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1 Limits and Continuity

In this chapter, we introduce the fundamental idea of a limit, which captures the behavior of a function near a
point of interest. Our primary interest in limits is to establish the de�nition of a continuous function, and to lay
the technical groundwork for the de�nition of the derivative.

1.1 Limits (Informally)

• Informally, a limit is something that captures the �local� behavior of a function. Saying that the function
f(x) has the limit L as x approaches some value a means that as x gets �really close� to a, f(x) gets �as close
as we want� to L.

◦ This idea may seem obvious or stupid at �rst (especially given that we have described it in rather vague
and imprecise terms), but in fact it is more subtle than it might seem.

• Example: Consider the function f(x) =
√
x as x approaches 9.

◦ As x approaches 9, f(x) should approach 3, based on our knowledge of the square root function.

◦ We can compute f(x) for some values of x close to 9:

∗ x 8 8.5 8.9 8.99 8.999
f(x) 2.828 2.915 2.983 2.998 2.9998

x 10 9.5 9.1 9.01 9.001
f(x) 3.162 3.082 3.016 3.0016 3.0001

◦ And indeed, the values approach 3.

• Example: Consider the function g(x) =
x2 − 1

x− 1
, de�ned for x 6= 1, as x approaches 1.

◦ Here is a short table of values:

∗ x 0 0.5 0.9 0.99 0.999 0.9999
g(x) 1 1.5 1.9 1.99 1.999 1.9999

x 2 1.5 1.1 1.01 1.001 1.0001
f(x) 3 2.5 2.1 2.01 2.001 2.0001

◦ As x gets close to 1, it looks like g(x) is approaching the value 2.

◦ We can justify this with the following calculation: when x 6= 1 we can write g(x) =
(x− 1)(x+ 1)

(x− 1)
= x+1,

since cancellation is allowed when the thing being cancelled is nonzero.

◦ So as x gets close to 1, it makes sense that g(x) gets close to 2.

• Example: Consider the function h(x) =
sin(x)

x
, de�ned for x 6= 0, as x approaches 0.
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◦ Here is a short table of values for positive x:

∗ x 1 0.5 0.1 0.05 0.01 0.001
h(x) 0.841 0.959 0.998 0.9996 0.99998 0.9999998

◦ Note that h(x) = h(−x), so we will see the same behavior for negative x as for positive x.

◦ As x gets close to 0, it looks like h(x) is approaching the value 1.

◦ However, unlike with g(x) in the example above, there is no obvious algebraic manipulation we can
perform that would explain why h(x) is approaching 1 as x approaches 0.

◦ It certainly seems very plausible that as x takes even smaller values, h(x) will continue getting closer
and closer to 1, but at the moment we do not really have any way to justify this statement.

• Example: Consider k(x) = cos

(
1

x

)
, de�ned for x 6= 0, as x approaches 0.

◦ Here is a short table of values for positive x:

∗ x 1 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001
k(x) 0.540 −0.416 −0.839 0.408 0.862 0.562 −0.9522 −0.9994

◦ Note that k(x) = k(−x), so we will see the same behavior for negative x as for positive x.

◦ From these values it seems as though k(x) is approaching the value −1 as x approaches 0.

◦ But it we compute k(x) for even smaller x, we see that this table was misleading:

∗ x 10−6 10−7 10−8 10−9 10−10 10−11

k(x) 0.937 −0.907 −0.363 0.838 0.873 0.370

◦ It appears that there is no pattern to the numbers as x approaches 0, even as x becomes very small.

◦ In hindsight, we should not have expected these numbers to have any kind of nice pattern: after all, as

x approaches 0,
1

x
becomes very large (positive or negative) and so the function cos

(
1

x

)
will oscillate

wildly between the values −1 and +1 near x = 0.

◦ Here is a graph of the function y = k(x), illustrating this unpredictable behavior near x = 0:

• As we can see from these examples, sometimes functions seem to have nice �limiting behavior� near particular
values (even if those values are not actually in the domain of the function), and other times they do not.

◦ Calculations like the ones we made in the examples can only take us so far.

◦ For example, for h(x) =
sin(x)

x
, how do we know that as we consider smaller and smaller values of x

that h(x) will continue getting closer to 1? After all, we made an erroneous guess for the very similar-

looking function k(x) = cos

(
1

x

)
: it looked initially like the function values were approaching −1 as x

approached 0, but in fact they don't.
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◦ To reiterate: how can we ever know that we've gotten �close enough� to conclude that the value tends
to what our intuition says it does?

