
Calculus I (part 1s): Formal ε-δ Limits (by Evan Dummit, 2012, v. 1.55)

The formal use of ε-δ limits does not yield a great deal of insight into how to use limits at a beginning level. As
such, the development of the formal theory of limits has been relegated to this supplement. Or, more dramatically:

DO NOT READ THIS SUPPLEMENT
UNLESS YOU ABSOLUTELY HAVE TO
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0.0.1 Formal De�nition and Examples

• De�nition: A function f(x) has the limit L as x → a, written as lim
x→a

f(x) = L, if, for any ε > 0 (no matter

how small) there exists a δ > 0 (depending on ε) with the property that for all 0 < |x− a| < δ, we have that
|f(x)− L| < ε.

◦ The symbols δ and ε are the lowercase Greek letters delta and epsilon (respectively). Their use in the
de�nition of the limit is traditional. Also recall that the notation |x| means the absolute value of x, and
denotes the distance from x to zero.

◦ One way to think of this de�nition is as follows: suppose you claim that the function f(x) has a limit
L, as x gets close to a. In order to prove to me that the function really does have that limit, I challenge
you by handing you some value ε > 0, and I want you to give me some open interval (a− δ, a+ δ) on the
x-axis containing a, with the property that f(x) is always within ε for x in that interval, except possibly
at a.

◦ If f(x) really does stay close to the limit value L as x gets close to a, then, no matter what value of ε I
picked, you should always be able to answer my challenge with an interval around a, because the values
of f(x) should stay near L when x is near a.

◦ Note that it is not necessary to �nd the best possible δ � any δ which does the job is perfectly �ne.

• Important Remark: Don't worry if this formal de�nition seems very opaque at �rst. It takes practice and
experience to become comfortable with what the de�nition means, and to see why it really does match the
intuition of how a limit should behave.

◦ We will generally use the formal de�nition primarily as a tool to justify our manipulations of limits and
to ground our intuition in proof.

• Basic Limit 1: lim
x→a

c = c, where c is any constant.

◦ To show this formally, suppose we are given an ε > 0, and we want to �nd a δ > 0 which will make
|c− c| < ε whenever 0 < |x− a| < δ.

◦ Now, since |c− c| = 0, and ε > 0, the inequality |c− c| < ε is always true.

◦ So in fact here we can take any δ we want � any at all � and the result holds.

• Basic Limit 2: lim
x→a

x = a.
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◦ Proof: Suppose we are given an ε > 0, and we want to �nd a δ > 0 which will make |h(x)− a| < ε
whenever 0 < |x− a| < δ, where h(x) = x.

◦ Let's try taking our δ to equal ε. Then we need to check that 0 < |x− a| < δ makes |x− a| < ε.

◦ This is in fact true, since if 0 < |x− a| < ε then certainly |x− a| < ε. So this choice of δ works, and so
the limit has the value we claimed.

◦ Note that we could have chosen δ to be lots of other things, and it still would have worked: for example,
δ = ε/2 would also have worked.

• In that example it may have seemed like we just guessed that we should try δ = ε, and then plugged in to
see that it would work. In general, this is how formal limit proofs work � generally, one needs some insight or
observation to �gure out what δ to use, but all that is needed for the proof is to plug in to see that the choice
of δ actually works.

◦ For arbitrary functions, there is not any general rule for �nding δ from ε.

◦ Often what is needed is to try to solve the problem �backwards�: i.e., to rearrange the wanted inequality
|f(x)− L| < ε using properties of the function f(x), to �gure out what value of δ will make things work.

• Example: We prove that lim
x→3

x2 = 9.

◦ We are given ε > 0 and want to pick δ such that |x− 3| < δ implies
∣∣x2 − 9

∣∣ < ε.

◦ We can factor (x2 − 9) = (x− 3)(x+ 3), and so we are looking to pick δ which makes |x− 3| · |x+ 3| =
|(x− 3)(x+ 3)| < ε.

