Contents

2	ntroduction to Differentiation	1
	.8 Trigonometric Limits]

2 Introduction to Differentiation

In this supplement, we discuss trigonometric limits and some of their applications.

2.8 Trigonometric Limits

- Our first goal is to compute the limit $\lim_{x \to 0} \frac{\sin(x)}{x}$.
- <u>Theorem</u> (Sine Limit): The value of the limit $\lim_{x\to 0} \frac{\sin(x)}{x}$ is 1.
 - <u>Proof</u>: Let $0 < x < \pi/2$. Consider the unit circle, and draw points O(0,0), A(1,0), $B(\cos x, \sin x)$, and $C(1, \tan x)$: then angle AOB has measure x radians and points O, A, and C are collinear:

- Now observe that triangle ABO is contained inside the circular sector ABO. The area of triangle ABO is $\frac{1}{2}\sin(x)$, since its base is 1 and its height is $\sin(x)$, while the area of sector ABO is $\frac{1}{2}x$.
- Therefore, $\frac{1}{2}\sin(x) < \frac{1}{2}x$, or equivalently, $\frac{\sin(x)}{x} < 1$.
- Next, observe that sector ABO is contained inside the triangle BOC. The area of triangle BOC is $\frac{1}{2}\tan(x)$, since its base is 1 and its height is $\tan(x)$, while the area of sector ABO is again $\frac{1}{2}x$.
- Therefore, $\frac{1}{2}x < \frac{1}{2}\tan(x)$, or equivalently, $\cos(x) < \frac{\sin(x)}{x}$.
- Combining the two inequalities, we see that $\cos(x) < \frac{\sin(x)}{x} < 1$, for all $0 < x < \frac{\pi}{2}$.
- Since $\cos(-x) = \cos(x)$ and $\frac{\sin(-x)}{-x} = \frac{\sin(x)}{x}$, in fact the inequality $\cos(x) < \frac{\sin(x)}{x} < 1$ holds for all $-\frac{\pi}{2} < x < \frac{\pi}{2}$, except x = 0.

- Now because $\lim_{x\to 0} \cos(x) = 1$ and that $\lim_{x\to 0} 1 = 1$ as well, by applying the squeeze theorem we conclude that $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.
- Next we compute a pair of limits related to cosine: $\lim_{x \to 0} \frac{1 \cos(x)}{x^2}$ and $\lim_{x \to 0} \frac{1 \cos(x)}{x}$.

• <u>Theorem</u> (Cosine Limit): The value of the limit $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$ is $\frac{1}{2}$, and the value of $\lim_{x\to 0} \frac{1-\cos(x)}{x}$ is 0.

 \circ <u>Proof</u>: For the first limit, we have

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \cdot \frac{1 + \cos(x)}{1 + \cos(x)} = \lim_{x \to 0} \frac{1 - \cos^2(x)}{x^2} \cdot \frac{1}{1 + \cos(x)}$$
$$= \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \frac{1}{1 + \cos(x)} = \left[\lim_{x \to 0} \frac{\sin(x)}{x}\right]^2 \cdot \left[\lim_{x \to 0} \frac{1}{1 + \cos(x)}\right] = 1^2 \cdot \frac{1}{2} = \frac{1}{2}$$
the second limit,
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \cdot x = \frac{1}{2} \cdot 0 = 0.$$

• By manipulating these limits in sufficiently clever ways, we can compute a number of others.

• Example: Find
$$\lim_{t \to 0} \frac{\sin(4t)}{t}$$

For

- o In the sine limit lim_{x→0} sin(x)/x, if we set x = 4t, then x → 0 is the same as saying that t → 0, so upon making the change of variables, we see that lim_{t→0} sin(4t)/4t = 1.
 o Multiplying through by 4 then yields the desired lim_{t→0} sin(4t)/t = 4.
- <u>Example</u>: Find $\lim_{t \to 0} \frac{\sin(3t)}{\sin(2t)}$.

• In the sine limit $\lim_{x \to 0} \frac{\sin(x)}{x}$, if we set x = 3t, then as in the example above we see that $\lim_{t \to 0} \frac{\sin(3t)}{3t} = 1$. • Similarly, if instead we set x = 2t, we see that $\lim_{t \to 0} \frac{\sin(2t)}{2t} = 1$, so that $\lim_{t \to 0} \frac{2t}{\sin(2t)} = 1$ as well.

- We can then write the original limit as $\lim_{t \to 0} \frac{\sin(3t)}{\sin(2t)} = \lim_{t \to 0} \frac{\sin(3t)}{3t} \cdot \frac{3t}{2t} \cdot \frac{2t}{\sin(2t)} = 1 \cdot \frac{3}{2} \cdot 1 = \boxed{\frac{3}{2}}$, using our evaluations above.
- Example: Find $\lim_{t \to 0} \frac{1 \cos(5t)}{\sin^2(3t)}$.
 - $\text{o As in the examples above we see that } \lim_{t \to 0} \frac{\sin(3t)}{3t} = 1, \text{ so that } \lim_{t \to 0} \frac{3t}{\sin(3t)} = 1.$ $\text{o Also, by setting } x = 5t \text{ in the limit } \lim_{x \to 0} \frac{1 \cos(x)}{x^2}, \text{ we see that } \lim_{t \to 0} \frac{1 \cos(5t)}{(5t)^2} = 1.$ $\text{o We can then write } \lim_{t \to 0} \frac{1 \cos(5t)}{\sin^2(3t)} = \lim_{t \to 0} \frac{1 \cos(5t)}{(5t)^2} \cdot \frac{(5t)^2}{(3t)^2} \cdot \left(\frac{3t}{\sin(3t)}\right)^2 = 1 \cdot \frac{5^2}{3^2} \cdot 1 = \boxed{\frac{25}{9}}.$

Well, you're at the end of my handout. Hope it was helpful.

Copyright notice: This material is copyright Evan Dummit, 2016. You may not reproduce or distribute this material without my express permission.