’ Calculus II (part 1): Techniques of Integration‘ (by Evan Dummit, 2012, v. 1.25)
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5 Techniques of Integration
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We discuss a number standard techniques for computing integrals: substitution methods, integration by parts,

partial fractions, and improper integrals.

5.1 Basic Antiderivatives

e Here is a list of common indefinite integrals that should already be familiar:

/x" dx
/x_l dzx
/e‘” dx

/sin(x) dz
/ cos(x) dx
sec?(x) dx

/ sec(x) tan(x) dzx
/ ﬁ dx

1
—d
/1+:c2 o

1
—d
/x\/xQ—l v

(En+1
n+1
In(z) + C

+C, n#-1

e+ C
—cos(z) +C
sin(x) + C
tan(z) + C
sec(z) + C
sin~!(z) + C
tan~!(z) + C

sec (z) +C



e Here are some other slightly more difficult antiderivatives that crop up occasionally:
/ln(x) dr = zln(z)—z+C

tan(z)dr = —In(cos(x))+C

csc(z)dx = —lIn(cese(z) + cot(z)) + C

cot(x)dr = lIn(sin(x))+C

/
/sec(x) dex = In(sec(z) +tan(z)) + C
/
/

5.2 Substitution

e The general substitution formula states that /f’(g(x)) ¢’ (z)dx = f(g(z)) + C'||. It is just the Chain Rule,

written in terms of integration via the Fundamental Theorem of Calculus. We generally don’t use the formula
written this way. To do a substitution, follow this procedure:

o Step 1: Choose a substitution u = g(x).
o Step 2: Compute the differential du = ¢'(z) dx.
o Step 3: Rewrite the original integral in terms of w:
* 3a: Rewrite the integral to peel off what will become the new differential du.

* 3b: Write the remaining portion of the integrand in terms of .

* 3c: Find the new limits of integration in terms of u, if the integral is a definite integral. [If the old
limits are x = a and = = b, the new ones will be u = g(a) and u = g(b). In a very concrete sense,
these are “the same” points.]

* 3d: Write down the new integral. If the integral is indefinite, substitute back in for the original
variable.

e Substitution is best learned by doing examples:

e Example: Evaluate f03 2z e® di.

o Step 1: The exponential has a ’complicated’ argument 22, so we try setting u = z2.

Step 2: The differential is du = 2z dzx.

[¢]

[¢]

Step 3a: We can rearrange the integral as f03 e . (2z d).

Step 3b: The “remaining portion” of the integrand is e"”z, which is just e®.

o

Step 3c: We see that 2 = 0 corresponds to u = 02 and z = 3 corresponds to u = 32,

o Step 3d: Putting it all together gives fog etdu=e*|2_, = .

e (1 2
o Example: Evaluate [ %

O

dx.

o Step 1: It might not look like any function has a ’complicated’ argument, but if we think carefully we
can see that the numerator is what we get if we plug in In(x) to the squaring function. So we try setting
u = In(x).

1
o Step 2: The differential is du = - dx.

1
o Step 3a: We can rearrange the integral as f03 [ln(x)]2 : < dx).
x



o Step 3b: The “remaining portion” of the integrand is [In(z)]*, which is just u2.
o Step 3c: We see that = 1 corresponds to u = In(1) = 0 and x = e corresponds to v = In(e) = 1.
14, 1

o Step 3d: Putting it all together gives fol u? du = §u w=0 =3 |

e Example: Evaluate fol xV3z2 + 1ldx.

o Step 1: Here we see that the square root function has the ’complicated’ argument 3z2 + 1 so we try
u = 3x% + 1.

Step 2: The differential is du = 6z dx.

[}

o

1
Step 3a: We can rearrange the integral as fol V32 +1- 5 (6x dz). Note that we introduced a factor of

1
6 - 6 which is okay since it’s just multiplication by 1.