◦ Our hypothesis |x− 3| < δ already tells us that we can make |x− 3| small, but what about the other
term in that product, |x+ 3|?
◦ We are free to choose δ however we like, so (for instance) we can always insist on taking δ ≤ 1. Then
since |x− 3| < δ ≤ 1, this says 2 < x < 4, and so 5 < x+3 < 7. So we can say that |x+ 3| is always less
than 7.

◦ Thus, if we choose δ ≤ 1, we know that |x− 3| · |x+ 3| < |x− 3| · 7 < 7δ.

◦ If we can make this always less than ε, we will be done. So, for instance, we can take δ = ε/7 to make
this work. Remembering the condition δ ≤ 1, we conclude that taking δ = min(1, ε/7) should always
work.

◦ If we wanted to write this up carefully, we would do it as follows:

∗ We claim that lim
x→3

x2 = 9.

∗ We are given ε > 0 and want to �nd δ > 0 such that |x− 3| < δ implies
∣∣x2 − 9

∣∣ < ε.

∗ We claim that δ = min(1, ε/7) will always work.

∗ To show this works, suppose that|x− 3| < δ.

· In particular, since δ ≤ 1 we see that|x− 3| < 1, so −1 < x− 3 < 1.

· Adding 6 to each part of this inequality gives 5 < x+ 3 < 7, and so |x+ 3| < 7.

· Finally,
∣∣x2 − 9

∣∣ = |x− 3| · |x+ 3| < δ · 7 < 7 · (ε/7) = ε, as we wanted.

∗ Therefore, lim
x→3

x2 = 9.

◦ When we write the proof up this way, it looks very clean, but it obscures all the work we had to do in
order to �gure out what δ actually should be. This will usually be the case with formal ε − δ proofs:
they often seem like merely an excellent guess.

• We can also use this de�nition to prove that a limit does not exist. Showing that a given limit does not exist
(at all) is the same as showing that no matter what value of L we pick, there exists some �bad� value of ε for
which we can't �nd any δ.

• Example: Show that the step function
x

|x|
, which has value −1 for negative x, +1 for positive x, and is

unde�ned at 0, has no limit as x→ 0.
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◦ Here is the graph of this function:
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◦ To show the function has no limit at x = 0, we need to verify that that no matter what value of L we
pick, there is a value of ε which falsi�es the limit hypothesis.

◦ Here, we can pick ε = 1/3 no matter what value of L we're trying:

∗ Since any open interval around 0 contains both positive and negative numbers, we would need both
|1− L| and |−1− L| to be less than ε = 1/3.

∗ But the sum |1− L| + |−1− L| is always at least 2: if L is between −1 and +1 then the sum is 2
and otherwise the sum is 2 |L|.

∗ This is obviously impossible, since the sum of two things each less than 1/3 cannot be at least 2.

∗ Therefore, the limit cannot be L, for any value of L. In other words, the limit does not exist.

◦ Remark: One can make a similar argument for f(x) = cos

(
1

x

)
to see that it has no limit at x = 0.

∗ In any interval around 0, no matter how small, there are points where f(x) = 1 and f(x) = −1.

∗ Essentially the same argument as above (with ε = 1/3) will show that cos

(
1

x

)
has no limit at x = 0.

0.0.2 Proofs of the Limit Rules for Finite Limits

• Let f(x) and g(x) be functions satisfying lim
x→a

f(x) = Lf and lim
x→a

g(x) = Lg. Then the following properties

hold:

• The addition rule: lim
x→a

[f(x) + g(x)] = Lf + Lg.

◦ Proof: Suppose we are given ε > 0.

∗ Since we know that lim
x→a

f(x) = Lf and lim
x→a

g(x) = Lg, we can �nd δ1 and δ2 such that |f(x)− Lf | <
ε

2
for 0 < |x− a| < δ1 and |g(x)− Lg| <

ε

2
for 0 < |x− a| < δ2.

∗ We claim that the value δ = min(δ1, δ2) will make |f(x) + g(x)− (Lf + Lg)| < ε for all x with
0 < |x− a| < δ.