◦ We need �something else� (namely, a rigorous de�nition) that will allow us to see that our intuition about
limiting values is correct.

1.2 Limits and the Limit Laws

• The formal de�nition of the limit allows us to back up our intuition with rigorous proof.

• De�nition: A function f(x) has the limit L as x → a, written as lim
x→a

f(x) = L, if, for any ε > 0 (no matter

how small) there exists a δ > 0 (depending on ε) with the property that for all 0 < |x− a| < δ, we have that
|f(x)− L| < ε.

◦ The symbols δ and ε are the lowercase Greek letters delta and epsilon (respectively). Their use in the
de�nition of the limit is traditional. Also recall that the notation |x| means the absolute value of x, and
denotes the distance from x to zero.

◦ Remark: This formal de�nition is very opaque. It takes practice and experience to become comfortable
with what the de�nition means, and to see why it really does match the intuition of how a limit should
behave.

◦ One way to think of this de�nition is as follows: suppose you claim that the function f(x) has a limit
L, as x gets close to a. In order to prove to me that the function really does have that limit, I challenge
you by handing you some value ε > 0, and I want you to give me some open interval (a− δ, a+ δ) on the
x-axis containing a, with the property that f(x) is always within ε for x in that interval, except possibly
at a.

◦ If f(x) really does stay close to the limit value L as x gets close to a, then, no matter what value of ε I
picked, you should always be able to answer my challenge with an interval around a, because the values
of f(x) should stay near L when x is near a.

• We will not use the formal ε− δ de�nition to calculate limits, as it is quite cumbersome even for very simple
functions. Instead, we will state some properties that limits obey that can be used to reduce complicated
limits to �simple� ones whose values we know.

◦ Each of these properties can be justi�ed using the formal de�nition, but the proofs are complicated.
Furthermore, the details of the limit laws' proofs are not terribly important to understanding what the
laws say and how they are used, which is why they are not given here.

• Theorem (Limit Laws): Let f(x) and g(x) be functions satisfying lim
x→a

f(x) = Lf and lim
x→a

g(x) = Lg. Then

the following properties hold:

◦ Basic limits: If a and c are any constants, then lim
x→a

c = c, and lim
x→a

x = a.

◦ The addition rule: lim
x→a

[f(x) + g(x)] = Lf + Lg.

◦ The subtraction rule: lim
x→a

[f(x)− g(x)] = Lf − Lg.

◦ The multiplication rule: lim
x→a

[f(x) · g(x)] = Lf · Lg.

∗ Note that the multiplication rule yields as a special case (when g(x) is identically equal to a constant
c) the constant-multiplication rule: lim

x→a
[c · f(x)] = c · Lf , where c is any real number.

◦ The division rule: lim
x→a

[
f(x)

g(x)

]
=
Lf
Lg

, provided that Lg is not zero.

◦ The exponentiation rule: lim
x→a

[
f(x)b

]
= (Lf )

b
, where b is any positive real number. (It also holds when

b is negative or zero, provided Lf is positive, in order for both sides to be real numbers.)

◦ The inequality rule: If f(x) ≤ g(x) for all x, then Lf ≤ Lg.
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◦ The squeeze rule (also called the sandwich rule): If f(x) ≤ g(x) ≤ h(x) and lim
x→a

f(x) = lim
x→a

h(x) = L

(meaning that both limits exist and are equal to L) then lim
x→a

g(x) exists and also equals L.

• Example: Evaluate lim
t→1

t3 − 3t+ 1

t− 3
formally using the limit laws.

◦ First, we use the subtraction rule to see that lim
t→1

(t− 3) = lim
t→1

(t)− lim
t→1

(3) = 1− 3 = −2, where we used
the two �basic limits� at the end.

◦ Next, we use the multiplication rule to see that lim
t→1

(3t) = 3 lim
t→1

(t) = 3, and the exponentiation rule to

see that lim
t→1

(t3) = lim
t→1

(t)3 = 1.

◦ Then we can use addition and subtraction to see that lim
t→1

(t3 − 3t + 1) = lim
t→1

(t3)− lim
t→1

(3t) + lim
t→1

(1) =

1− 3 + 1 = −1.

◦ Finally, we can use the division rule to see that lim
t→1

t3 − 3t+ 1

t− 3
=

lim
t→1

(t3 − 3t+ 1)

lim
t→1

(t− 3)
= −1

2
.

◦ Note that this is the result we would have gotten if we had just �plugged in� t = 1 to the function.