[¢]

1 1
Step 3b: The “remaining portion” of the integrand is v/3z2 + 1 - & which is just gul/Q.

[}

Step 3c: We see that x = 0 corresponds to u = 1 and & = 1 corresponds to u = 4.

1 1 2
o Step 3d: Putting it all together gives f14 6u1/2 du = 5 §u3/2 i .= g .
. 3 2z
o Example: Evaluate [; md:ﬂ.

o Step 1: Try the denominator: v = 22 — 1.
o Step 2: The differential is du = 2x dzx.

1
o Step 3a: We can rearrange the integral as f; e (2z dx).
22 _

o Step 3b: The “remaining portion” of the integrand is praE which is just uw™!.
2 —

o Step 3c: We see that x = 2 corresponds to u = 3 and x = 3 corresponds to u = 8.

o Step 3d: Putting it all together gives f38 uldu=In(u)8_;=In8 —In3|

2
o Remark: It’s possible to do this one without substitution, by using partial fractions to see that — z 3=
72 —
1 )
1 + T This gives I = [In(z + 1) +In(z — 1)] |2_5 = In(4) +1n(2) —In(3) = In(8) —In(3) as before.
x x —

5.3 Integration by Parts

e The integration by parts formula states /f’ cgdr=f-g— /f -g'dz || It is just the Product Rule, re-

arranged and rewritten in terms of integrals using the Fundamental Theorem of Calculus. To perform an
integration by parts, all that is required is to pick a function f(x) and a function g(x) such that the product
f'(z) - g(x) is equal to the original integrand. Examples will make everything clear.

e Example: Evaluate fol zede.

o The integrand z - e is an obvious product, and so we need to decide which of 2 and e* should be f.
Since x gets more complicated if we take its antiderivative (since we'd get 1z%) we try f/ = e” and

g =z, to get f =e* and ¢’ = 1. Plugging into the formula gives fol re¥dr = ze®|l_, — fol 1-e"dx =

(e — ety =[1]

e Example: Evaluate [/ [In(x))* da.



o We can write [In(z)]* = In(z)-In(x), but this doesn’t help unless we remember the antiderivative of In(z).
Instead we write the integrand as 1 - [In(z)]%, so as to take f' =1 and g = [In(z)]*. Then we get f = x

1
and ¢’ =2-In(z) - - by the Chain Rule. So plugging in will yields

/1e In(z)]® dz = 2z-In(z)?§ — /jx - 21n(z) - %dz

- e—/lemn(x)

€ 1

= e— [2x~lnx|§ f/ 2:E~d:c] (IBP again)
1 x

= e—[2¢ —(2e —2)]

e Example: Evaluate fol (22 — 22 + 2)e3* dx.

o We want g to be the thing which gets simpler when we differentiate. The polynomial z? — 2z + 2 gets
much simpler if we differentiate it, while the exponential €3 stays basically the same. So we should take
g=a>—-2z+2and f/ =€, so that ¢’ = 2z — 2 and f = £¢3”. Then integrating by parts yields an
expression which we can’t evaluate directly — we have to integrate by parts again:

1 1
1 1
/ (2 =22 +2)e3"de = (22 —22+2)- §e3$\(1) - / (22 —2) - ge?’w dx (IBP once)
0 0

e Example: Evaluate [ 23 sin(z) dx.

o Here we just need to integrate by parts repeatedly. We get
/1‘3 sin(z)dr = —a%cos(x) + /3302 cos(xz)dz (IBP once)
= —a3cos(z) + [3x2 sin(x) — /6:10 sin(x) da:} (IBP again)

= —2®cos(x) + 322 sin(z) — {—63: cos(x) + /6cos(x) da:] (IBP again)

= ’ —23 cos(z) 4 32? sin(x) + 6z cos(x) + 6sin(z) + C ‘

e Example: Find [ 2 sin(2?) dx.

o First we look for a substitution. We try the argument of the sine: u = x2. The differential is du = 2z dz,

1
and we can rearrange the integral as [ 22 sin(z?) - 2zdr) = [ sin(u) - 3 du.