∗ To verify: we know that − ε
2
< f(x)−Lf <

ε

2
and − ε

2
< g(x)−Lg <

ε

2
for 0 < |x− a| < min(δ1, δ2),

so adding the inequalities shows −ε < (f(x)− Lf ) + (g(x)− Lg) < ε.

∗ Or, in other words, |f(x) + g(x)− (Lf + Lg)| < ε for all x with 0 < |x− a| < δ. This is what we
wanted to show.

• The subtraction rule: lim
x→a

[f(x)− g(x)] = Lf − Lg.

◦ Proof: The same as the addition rule, but with a minus sign instead of a plus sign.

• The multiplication rule: lim
x→a

[f(x) · g(x)] = Lf · Lg.

◦ Proof: First we show that if lim
x→a

h(x) = Lh then lim
x→a

h(x)2 = L2
h.

∗ Suppose we are given ε > 0.

∗ Since we know that lim
x→a

h(x) = Lh, then we can �nd δ such that |h(x)− Lh| < min

(
1,

ε

1 + 2 |Lh|

)
for all 0 < |x− a| < δ.
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∗ In particular, for 0 < |x− a| < δ we have |h(x)− Lh| < 1 or −1 < h(x) − Lh < 1, so that
−1 + 2Lh < h(x) + Lh < 1 + 2Lh. Taking absolute values shows |h(x) + Lh| < 1 + 2 |Lh|.
∗ Then

∣∣h(x)2 − L2
h

∣∣ = |h(x)− Lh| · |h(x) + Lh| <
ε

1 + 2 |Lh|
· (1 + 2 |Lh|) = ε, as desired.

◦ Now, applying this result to the two particular cases where h(x) = f(x) + g(x) and h(x) = f(x)− g(x)
shows (after an application of the addition rule and the subtraction rule) that lim

x→a
[f(x) + g(x)]2 =

(Lf + Lg)
2 and lim

x→a
[f(x)− g(x)]2 = (Lf − Lg)

2.

◦ Subtracting, applying the subtraction rule again, and cancelling the common terms gives lim
x→a

[4f(x) · g(x)] = 4Lf · Lg.

Dividing by 4 then gives the multiplication rule.

• The division rule: lim
x→a

[
f(x)

g(x)

]
=
Lf

Lg
, provided that Lg is not zero.

◦ Proof: First we show that if lim
x→a

h(x) = Lh and Lh > 0 then lim
x→a

1

h(x)
=

1

Lh
. Suppose we are given

ε > 0.

∗ Since we know that lim
x→a

h(x) = Lh, then we can �nd δ such that |h(x)− Lh| < min

(
Lh

2
, 2L2

hε

)
for

all 0 < |x− a| < δ.

∗ In particular, for 0 < |x− a| < δ we have |h(x)− Lh| <
Lh

2
, so that

Lh

2
< h(x) <

3Lh

2
and hence

|h(x)| < 3Lh

2
.

∗ Then

∣∣∣∣ 1

h(x)
− 1

Lh

∣∣∣∣ = ∣∣∣∣Lh − h(x)
h(x) · Lh

∣∣∣∣ = |h(x)− Lh| ·
1

|Lh|
· 1

|h(x)|
< (2L2

hε) ·
1

Lh
· 1
1

2
Lh

= ε, as desired.

◦ If Lh < 0 then the same result holds by the subtraction rule.

◦ Finally, to obtain the division rule, we apply the multiplication rule to f · 1
g
.

• The exponentiation rule: lim
x→a

[f(x)a] = (Lf )
a
, where a is any positive real number. (It also holds when a is

negative or zero, provided Lf is positive, in order for both sides to be real numbers.)

◦ Proof: If a is a positive integer, we repeatedly apply the multiplication rule to fn = fn−1 · f .

◦ For positive rational a =
p

q
we write [fa]

q
= fp and then apply the integer case of the exponentiation

rule.

◦ If a is negative, we apply the division rule to
1

f(x)a
and apply the case where a is positive.

◦ For general real numbers a, the proof requires the de�nition of f(x)a as a limit of a sequence.

• The inequality rule: If f(x) ≤ g(x) for all x, then Lf ≤ Lg.