• Example: Evaluate lim
x→0

x2 cos

(
1

x

)
.

◦ We cannot use the multiplication rule here, because, although lim
x→0

x = 0, lim
x→0

cos

(
1

x

)
does not exist,

and the multiplication rule requires both limits to exist.

◦ We use the squeeze theorem instead: because cosine is always between −1 and +1 and x2 is always

nonnegative, we have the inequalities −x2 ≤ x2 cos

(
1

x

)
≤ x2.

◦ Then because lim
x→0

(−x2) = 0 and lim
x→0

x2 = 0, which both also follow easily from the limit laws and the

basic limits, the squeeze theorem dictates that lim
x→0

x2 cos

(
1

x

)
= 0 .

• In general, when evaluating limits using the limit laws, a reasonable procedure is �rst to try plugging in the
limiting value to the function.

◦ If plugging in yields a numerical value, then the limit can usually be evaluated by direct applications of
the limit laws. (Using the limit laws in this way is essentially bookkeeping.)

◦ If an indeterminate expression like
0

0
is obtained, it is often necessary to perform some kind of algebraic

manipulation �rst.

• Example: Evaluate lim
t→−2

t+ 2

t2 − 4
formally using the limit laws.

◦ If we try plugging in, we see that the numerator and denominator are both zero, suggesting that we
should try to simplify the expression �rst.

◦ Here, we can factor the denominator: t2 − 4 = (t− 2)(t+ 2).

◦ Then we can write lim
t→−2

t+ 2

t2 − 4
= lim
t→−2

t+ 2

(t− 2)(t+ 2)
= lim
t→−2

1

t− 2
, where we cancelled the common fac-

tor.

◦ Finally, the subtraction and division laws give us lim
t→−2

1

t− 2
= −1

4
.

◦ Remark: The use of the limit allows us to say something about the function f(t) =
t+ 2

t2 − 4
near t = −2,

even though the function (as written) is not de�ned there.
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• Example: Evaluate lim
x→9

√
x− 3

x− 9
.

◦ If we try plugging in, we see that the numerator and denominator are both zero, suggesting that we
should try to simplify the expression �rst.

◦ Here, the denominator is a di�erence involving square roots. A useful technique in this situation is to
�multiply by the conjugate�:

lim
x→9

√
x− 3

x− 9
= lim
x→9

√
x− 3

x− 9
·
√
x+ 3√
x+ 3

= lim
x→9

(
√
x)2 − 32

(x− 9)(
√
x+ 3)

= lim
x→9

x− 9

(x− 9)(
√
x+ 3)

.

◦ Now we can cancel the common factor x− 9 and are left with the simple limit lim
x→9

1√
x+ 3

=
1

6
.

1.3 One-Sided Limits

• Sometimes, we are only interested in the behavior of a limit as the parameter approaches from one side � for
example, we might have a physical system and only possess data over some time interval, and would like to
say things about how the system behaves at the ends of the time interval.

• This motivates us to de�ne �one-sided limits�. The de�nitions are the following (although, as before, we will
not use the de�nition to evaluate limits):

◦ We say that a function f(x) has the limit L as x→ a from below, written as lim
x→a−

f(x) = L, if the

following statement is true: for any ε > 0 (no matter how small) there exists a δ > 0 (depending on ε)
with the property that for all −δ < x− a < 0, we have that |f(x)− L| < ε.

◦ We say that a function f(x) has the limit L as x→ a from above, written as lim
x→a+

f(x) = L, if the

following statement is true: for any ε > 0 (no matter how small) there exists a δ > 0 (depending on ε)
with the property that for all 0 < x− a < δ, we have that |f(x)− L| < ε.

◦ The only change in the de�nition is the restriction on the x-axis: a two-sided limit has 0 < |x− a| < δ,
while the limit from below has 0 < a− x < δ and the limit from above has 0 < x− a < δ.

◦ Remark: �Normal� limits are sometimes called two-sided limits, to distinguish them from the two possible
one-sided limits. The term �limit�, with no quali�er, refers to a two-sided limit.

• All of the limit laws also hold for one-sided limits, with all of the limits being changed to the appropriate
one-sided limit.

• Example: Find lim
x→0+

√
x.

◦ We know that lim
x→0+

x = 0, and so by the exponentiation rule we see lim
x→0+

√
x =

√
lim
x→0+

x = 0 .