5
. 1 1 1 _
o Now we integrate by parts, to get —gu cos(u) + [ 3 cos(u) du = 3 [—u cos(u) + sin(u)] + C.

o Finally substitute back for z to get | = [—2® cos(z®) + sin(z*)] + C |




5.4 Trigonometric Substitution

e Some kinds of integrals require a more clever sort of substitution to evaluate, one that’s sort of 'backwards’
from the usual way we try to do substitutions: instead of u = f(x) we try & = f(u) for some appropriate
(trigonometric) function f. The idea is to use one of the Pythagorean relations (e.g., sin?(x) + cos?(z) = 1)
to simplify something more complicated. As always, examples make everything clear.

e Example: Evaluate [ V1 — 22 dx.

o Traditional substitution — along the lines of u = 1 — 22 — doesn’t work like we’d hope.

o Instead we try x = sin(u); then da = cos(u) du.

So we get [ /1 —sin®(u) - cos(u) du = [ y/cos?(u) - cos(u) du = [ cos®(u) du.

14 cos(2u)
=

[¢]

sin(2u)

1 +C.

u
o Remembering cos?(u) we can evaluate the integral to get 5 +

sin”H(z)  sin(2sin"'(2))

o Finally substitute back for « = sin™*(z) to obtain 5 + 1 + C|. If desired, we can
1 e
1 — 22
simplify this to the equivalent form s 5 (2) + x 5 x + C|.

1
[ Example: Evaluate f mdl’

o This time we think of the arctangent antiderivative and try x = tan(u). Then dz = sec?(u) du.

1

-sec’(u)du = [ -sec?(u) du = [ cos?(u) du.

We obtain [ ——5—— -
o e obtain f (1 ¥ tan2(U))2 sec4(u)
1 2 in(2
o Remembering the identity cos?(u) = —1—0%(10 we can evaluate the integral to get g + smi w) +C.
tan~! sin(2 tan ™!
o Finally substitute back for u = tan™!(z) to obtain an 5 (z) , sin( a: () + C'|. If desired, we can
t —1
simplify this to the equivalent form an 5 (2) + 20 _T_ ) +C|.

2—zx
° Example. Evaluate f \/ﬁ dz.
o We'd like to do the 2 = sin(u) substitution again but it doesn’t quite work, since then v/4 — 22 isn’t nice.

o Instead we have to try x = 2sin(u), since then V4 — 22 = /4 — 4sin®(u) = 2cos(u), and we’re much

happier.

2 — 2si
o Then we have dz = 2 cos(u) du, so we get [ 2 — 2sin(u)

C.

2 cos(u) -2cos(u) du = [ [2 — 2sin(u)] du = 2u+2 cos(u)+

2sin"!(z) + 21 — 22+ C ‘

o Substituting back yields ’ 2sin~*(z) + 2 cos(sin~ ! (x)) + C ‘, or equivalently,

5.5 Partial Fractions

e Generally, it is difficult to integrate rational functions without rearranging them in some way first. (Try

2z
finding the antiderivative of ————— directly.
& Pttt ¥)
e There is a general technique for evaluating such integrals, called partial fraction decomposition (PFD): the
idea is to break down rational functions into simpler parts which we know how to integrate. To find partial

fraction decompositions, follow these steps:




o

Step 1: Factor the denominator.
Step 2: Find the form of the PFD:

o]

1 Cs Ch
x+a+(x+a)2+'”+m'
Ciz + Dy Cox + Do
2 +ar+b (22 +azx+b)?

* For each term (z + a)” the PFD has terms

* For each non-factorable term (2% + az + b)", the PFD has terms
Cpx+ D,
(22 4+ az + b))’
Step 3: Solve for the coefficients Cy, Cs, ... ,C,.

o

* The best way is to clear all denominators and then substitute ’intelligent’ values for x (e.g., the roots
of the linear factors).