◦ Proof: Suppose by way of contradiction that lim
x→a

f(x) = Lf and lim
x→a

g(x) = Lg, where Lg < Lf .

∗ Denote the positive number Lf − Lg by α.

∗ Because lim
x→a

f(x) = Lf , by de�nition there exists a δ1 for which |f(x)− Lf | <
α

3
for all 0 < |x− a| <

δ1.

∗ Similarly, because lim
x→a

f(x) = Lf , there exists a δ2 for which |g(x)− Lg| <
α

3
for all 0 < |x− a| < δ2.

∗ Now pick any value y with 0 < |y − a| < min(δ1, δ2): for that y, we have |f(y)− Lf | <
α

3
and

|g(y)− Lg| <
α

3
.

∗ Then in particular, we have g(y) < Lg +
α

3
< Lg +

2α

3
= Lf −

α

3
< f(y).
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∗ This is a contradiction because we have g(y) < f(y), but we assumed that f(x) ≤ g(x) for all x.

• The squeeze rule (also called the sandwich rule): If f(x) ≤ g(x) ≤ h(x) and lim
x→a

f(x) = lim
x→a

h(x) = L (mean-

ing that both limits exist and are equal to L) then lim
x→a

g(x) = L as well.

◦ Proof: Suppose we are given ε > 0.

∗ Since we know that lim
x→a

f(x) = L and lim
x→a

h(x) = L, we can �nd δ1 and δ2 such that |f(x)− L| < ε

for 0 < |x− a| < δ1 and |g(x)− L| < ε for 0 < |x− a| < δ2.

∗ We claim that the value δ = min(δ1, δ2) will make |g(x)− L| < ε for all x with 0 < |x− a| < δ.

∗ To verify: we know that −ε < f(x)−L and h(x)−L < ε for 0 < |x− a| < min(δ1, δ2), so by adding
L to both inequalities we see L− ε < f(x) and h(x) < L+ ε.

∗ Since f(x) ≤ g(x) ≤ h(x) for all x, we see that L−ε < f(x) ≤ g(x) ≤ h(x) < L+ε for 0 < |x− a| < δ.
In other words, L− ε < g(x) < L+ ε, or |g(x)− L| < ε.

∗ So |g(x)− L| < ε for all x with 0 < |x− a| < δ. This is what we wanted to show.

• Proposition: A two-sided limit exists if and only if both one-sided limits exist and have the same value.

◦ Proof: Let ε > 0 be given. If the two-sided limit exists, it is clear that both one-sided limits exist and
have the same value, since we can use the value of δ from the two-sided limit in each of the one-sided
limits.

◦ Conversely, suppose that lim
x→a+

f(x) = L = lim
x→a−

f(x). Then from the left limit there exists a δ1 such that

−δ1 < x−a < 0 implies |f(x)− L| < ε, and from the right limit there exists a δ2 such that 0 < x−a < δ2
implies |f(x)− L| < ε.

◦ Hence for δ = min(δ1, δ2), we see that 0 < |x− a| < δ implies |f(x)− L| < ε, as desired.

• Theorem: If g(x) is a continuous function, and lim
x→a

f(x) = L, then lim
x→a

g(f(x)) = g(L).

◦ Proof: Let ε > 0 be given. By hypothesis, since g is continuous there exists δ1 > 0 for which
|g(y)− g(L)| < ε for all y with |y − L| < δ1.

◦ Now since lim
x→a

f(x) = L, there exists δ2 > 0 for which |f(x)− L| < δ1 for all x with 0 < |x− a| < δ2.

◦ Plugging the second statement into the �rst shows that |g(f(x))− g(L)| < ε for all x with 0 < |x− a| <
δ2, as desired.

0.0.3 Formal Arguments for In�nite Limits

• The formal de�nitions for one-sided limits are the following:

◦ We say that a function f(x) has the limit L as x→ a from below, written as lim
x→a−

f(x) = L, if the

following statement is true: for any ε > 0 (no matter how small) there exists a δ > 0 (depending on ε)
with the property that for all 0 < a− x < δ, we have that |f(x)− L| < ε.