◦ Depending on one's preference regarding complex numbers, one might say that the two-sided lim
x→0

√
x

does not exist (because
√
x is not a real number for negative x). Here, the one-sided limit avoids these

di�culties.

• Proposition (One- and Two-Sided Limits): A two-sided limit exists precisely when both one-sided limits exist
and have the same value. When the two one-sided limits are equal, the two-sided limit shares the same value.

◦ This result is more or less a restatement of the de�nitions of the one-sided limits.

◦ In particular: a two-sided limit won't exist if either of the one-sided limits doesn't exist, or if the two
one-sided limits have di�erent values.

◦ Some functions have di�erent behaviors to the left and to the right of a given point, which will be detected
by the one-sided limits.

• Example: Find the one-sided limits lim
x→0+

x

|x|
and lim

x→0−

x

|x|
. Does the limit lim

x→0

x

|x|
exist?
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◦ We can see that
x

|x|
=

{
1 if x > 0

−1 if x < 0
, so the graph of this function jumps from −1 to +1 at x = 0:

◦ By our results on limits of constants, we see that lim
x→0+

x

|x|
= 1 , while lim

x→0−

x

|x|
= −1 .

◦ The (two-sided) limit of this function at 0 therefore does not exist , since the one-sided limits have
di�erent values.

• Example: Let f(x) =


x2 − 1 if x > 2

4 if x = 2

x+ 1 if x < 2

. Find lim
x→2+

f(x), lim
x→2−

f(x), and lim
x→2

f(x).

◦ Here is a graph of this function:

◦ When x > 2, f(x) = x2 − 1, so lim
x→2+

(x2 − 1) = 3 using the limit laws.

◦ Similarly, when x < 2, f(x) = x+ 1, so lim
x→2−

(x+ 1) = 3 using the limit laws.

◦ Since the two one-sided limits are equal, the two-sided limit exists and has the same value: lim
x→2

f(x) = 3 .

◦ Notice that although f(2) = 4, the limit lim
x→2

f(x) is equal to 3.

◦ This odd behavior is re�ected in the graph of y = f(x), and explains why there is a �hole�: the curves
representing y = x2 − 1 for x > 2 and y = x + 1 for x < 2 both approach the point (2, 3) as x → 2.
However, because f(2) is actually equal to 4, the point (2, 3) is missing from the graph of y = f(x), as
it has been replaced with the point (2, 4).

1.4 Continuity

• We will now discuss a very important property of functions that captures a notion of �niceness�.

• De�nition: A function f(x) is continuous at x = a if lim
x→a

f(x) = f(a). A function f(x) is called everywhere continuous

(or often, just �continuous�) if it is continuous at x = a for all real numbers a in its domain.
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◦ Continuous functions are (generally speaking) much nicer than arbitrary functions. Continuous functions
do not �jump� or have �missing points�, nor do they blow up to ∞.

◦ A common interpretation of a continuous function is: its graph can be drawn without taking the pencil
o� of the paper1.

◦ Most of the functions we will encounter (polynomials, trigonometric functions, exponentials and loga-
rithms) will be continuous everywhere they are de�ned, except possibly at a small number of points.

• Proposition: Every polynomial is everywhere continuous.

◦ Proof: We want to show that lim
x→a

p(x) = p(a), where p(x) is any polynomial in x, and a is any real

number.

◦ By the exponentiation rule, we know that lim
x→a

xn =
(
lim
x→a

x
)n

= an, for any positive integer n, since we

already know that lim
x→a

x = a.

◦ By the multiplication rule, we know that lim
x→a

(cnx
n) =

[
lim
x→a

cn

]
·
[
lim
x→a

xn
]
= cna

n, for any constant cn,

since we know that lim
x→a

cn = cn.

◦ Finally, because every polynomial is just a sum of terms of the form cnx
n for some coe�cients cn, we can

use the addition rule (repeatedly) to conclude that lim
x→a

p(x) = p(a), where p(x) is an arbitrary polynomial.

• Proposition: The functions ex, sin(x), and cos(x) are continuous for all x.

◦ The proof of this result requires using the technical de�nitions of these functions, either as limits or as
in�nite sums.

• Theorem: If f(x) and g(x) are continuous functions, then f(x) + g(x), f(x) − g(x), f(x) · g(x), and f(g(x))

are continuous functions. If g(x) 6= 0 then
f(x)

g(x)
is also continuous, and if g(x) > 0 then [g(x)]

a
is continuous,

for any real number a. If f(x) is one-to-one then f−1(x) is also continuous.