* Sometimes plugging in other values of z is necessary, in order to find the coefficients of the higher
terms.

* One can also employ other more clever methods, such as taking derivatives.

[¢]

Step 4: Evaluate the integral.

x Terms of the form (_|_C)n can be integrated directly using the Power Rule.
r+a
Cx+D E(2 F
* Terms of the form _ Grt D should be separated further as (22 + a)

(22 + azx + b)) (22 4+ az +b)" (224 az +b)"
The first term can then be integrated by substituting u = 22 + ax + b, and the second term can be

2
xr+c
1
SYE

integrated by completing the square as (z +a/2)?+ (b—a?/4) = (x +¢)? + d? = d*

7

and then substituting tan(t) = z jl— <

e As ever, examples make the procedure clear.

1
[ Exam[gle: Evaluate fmdl‘
1 1 A B
o We factor and get —— so we want to write —— = — + ——.
z(z+3) z(z+3) =z x+3

* Clear denominators so that 1 = A(z + 3) + B(z).
* Set x =0 and x = —3 to see that 1 = 34 and 1 = —3B.

T3 13
dxf[a:x—l—S

o Then [

] dx = %ln(x)féln(er?))JrC.

72 + 3z

1
e Example: Evaluate [ mdz

o We factor and get 1 so we want to write —— = é + B + L
x?(x+1) 2?(x+1) =z 22 z+1

 Clear denominators so that 1 = Az(z + 1) + B(z + 1) + Dx?.

* Set x =0 to get 1 = B.

* Set x = —1toget1l=D.

* Set x =1toget 1 =2A+ 2B+ D so that A = —1.

1 -1 1 1 1
oThenfmdxzf ?—F?—Fm dx = —ln(:v)—;—kln(x—kl)—i—C.
] 2x
o Exam[)le. Evaluate fmdx
2z A Bx+ D

We want - .
oNeWat TN @A) a1 241




* Clear denominators so that 2z = A(z2 + 1) + (Bx + D)(z + 1).
x Set x = —1 to get —2 = 2A so that A = —1.
* So we want 2 + 2z + 1 = (Bx + D)(x + 1) so we see that we need B=D = 1.

1
der =|—In(x +1) + 5 In(z? +1) +tan"(z) + C |

2z -1 x 1
Th ——————dr =
° enf(x—i—l)(xQ—l—l) v=J x+1+x2+1+x2+1

5.6 The Weierstrass Substitution

e There is one additional substitution that deserves discussion.

o It is rarely covered at any length in modern textbooks, but it should be, since it allows one to integrate
any rational function in sin(x) and cos(z).

x
e The substitution is ||t = tan <§> , which is called the Weierstrass substitution, or, occasionally, “the magic

substitution”, since it allows one to evaluate complicated trigonometric integrals.

1—1t? 2t 2
=1ie sin(t) and dx =

= — dt-
14 t2’ 14 ¢2

1—t2 2t
b 1427 142 2

1—t2 2t 14 t2
T\1T 1+

o With this definition, one can check that cos(x)

p(sin(x), cos(x))
q(sin(z), cos(zx))

o Then as we can see, the trigonometric integral / dx becomes the integral [

which is a rational function of ¢ (though complicated).

o The magic substitution can also be used to reduce any problem involving trigonometric identities in
rational multiples of a single variable = to a finite computation with rational functions. (In practice,
this is not as useful as it might seem, because the polynomial algebra is usually harder than using other
techniques like the angle-addition formulas.)

1
(] EXam[)le: Find fmdx

2
- 2
o We set t = tan (g), with cos(z) = T and dex = —— dt, to obtain

+ 2 1+12
1 1 2
——dr = . dt
/2+cos(;v) . /2+1—t2 1+¢2
14 ¢2

2
/2(1+t2)+(17t2)dt
2 2 1
/3+t2dt:/3'1+(t/\/§)2dt

2 V3 2
2o du=—
3 14wu? V3

o In this new integral we set u = t//3 with du = dt/\/3 to obtain | tan~!(u) + C.