◦ We say that a function f(x) has the limit L as x→ a from above, written as lim
x→a+

f(x) = L, if the

following statement is true: for any ε > 0 (no matter how small) there exists a δ > 0 (depending on ε)
with the property that for all 0 < x− a < δ, we have that |f(x)− L| < ε.

• The formal de�nitions for limits at in�nity are the following:

◦ We say that a function f(x) has the limit L as x→ +∞, written as lim
x→+∞

f(x) = L, if the following

statement is true: for any ε > 0 (no matter how small) there exists an A > 0 (depending on ε) with the
property that for all x > A, we have that |f(x)− L| < ε.

◦ We say that a function f(x) has the limit L as x→ −∞, written as lim
x→−∞

f(x) = L, if the following

statement is true: for any ε > 0 (no matter how small) there exists an A > 0 (depending on ε) with the
property that for all x < −A, we have that |f(x)− L| < ε.
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◦ Note: As ε shrinks, A will grow very large, in contrast to when we used δ, which would get smaller with
smaller ε.

◦ Notation: The symbols ∞ and +∞ mean the same thing (�positive in�nity�); the +∞ is often used for
contrast with the −∞ symbol (�negative in�nity�).

• The formal de�nitions for in�nite limits are the following:

◦ We say that a function f(x) diverges to +∞ as x→ c, written as lim
x→c

f(x) = +∞, if the following

statement is true: for any B > 0 (no matter how large) there exists a δ > 0 (depending on B) with the
property that for all 0 < |x− c| < δ, we have f(x) > B.

∗ The idea of diverging to −∞ is analogous, except instead f(x) < −B.
∗ We can also formulate one-sided limits here, with x→ c from above or from below.

◦ We say that a function f(x) diverges to +∞ as x→∞, written as lim
x→∞

f(x) = +∞, if the following

statement is true: for any B > 0 (no matter how large) there exists an A > 0 (depending on B) with
the property that for all x > A, we have f(x) > B.

∗ The statements for diverging to −∞, or the statements as x→ −∞, are similar.

• Here are some sketch-examples of in�nite limits evaluated using the de�nitions:

◦ Example: The function f(x) = xn (for n a positive integer) diverges to +∞ as x→ +∞ and, as x→ −∞,
it diverges to +∞ if n is even and to −∞ if n is odd.

∗ For this function, we can take A = n
√
B, for either direction.

◦ Example: The function f(x) = ex diverges to +∞ as x→ +∞ and tends to 0 as x→ −∞.

∗ As x→ +∞ we can take A = ln(B). As x→ −∞ we can take A = − ln(ε).

◦ Example: The function f(x) =
1

x2
diverges to +∞ as x→ 0.

∗ For this function, we can take δ =
√
B.

◦ Example: The function f(x) =
1

x
diverges to −∞ as x → 0 from below, and diverges to +∞ as x → 0

from above.

∗ For this function, we can take δ = B, for either direction.

0.0.4 Proofs of the Limit Rules for In�nite Limits

• Basic Limits: lim
x→+∞

c = c for any constant c, lim
x→+∞

1

x
= 0, and lim

x→∞
x =∞.

◦ Proof (c): Suppose we are given ε > 0. We want to �nd an A > 0 such that for all x > A, we have that
|c− c| < ε. Any value of A will work, since |c− c| = 0 is always less than ε (which is positive).

◦ Proof (
1

x
): Suppose we are given ε > 0. We want to �nd an A > 0 such that for all x > A, we have that∣∣∣∣ 1x

∣∣∣∣ < ε. We claim that A =
1

ε
will work. To see this, observe that if x >

1

ε
, then after multiplying the

inequality by
ε

x
we see that

ε

x
· x > ε

x
· 1
ε
, or ε >

1

x
. Since

1

x
is positive, we thus obtain

∣∣∣∣ 1x
∣∣∣∣ < ε, as

desired.

◦ Proof (x): We need to show that for any B > 0 (no matter how large) there exists an A > 0 (depending
on B) with the property that for all x > A, we have f(x) > B. Here, we can simply take A = B, since
f(x) = x.