◦ The proofs for the sum, di�erence, product, quotient, and exponentiation follow from the respective limit
laws.

◦ The proof for the composition uses the de�nition of continuity twice.

◦ The proof for the inverse function uses the intermediate value theorem (see below).

◦ Note that a quotient of functions is never continuous anywhere that the denominator is zero (since,
although the limit may exist, the quotient itself is not de�ned and therefore cannot equal the limit).

• Proposition: Any quotient of polynomials
p(x)

q(x)
is continuous everywhere it is de�ned, as are the trigonometric

functions tan(x), sec(x), csc(x), cot(x), and the logarithm ln(x).

◦ These results follow from the properties of continuous functions and the results that polynomials, sin(x),
cos(x), and ex are continuous.

◦ Example: The function f(x) =
1

x
is continuous at all x 6= 0, and is discontinuous at x = 0.

• Theorem (Continuity and Limits): If g(x) is a continuous function, and lim
x→a

f(x) = L, then lim
x→a

g(f(x)) = g(L).

◦ In other words, we can move continuous functions through limits without having to worry about changing
the value.

1Technically, this description is slightly stronger than continuity: it is describing a continuous function of �bounded variation�. The
problem is that the graph could have an in�nite length even on a �nite interval (and such a graph cannot be physically drawn using a

real pencil). One example is f(x) =

{
x sin(1/x) for x 6= 0

0 for x = 0
, which is continuous at x = 0 by the squeeze theorem, but the length of

the graph of y = f(x) on any open interval containing x = 0 is in�nite.
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◦ The proof is very similar to the proofs of the limit laws.

• Using properties of continuous functions can allow us to evaluate many complicated limits with ease:

• Example: Find lim
x→π

tan−1

(
esin(x)√
2− cos(x)

)
.

◦ First, because esin(x) and
√

2− cos(x) are both continuous functions, and the latter function is never

zero (since cos(x) is between −1 and 1), the quotient
esin(x)√
2− cos(x)

is also continuous.

◦ Thus, lim
x→π

esin(x)√
2− cos(x)

=
esin(π)√
2− cos(π)

=
e0√

2− (−1)
=

1√
3
.

◦ Then, since arctangent is continuous, we can move it through the limit to write

lim
x→π

tan−1

(
esin(x)√
2− cos(x)

)
= tan−1

(
lim
x→π

esin(x)√
2− cos(x)

)
= tan−1

(
1√
3

)
=

π

6
.

• A fundamental property is that a continuous function has no �jumps�. The formal statement is as follows:

• Intermediate Value Theorem: If the function f(x) is continuous on the interval [a, b] then for any y between
f(a) and f(b), there exists a value c in (a, b) such that y = f(c). Equivalently, f attains all values between
f(a) and f(b) as x goes from a to b.

◦ This theorem is essentially equivalent to the formal de�nition of the real numbers, and its proof requires
using a technical result known as the least upper bound axiom.

◦ Using the Intermediate Value Theorem, we can prove that continuous functions must take on particular
values, even if we cannot explicitly say exactly where.

• Example: Show that there is a real number c such that c = cos(c).

◦ If we let f(x) = x− cos(x), then we want to show that f(x) attains the value zero somewhere.

◦ We can compute f(0) = −1 and f(π) = π + 1.

◦ Since f(x) is continuous, and 0 lies between f(0) and f(1), the Intermediate Value Theorem dictates
that there is some c in (0, π) such that f(c) = 0.

◦ For this value of c, we have 0 = f(c) = c− cos(c), so that c = cos(c) as desired.

• Example: Show that the function p(x) = x7 − 8x+ 6 has at least three real zeroes.

◦ We will use the Intermediate Value Theorem on three separate intervals to show that there must exist a
zero in each interval.

◦ If we make a small table of values, we will see that p(−2) = −106, p(−1) = 13, p(0) = 6, p(1) = −1, and
p(2) = 118.

◦ Notice that p(x) is continuous and changes sign in each of the intervals [−2,−1], [0, 1], and [1, 2].

◦ Thus, applying the Intermediate Value Theorem on each interval shows that p(x) has at least one real
zero in each of the intervals (−2,−1), (0, 1), and (1, 2), so it must have at least 3 zeroes in total.

• With all of these results, essentially the only remaining simple functions for which continuity is still an
interesting question are �piecewise-de�ned� functions. For such functions, to determine continuity requires
comparing one-sided limits to the value of the function at the points where the de�nition of the function
changes.

