to reduce any problem involving trigonometric identities in rational multiples of a single variable x to a finite computation with rational functions. (In practice, this is not as useful as it might seem, because the polynomial algebra is usually harder than using other techniques like the angle-addition formulas.)
- <u>Example</u>: Find $\int \frac{1}{2 + \cos(x)} dx$.

• We set $t = \tan\left(\frac{x}{2}\right)$, with $\cos(x) = \frac{1-t^2}{1+t^2}$ and $dx = \frac{2}{1+t^2}dt$, to obtain

$$\int \frac{1}{2 + \cos(x)} dx = \int \frac{1}{2 + \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt$$
$$= \int \frac{2}{2(1 + t^2) + (1 - t^2)} dt$$
$$= \int \frac{2}{3 + t^2} dt = \int \frac{2}{3} \cdot \frac{1}{1 + (t/\sqrt{3})^2} dt$$

• In this new integral we set $u = t/\sqrt{3}$ with $du = dt/\sqrt{3}$ to obtain $\int \frac{2}{3} \cdot \frac{\sqrt{3}}{1+u^2} du = \frac{2}{\sqrt{3}} \tan^{-1}(u) + C$. • Substituting back for t and then x yields the answer as $\left|\frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{1}{\sqrt{3}}\tan\left(\frac{x}{2}\right)\right) + C\right|$

5.7**Improper Integration**

• Sometimes we like to integrate to infinity, by which we mean, take the limit as a limit of integration becomes arbitrarily large.

• In other words, we write $\int_a^{\infty} f(x) dx$ as shorthand for $\lim_{a \to \infty} \int_a^q f(x) dx$.

• Other times, we like to integrate through a 'singularity' of a function – that is, through a point where a function is undefined because it blows up: for example, x = 0 for the function f(x) = 1/x.

• Again, we will write $\int_0^1 \frac{1}{x} dx$ as shorthand for $\lim_{q \to 0^+} \int_q^1 \frac{1}{x} dx$.

- Integrals with either of these two kinds of 'bad behaviors' are called <u>improper integrals</u>. (Perhaps the terminology stems from the fact that trying to evaluate such integrals is not something done in polite company.)
- Typically we will be interested in asking (i) if the integral actually converges to a finite value, and (ii) if it does, what the value is.
- There are roughly two ways to solve problems like this:
 - <u>Method 1</u>: Find the indefinite integral, and then evaluate the limit. If the limit is hard, try rewriting the function to simplify the limit.
 - <u>Method 2</u>: Compare the integrand to another function whose integral is easier to evaluate. We are aided by the following theorem:
 - * <u>Theorem (Comparison Test for Integrals)</u>: If 0 < f(x) < g(x) for all x in the interval [a, b] where one or both of a and b can be infinite, then if $\int_a^b f(x) dx$ diverges, so does $\int_a^b g(x) dx$. If $\int_a^b g(x) dx$ converges, then so does $\int_a^b f(x) dx$.
 - * The idea behind the theorem is to say that if 0 < f(x) < g(x) then $\int_a^b f(x) dx < \int_a^b g(x) dx$, and so if the f(x)-integral goes to ∞ then so must the g(x)-integral, and conversely if the g(x)-integral stays finite then so must the f(x)-integral.
- <u>Example</u>: Evaluate $\int_0^\infty e^{-x} dx$.

• We just evaluate to see $\int_0^\infty e^{-x} dx = \lim_{q \to \infty} (-e^{-x})|_{x=0}^q = \lim_{q \to \infty} \left[-e^{-q} + 1\right] = \boxed{1}$.

- <u>Example</u>: Evaluate $\int_1^\infty \frac{1}{x^2 + x} dx$.
 - We do partial fractions to see $\int \frac{1}{x^2 + x} dx = \ln(x) \ln(x+1) + C$.
 - Now to take the limit as $x \to \infty$ is not so easy, unless we notice that we can rewrite the indefinite integral as $\ln\left(\frac{x}{x+1}\right)$.
 - Then we have $\int_{1}^{\infty} \frac{1}{x^2 + x} dx = \lim_{q \to \infty} \left[\ln \left(\frac{x}{x+1} \right) \right] \Big|_{x=1}^{q} = \lim_{q \to \infty} \left[\ln \left(\frac{x}{x+1} \right) \ln(\frac{1}{2}) \right] = \boxed{\ln(2)}$
 - If the problem had only asked about convergence, we could have observed that $x^2 + x > x^2$ for positive x, so $\frac{1}{x^2 + x} < \frac{1}{x^2}$. Then the Comparison Test would have said that, because $\int_1^{\infty} \frac{1}{x^2} dx = -\frac{1}{x} |_{x=1}^{\infty} = 1$ converges, then so does $\int_1^{\infty} \frac{1}{x^2 + x} dx$. However, the Comparison Test doesn't help us in computing the actual value.
- <u>Example</u>: Determine whether the integral $\int_0^\infty \frac{1}{(x+1)(x+2)(x+3)(x+4)} dx$ converges.
 - Doing partial fractions is too much work (although it does give the correct answer, if the trick in the previous example is used repeatedly).
 - But it's easier to notice that $\frac{1}{x+4} < \frac{1}{x+3} < \frac{1}{x+2} < \frac{1}{x+1}$.

- o Then ∫₀^q 1/(x+1)(x+2)(x+3)(x+4) dx < ∫₀^q 1/(x+1)⁴ dx = -1/4 (x+1)^{-3}|_{x=0}^{q}. As q → ∞ this remains finite (in fact, it is 1/4).
 o Therefore this integral converges.
- <u>Example</u>: Determine whether the integral $\int_0^1 \frac{1}{x} dx$ converges.
 - We integrate to get $\int_q^1 \frac{1}{x} dx = -\ln(q)$.
 - So as $q \to 0^+$ we see that this diverges to $-\infty$.
 - Therefore this integral diverges to $-\infty$.

Well, you're at the end of my handout. Hope it was helpful.

Copyright notice: This material is copyright Evan Dummit, 2012-2015. You may not reproduce or distribute this material without my express permission.