• Negation: If lim
x→a

f(x) =∞, then lim
x→a

[−f(x)] = −∞, and vice versa.

◦ Proof: We need only multiply the inequality for f(x) by −1 to get the necessary inequality for −f(x)
(i.e., the values of δ are the same).
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• Multiplication: If lim
x→a

f(x) is a �nite positive number or ∞ and lim
x→a

g(x) =∞, then lim
x→a

[f(x)g(x)] =∞.

◦ Proof: By the hypothesis about f , there exists some C such that for all x > C it is true that f(x) > M
for some positive real number M .

◦ Now let B > 0 be given. By the hypothesis about g, there exists a δ2 > 0 such that for all 0 < |x− a| < δ2,
we have g(x) > B/M .

◦ Then for all 0 < |x− a| < δ with δ = min(δ1, δ2), we see that f(x)g(x) > B, as desired.

• Addition: If lim
x→a

f(x) is a �nite number or ∞ and lim
x→a

g(x) =∞, then lim
x→a

[f(x) + g(x)] =∞.

◦ Proof: By the hypothesis about f , there exists some δ1 such that for all x with 0 < |x− a| < δ1 it is
true that f(x) > M for some (possibly negative) real number M .

◦ Now let B > 0 be given. By the hypothesis about g, there exists a δ2 > 0 such that for all 0 < |x− a| < δ2,
we have g(x) > B −M .

◦ Then for all 0 < |x− a| < δ with δ = min(δ1, δ2), we see that f(x) + g(x) > B, as desired.

• Division: If lim
x→a

f(x) is a �nite number and lim
x→a

g(x) =∞, then lim
x→a

[
f(x)

g(x)

]
= 0.

◦ Proof: By the hypothesis about f , there exists some δ1 such that for all x with 0 < |x− a| < δ1 it is
true that |f(x)| < M for some (nonnegative) real number M .

◦ Now let ε > 0 be given. By the hypothesis about g, there exists a δ2 > 0 such that for all 0 < |x− a| < δ2,
we have g(x) > M/ε.

◦ Then for all 0 < |x− a| < δ with δ = min(δ1, δ2), we see that
f(x)

g(x)
< ε, as desired.

• Exponentiation: If lim
x→a

f(x) = L (where L ≥ 0) and lim
x→a

g(x) =∞, then lim
x→a

f(x)g(x) is 0 if 0 < L < 1, and

is ∞ if L > 1. Furthermore, lim
x→a

g(x)f(x) is ∞ provided L > 0.

◦ Proof (fg for 0 < L < 1): By the hypothesis about f , there exists some δ1 such that for all x with
0 < |x− a| < δ1 it is true that |f(x)| < M for some real number M with 0 < M < 1. Now let ε > 0
be given: by the hypothesis about g, there exists a δ2 > 0 such that for all 0 < |x− a| < δ2, we have
g(x) > − logM ε. Then for all 0 < |x− a| < δ with δ = min(δ1, δ2), we see that f(x)

g(x) < ε, as desired.

◦ Proof (fg for L > 1): By the hypothesis about f , there exists some δ1 such that for all x with 0 <
|x− a| < δ1 it is true that |f(x)| > M for some real number M with M > 1. Now let B > 0 be given: by
the hypothesis about g, there exists a δ2 > 0 such that for all 0 < |x− a| < δ2, we have g(x) > logM B.
Then for all 0 < |x− a| < δ with δ = min(δ1, δ2), we see that f(x)

g(x) > B, as desired.

◦ Proof (gf ): By the hypothesis about f , there exists some δ1 such that for all x with 0 < |x− a| < δ1 it
is true that |f(x)| > M for some positive real number M . Now let B > 0 be given: by the hypothesis
about g, there exists a δ2 > 0 such that for all 0 < |x− a| < δ2, we have g(x) > B1/M . Then for all
0 < |x− a| < δ with δ = min(δ1, δ2), we see that g(x)

f(x) > B, as desired.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012. You may not reproduce or distribute this material
without my express permission.
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