• Example: Determine the values of a and b that make f(x) =


x2 for x < 2

x+ a for 2 ≤ x ≤ 3

b− x2 for x > 3

continuous for all x.
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◦ On the intervals (−∞, 2), (2, 3), and (3,∞), f is de�ned as a single polynomial, and is therefore con-
tinuous. The only possible issues are at x = 2 and x = 3, where the de�nition of f changes from one
polynomial to another.

◦ As x → 2 from below, f(x) → 4. As x → 2 from above, f(x) → 2 + a, and f(2) = 2 + a. We need all
three values to be equal, so 4 = a+ 2 so that a = 2.

◦ Now as x→ 3 from below, f(x)→ 3+ a = 5. As x→ 3 from above, f(x)→ b− 9, and f(3) = 3+ a = 5.
We need all three values to be equal, so 5 = b− 9 so that b = 14.

◦ Therefore, f(x) will be continuous when a = 2, b = 14 .

◦ Here is a graph of y = f(x), for a = 2 and b = 14:

1.5 Limits at In�nity, In�nite Limits

• Another type of behavior we would like to study is how a function f(x) behaves when the value of x becomes
very large (either large positive or large negative).

• The precise de�nitions (which, again, we will not use for evaluating limits) are as follows:

◦ We say that a function f(x) has the limit L as x→ +∞, written as lim
x→+∞

f(x) = L, if the following

statement is true: for any ε > 0 (no matter how small) there exists an A > 0 (depending on ε) with the
property that for all x > A, we have that |f(x)− L| < ε.

◦ We say that a function f(x) has the limit L as x→ −∞, written as lim
x→−∞

f(x) = L, if the following

statement is true: for any ε > 0 (no matter how small) there exists an A > 0 (depending on ε) with the
property that for all x < −A, we have that |f(x)− L| < ε.

◦ Notation: The symbols ∞ and +∞ mean the same thing (�positive in�nity�); the +∞ is often used for
contrast with the −∞ symbol (�negative in�nity�).

• All of the limit laws also hold for limits at in�nity, with all of the limits being changed to the appropriate
in�nite limit.

• Note that some functions, such as f(x) = x, do not tend to a �nite value as x becomes very large, but instead

�grow to in�nity�. Other functions, such as g(x) =
1

x2
and h(x) = ln(x), become very large even for �nite

values of x. So we will de�ne �in�nite limits� to cover those cases:

◦ We say that a function f(x) diverges to +∞ as x→ c, written as lim
x→c

f(x) = +∞, if the following

statement is true: for any B > 0 (no matter how large) there exists a δ > 0 (depending on B) with the
property that for all 0 < |x− c| < δ, we have f(x) > B.

∗ The idea of diverging to −∞ is analogous, except instead f(x) < −B.
∗ We can also formulate one-sided limits here, with x→ c from above or from below.
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◦ We say that a function f(x) diverges to +∞ as x→∞, written as lim
x→∞

f(x) = +∞, if the following

statement is true: for any B > 0 (no matter how large) there exists an A > 0 (depending on B) with
the property that for all x > A, we have f(x) > B.

∗ The statements for diverging to −∞, or the statements as x→ −∞, are similar.

• There are some additional limit laws that allow us to work with in�nite limits (where a can be �nite or
in�nite):

◦ Basic Limits: lim
x→+∞

c = c for any constant c, lim
x→+∞

1

x
= 0, lim

x→∞
x =∞, and lim

x→0+
ln(x) = −∞.

◦ Negation: If lim
x→a

f(x) =∞, then lim
x→a

[−f(x)] = −∞, and vice versa.

◦ Multiplication: If lim
x→a

f(x) is a �nite positive number or∞ and lim
x→a

g(x) =∞, then lim
x→a

[f(x)g(x)] =∞.

◦ Addition: If lim
x→a

f(x) is a �nite number or ∞ and lim
x→a

g(x) =∞, then lim
x→a

[f(x) + g(x)] =∞.

◦ Division: If lim
x→a

f(x) is a �nite number and lim
x→a

g(x) =∞, then lim
x→a

[
f(x)

g(x)

]
= 0.

◦ Exponentiation (∞L): If lim
x→a

f(x) =∞ and lim
x→a

g(x) = L where L > 0, or lim
x→a

g(x) =∞, then lim
x→a

f(x)g(x)

is ∞.

◦ Exponentiation (L∞): If lim
x→a

f(x) = L (where L ≥ 0) and lim
x→a

g(x) =∞, then lim
x→a

f(x)g(x) is 0 if

0 ≤ L < 1, and is ∞ if L > 1.

