Contents

2 Introduction to Differentiation 1
2.8 Trigonometric Limits . 1

2 Introduction to Differentiation

In this supplement, we discuss trigonometric limits and some of their applications.

2.8 Trigonometric Limits

- Our first goal is to compute the limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.
- Theorem (Sine Limit): The value of the limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ is 1 .
- Proof: Let $0<x<\pi / 2$. Consider the unit circle, and draw points $O(0,0), A(1,0), B(\cos x, \sin x)$, and $C(1, \tan x)$: then angle $A O B$ has measure x radians and points O, A, and C are collinear:

Areas in The Unit Circle 2

Areas in The Unit Circle 3

- Now observe that triangle $A B O$ is contained inside the circular sector $A B O$. The area of triangle $A B O$ is $\frac{1}{2} \sin (x)$, since its base is 1 and its height is $\sin (x)$, while the area of sector $A B O$ is $\frac{1}{2} x$.
- Therefore, $\frac{1}{2} \sin (x)<\frac{1}{2} x$, or equivalently, $\frac{\sin (x)}{x}<1$.
- Next, observe that sector $A B O$ is contained inside the triangle $B O C$. The area of triangle $B O C$ is $\frac{1}{2} \tan (x)$, since its base is 1 and its height is $\tan (x)$, while the area of sector $A B O$ is again $\frac{1}{2} x$.
- Therefore, $\frac{1}{2} x<\frac{1}{2} \tan (x)$, or equivalently, $\cos (x)<\frac{\sin (x)}{x}$.
- Combining the two inequalities, we see that $\cos (x)<\frac{\sin (x)}{x}<1$, for all $0<x<\frac{\pi}{2}$.
- Since $\cos (-x)=\cos (x)$ and $\frac{\sin (-x)}{-x}=\frac{\sin (x)}{x}$, in fact the inequality $\cos (x)<\frac{\sin (x)}{x}<1$ holds for all $-\frac{\pi}{2}<x<\frac{\pi}{2}$, except $x=0$.
- Now because $\lim _{x \rightarrow 0} \cos (x)=1$ and that $\lim _{x \rightarrow 0} 1=1$ as well, by applying the squeeze theorem we conclude that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
- Next we compute a pair of limits related to cosine: $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$ and $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}$.
- Theorem (Cosine Limit): The value of the limit $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$ is $\frac{1}{2}$, and the value of $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}$ is 0 .
- Proof: For the first limit, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}} & =\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}} \cdot \frac{1+\cos (x)}{1+\cos (x)}=\lim _{x \rightarrow 0} \frac{1-\cos ^{2}(x)}{x^{2}} \cdot \frac{1}{1+\cos (x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}} \cdot \frac{1}{1+\cos (x)}=\left[\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right]^{2} \cdot\left[\lim _{x \rightarrow 0} \frac{1}{1+\cos (x)}\right]=1^{2} \cdot \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

For the second limit, $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}} \cdot x=\frac{1}{2} \cdot 0=0$.

- By manipulating these limits in sufficiently clever ways, we can compute a number of others.
- Example: Find $\lim _{t \rightarrow 0} \frac{\sin (4 t)}{t}$.
- In the sine limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$, if we set $x=4 t$, then $x \rightarrow 0$ is the same as saying that $t \rightarrow 0$, so upon making the change of variables, we see that $\lim _{t \rightarrow 0} \frac{\sin (4 t)}{4 t}=1$.
- Multiplying through by 4 then yields the desired $\lim _{t \rightarrow 0} \frac{\sin (4 t)}{t}=4$.
- Example: Find $\lim _{t \rightarrow 0} \frac{\sin (3 t)}{\sin (2 t)}$.
- In the sine limit $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$, if we set $x=3 t$, then as in the example above we see that $\lim _{t \rightarrow 0} \frac{\sin (3 t)}{3 t}=1$.
- Similarly, if instead we set $x=2 t$, we see that $\lim _{t \rightarrow 0} \frac{\sin (2 t)}{2 t}=1$, so that $\lim _{t \rightarrow 0} \frac{2 t}{\sin (2 t)}=1$ as well.
- We can then write the original limit as $\lim _{t \rightarrow 0} \frac{\sin (3 t)}{\sin (2 t)}=\lim _{t \rightarrow 0} \frac{\sin (3 t)}{3 t} \cdot \frac{3 t}{2 t} \cdot \frac{2 t}{\sin (2 t)}=1 \cdot \frac{3}{2} \cdot 1=\frac{3}{2}$, using our evaluations above.
- Example: Find $\lim _{t \rightarrow 0} \frac{1-\cos (5 t)}{\sin ^{2}(3 t)}$.
- As in the examples above we see that $\lim _{t \rightarrow 0} \frac{\sin (3 t)}{3 t}=1$, so that $\lim _{t \rightarrow 0} \frac{3 t}{\sin (3 t)}=1$.
- Also, by setting $x=5 t$ in the limit $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}$, we see that $\lim _{t \rightarrow 0} \frac{1-\cos (5 t)}{(5 t)^{2}}=1$.
- We can then write $\lim _{t \rightarrow 0} \frac{1-\cos (5 t)}{\sin ^{2}(3 t)}=\lim _{t \rightarrow 0} \frac{1-\cos (5 t)}{(5 t)^{2}} \cdot \frac{(5 t)^{2}}{(3 t)^{2}} \cdot\left(\frac{3 t}{\sin (3 t)}\right)^{2}=1 \cdot \frac{5^{2}}{3^{2}} \cdot 1=\frac{25}{9}$.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2016. You may not reproduce or distribute this material without my express permission.