2

2 1 x
o Substituting back for ¢ and then z yields the answer as | — tan~' [ —= tan ()) +C|.
& ! V3 <\/§

5.7 Improper Integration

e Sometimes we like to integrate to infinity, by which we mean, take the limit as a limit of integration becomes
arbitrarily large.



o In other words, we write [ f(z)dx as shorthand for lim [? f(z)dz.
q— 00

Other times, we like to integrate through a ’singularity’ of a function — that is, through a point where a
function is undefined because it blows up: for example, = 0 for the function f(z) =1/z.

1 1
o Again, we will write fol = dz as shorthand for lim, fql = dz.
X q—0 x

Integrals with either of these two kinds of "bad behaviors’ are called improper integrals. (Perhaps the termi-
nology stems from the fact that trying to evaluate such integrals is not something done in polite company.)

Typically we will be interested in asking (i) if the integral actually converges to a finite value, and (ii) if it
does, what the value is.

There are roughly two ways to solve problems like this:

o Method 1: Find the indefinite integral, and then evaluate the limit. If the limit is hard, try rewriting
the function to simplify the limit.

o Method 2: Compare the integrand to another function whose integral is easier to evaluate. We are aided
by the following theorem:
* Theorem (Comparison Test for Integrals): If 0 < f(z) < g(x) for all  in the interval [a,b] where
one or both of a and b can be infinite, then if f: f(x) dx diverges, so does fab g(z)dx. If f(fg(:r) dx
b
converges, then so does [ f(z) dz.
* The idea behind the theorem is to say that if 0 < f(z) < g(z) then f: flx)de < ffg(x) dr, and

so if the f(x)-integral goes to co then so must the g(x)-integral, and conversely if the g(z)-integral
stays finite then so must the f(x)-integral.

e Example: Evaluate fooo e " dx.

o We just evaluate to see [~ e *dx = lim (—e *)|1_; = qli}r{)lo [—e7+1] = .

q—r o0

50 1
e Example: Evaluate [ mdm.

o We do partial fractions to see [ dr =In(z) —In(z + 1)+ C.

22+
o Now to take the limit as £ — 0o is not so easy, unless we notice that we can rewrite the indefinite integral

T
as In .
(m+ 1)
1

o . . 1
o Then we have [ ﬁdx: lim [ln (xil)} |2_, = lim {ln (mil) —ln(Q)} =|In(2) |

o If the problem had only asked about convergence, we could have observed that x2 + x > z2 for positive

1 1
x, SO < —. Then the Comparison Test would have said that, because I —dr=——[32, =1
x x x

2+ .

converges, then so does floo PR dz. However, the Comparison Test doesn’t help us in computing the
x>+

actual value.

1
z+1)(z+2)(z+3)(z+4)

e Example: Determine whether the integral fooo ( dx converges.

o Doing partial fractions is too much work (although it does give the correct answer, if the trick in the
previous example is used repeatedly).

1 < 1 < 1 < 1
r+4 " x+3 x+2 x+1°

o But it’s easier to notice that



1
z+1)(z+2)(x+3)(x+4
finite (in fact, it is i)

o Therefore this integral .

1
e Example: Determine whether the integral fol pu dx converges.

Th a
o enfO( 4

1 1
d 1~ __dpy=-= H32_. As g — thi i
) z < [y @+ 1)" x (x+1)732_,. As ¢ — oo this remains

1
o We integrate to get fql —dz = —In(q).
x

o So as g — 07 we see that this diverges to —oo.

o Therefore this integral ’ diverges to — oo ‘

Well, you’re at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2015. You may not reproduce or distribute this
material without my express permission.