• Using these limit laws for ∞, we can attach a concrete meaning to certain arithmetic operations involving ∞
that allows us to treat ∞ and −∞ as if they were �almost� real numbers (subject to some restrictions):

◦ The �negation� statement says that −1 · ∞ = −∞ (i.e., we can move minus signs to and from ∞ in the
way we would expect).

◦ The �multiplication� statement says ∞ ·∞ and c · ∞ are both ∞ for any positive constant c.

◦ The �addition� statement says that c+∞ and ∞+∞ are both ∞ for any �nite c.

◦ The �division� statement says that
c

∞
= 0 for any �nite c.

◦ The �exponentiation� statements say that a∞ is 0 if 0 < a < 1 and is ∞ if a > 1, and also that ∞a =∞
for a > 0. (Both statements include the fact that ∞∞ =∞.)

◦ By combining some of the above statements we can see what happens with −∞ as well: for example,
c−∞ = −∞ and (−∞) · (−∞) =∞, and a−∞ is ∞ if a < 1 and is 0 if a > 1.

◦ The other possible arithmetic operations (namely,∞−∞, 0 ·∞,
∞
∞

,
∞
0
, 1∞, and∞0) are �indeterminate

forms�, meaning that their values depend on the functions whose limits are involved. (They may be �nite,
in�nite, or not exist at all, depending on the situation.)

• Many in�nite limits can be evaluated using direct appeals to the limit laws and the basic limits.

• Example: Find lim
x→∞

xn and lim
x→−∞

xn, for n a positive integer.

◦ By applying the exponentiation rule (∞L) for limits with f(x) = x and g(x) = n, we see that lim
x→∞

xn =

∞ .

◦ For the other limit, observe that xn = (−1)n(−x)n. By applying the exponentiation rule (∞L) for limits
with f(x) = −x and g(x) = n (note that f(x) is positive when x is large and negative), we see that
lim

x→−∞
(−x)n =∞.

◦ Thus, lim
x→−∞

xn = (−1)n lim
x→−∞

(−x)n =

{
∞ if n is even

−∞ if n is odd
.
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• Example: Find lim
x→a+

1

(x− a)n
, lim
x→a−

1

(x− a)n
, and lim

x→a

1

(x− a)n
, for n a positive integer.

◦ By applying the exponentiation rule (L∞) for limits with f(x) =
1

x− a
(which is positive when x > a)

and g(x) = n, we see that lim
x→a+

1

(x− a)n
= ∞ .

◦ For the other limit, observe that (x− a)n = (−1)n(a− x)n. Applying the exponentiation rule (L∞) for

limits with f(x) =
1

a− x
(which is positive when x < a) and g(x) = n, we see that lim

x→a−

1

(a− x)n
=∞.

◦ Then lim
x→a−

1

(x− a)n
= (−1)n∞ =

{
∞ if n is even

−∞ if n is odd
.

◦ Finally, by comparing the two one-sided limits, we see lim
x→a−

1

(x− a)n
=

{
∞ if n is even

DNE if n is odd
.

• Example: Find lim
x→0

1

x2
.

◦ This example is merely a special case of the previous one, with a = 0 and n = 2.

◦ From the analysis above, we see that the limit exists and equals ∞ .

• Example: Find lim
x→∞

ex and lim
x→−∞

ex.

◦ By applying the exponentiation rule for in�nite limits we see lim
x→∞

ex = ∞ .

◦ For the other limit, we could either use the exponentiation rule again, or use the division rule to see that

lim
x→−∞

ex = lim
y→∞

e−y = lim
y→∞

1

ey
= 0 (where we set y = −x in the �rst step).

• Example: Find lim
x→2

x2 − 5

(x− 2)6
.

◦ Note that the limit of the numerator as x→ 2 is equal to −1, while the denominator goes to zero.

◦ From our earlier analysis, we know that lim
x→2

1

(x− 2)6
=∞.

◦ Thus, by the multiplication rule for in�nite limits, we see that lim
x→2

x2 − 5

(x− 2)6
= (−1) · (∞) = −∞ .

• Other limits require some algebraic manipulation or simpli�cation to evaluate.

◦ In general, a good heuristic is that the behaviors of in�nite limits tend to be determined by the largest
terms.

◦ For limits involving quotients of polynomials, or in general functions that can be compared to powers of x,
a useful idea is to factor out the highest power of x that appears in the numerator and the denominator.

• Example: Find lim
x→∞

(x3 − 2x2 + 4) and lim
x→−∞

(x3 − 2x2 + 4) .

◦ We should expect that the behavior of the limit will be determined by the largest quantity, which in this
case is x3.

◦ If we factor out the largest power of x, we can write x3 − 2x2 = x3 · (1− 2/x+ 4/x3).

◦ Taking the limit as x→∞, we see that x3 →∞ while (1− 2/x+ 4/x3)→ 1. Thus, by the in�nite limit
laws for products, we see that lim

x→∞
(x3 − 2x2 + 4) = ∞ .

◦ Similarly, if we take the limit as x→ −∞, we see that x3 → −∞ while (1− 2/x+ 4/x3)→ 1. Thus, by
the in�nite limit laws for products, we see that lim

x→−∞
(x3 − 2x2 + 4) = −∞ .
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• Example: Evaluate lim
x→∞

3x2 + 2x− 1

x2 − x− 71
.

◦ Here, x2 is the highest power that appears in both the numerator and denominator.

◦ Factoring it out yields lim
x→∞

3x2 + 2x− 1

x2 − x− 71
= lim
x→∞

x2 ·
[
3 + 2/x− 1/x2

]
x2 · [1− 1/x− 71/x2]

.

◦ Now we can use the limit laws repeatedly to break down the evaluation into easy pieces, to see that

lim
x→∞

[
3 + 2/x− 1/x2

]
= 3 and lim

x→∞

[
1− 1/x− 71/x2

]
= 1, and so we obtain lim

x→∞

3x2 + 2x− 1

x2 − x− 71
= 3 .

• Example: Evaluate lim
x→∞

3x3 + 2x− 1

x2 − x− 71
.

◦ Like above, we pull out the highest power of x that appears in the numerator and the denominator.

◦ This gives lim
x→∞

3x3 + 2x− 1

x2 − x− 71
= lim
x→∞

x3 ·
[
3 + 2/x2 − 1/x3

]
x2 · [1− 1/x− 71/x2]

= lim
x→∞

x · 3 + 2/x2 − 1/x3

1− 1/x− 71/x2
.

◦ We have lim
x→∞

x =∞ and lim
x→∞

3 + 2/x2 − 1/x3

1− 1/x− 71/x2
= 3 by the same kind of argument as before, so by the

multiplication rule for in�nite limits we see that the original limit was ∞ .

• Example: Find lim
x→∞

√
x2 + 4

x− 2
and lim

x→−∞

√
x2 + 4

x− 2
.

◦ In each case, observe that the numerator and denominator both go to ±∞. To evaluate the limit, we
pull out the largest power of x from each.

◦ For the �rst limit, lim
x→∞

√
x2 + 4

x− 2
= lim
x→∞

√
x2(1 + 4/x2)

x(1− 2/x)
= lim
x→∞

√
x2 ·

√
1 + 4/x2

x(1− 2/x)
.

◦ Since x is large and positive,
√
x2 = x, so lim

x→∞

√
x2 ·

√
1 + 4/x2

x(1− 2/x)
= lim
x→∞

√
1 + 4/x2

1− 2/x
=

1

1
= 1 .

◦ For the second limit, the same calculation yields lim
x→−∞

√
x2 + 4

x− 2
= lim
x→−∞

√
x2 ·

√
1 + 4/x2

x(1− 2/x)
.

◦ Since x is large and negative,
√
x2 = −x, so lim

x→∞

√
x2 ·

√
1 + 4/x2

x(1− 2/x)
= lim
x→∞

−
√
1 + 4/x2

1− 2/x
=
−1
1

= −1 .

• Example: Find lim
x→∞

[√
x2 + 6x− x

]
.

◦ Here, there is a di�erence involving a square root, so we use the idea of �multiplying by the conjugate�:

lim
x→∞

[√
x2 + 6x− x

]
= lim
x→∞

√
x2 + 6x− x

1
·
√
x2 + 6x+ x√
x2 + 6x+ x

= lim
x→∞

(x2 + 6x)− x2√
x2 + 6x+ x

= lim
x→∞

6x√
x2 + 6x+ x

.

◦ Now we can pull out the largest power of x from the numerator and denominator:

lim
x→∞

6x√
x2 + 6x+ x

= lim
x→∞

x · 6
x
√

1 + 6/x+ x
= lim
x→∞

6√
1 + 6/x+ 1

=
6

1 + 1
= 3 .

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2019. You may not reproduce or distribute this
material without my express permission.
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