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0 Review of Basic Concepts

In this chapter, we review a variety of basic mathematical concepts that will be needed to discuss calculus. All of
these topics are treated very super�cially, as our goal is only to provide a brisk review of the necessary material.

0.1 Numbers, Sets, and Intervals

• De�nition: The positive integers (1, 2, 3, ...) are obtained by adding 1 to itself some number of times; the
other integers are 0 and the negatives of the positive integers (−1,−2,−3, ...). Integers can be added (+),
subtracted (−), and multiplied (·), but not always divided (/). Integers are also called whole numbers, and
the positive integers are also called the natural numbers.

◦ Examples of integers: 3, 0, −666, 1337, 101010 .

• De�nition: The rational numbers are numbers of the form a/b where a and b are integers and b is not zero.
Rational numbers can be added, subtracted, multiplied, and always divided (except by 0).

◦ Examples of rational numbers:
1

2
, − 225

1037
, 11, 0.

◦ The basic operations are
a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d
=
ac

bd
.

• De�nition: The real numbers are harder to de�ne simply, but roughly speaking, the real numbers are obtained
by �lling in the �gaps� between the rational numbers. For example, there is no positive rational number whose
square is exactly equal to 2; this �missing� number is the real number

√
2. Another way to think of real

numbers is as (�nite or in�nite) decimal sequences1. Real numbers can be added, subtracted, multiplied, and
always divided (except by 0).

1Some real numbers have two decimal sequences: 1.000... = 0.999... are two di�erent ways of writing the positive integer 1. A similar

ambiguity occurs with any other decimal number ending in an in�nite string of 9s, but these are the only real numbers with two decimal

representations. We will not dwell further on this technical point at the moment.
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◦ Examples of real numbers: π,
√
2,
π +
√
2

5
, 11, 0, 0.12131415161718192021....

◦ Rational numbers are those real numbers that have (eventually) repeating or terminating decimal se-

quences. For example,
4

125
= 0.032, and

3

11
= 0.27272727... = 0.27, where the bar indicates that portion

repeats forever.

◦ A common way to visualize the real numbers is as the �number line�, with negative numbers of increasing
magnitude on the left and positive numbers of increasing magnitude on the right:

• De�nition: The complex numbers are of the form a+ ib where a and b are real numbers and i is the so-called
�imaginary unit� satisfying i2 = −1.

◦ Examples of complex numbers: 3 + 4i,
√
−2, π, 11, 0, (1− i)37.

• De�nition: A set is a well-de�ned collection of distinct elements.

◦ The elements of a set can be essentially anything: integers, real numbers, other sets, people. We are
generally interested in sets of real numbers.

◦ Sets are generally denoted by capital or script letters, and when listing the elements of a set, curly
brackets {·} are used.
◦ Sets do not have to have any elements: the empty set ∅ = { } is the set with no elements at all.

◦ Two sets are the same precisely if all of their elements are the same. The elements in a set are also not
ordered, and no element can appear in a set more than once: thus the sets {1, 4} and {4, 1} are the same.

• There are two primary ways to describe a set.

◦ One way is to list all the elements: for example, A = {1, 2, 4, 5} is the set containing the four numbers
1, 2, 4, and 5.

◦ The other way to de�ne a set is to describe properties of its elements2: for example, the set S of one-letter
words in the English alphabet has two elements: S = {a, I}.

• We often employ �set-builder� notation for sets: for example, the set S of real numbers between 0 and 5 is
denoted S = {x : x is a real number and 0 ≤ x ≤ 5}.

◦ Some authors use a vertical pipe | instead of a colon : but this distinction is irrelevant.

• Sets of common types of numbers come up very often, and are given special symbols:

◦ The set {1, 2, 3, ...} of all natural numbers is denoted N (�naturals�).

◦ The set {...,−2,−1, 0, 1, 2, ...} of all integers is denoted Z (Zahlen, German for �numbers�).

◦ The set of all rational numbers is denoted Q (�quotients�).

◦ The set of all real numbers is denoted R (�reals�).

◦ The set of all complex numbers is denoted C (�complex�).

• There is additional (�interval�) notation for subsets of the real numbers. For real numbers a, b with a < b:

◦ The �closed interval� [a, b] denotes the set of real numbers x satisfying a ≤ x ≤ b.
◦ The �open interval� (a, b) denotes the set of real numbers x satisfying a < x < b.

◦ The half-open interval (a, b] denotes the set of real numbers satisfying a < x ≤ b.
◦ The half-open interval [a, b) denotes the set of real numbers satisfying a ≤ x < b.

2It is possible to run into trouble by trying to de�ne sets in this �naive� way of specifying qualities of their elements. In general, one

must be more careful when de�ning arbitrary sets, although we will not worry about this.
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◦ The notation [a,∞) denotes the set of real numbers x satisfying a ≤ x.
◦ The notation (−∞, b] denotes the set of real numbers x satisfying x ≤ b.
∗ There are also open versions (with a round bracket) which do not include the �nite endpoint.

∗ Note that ∞ and −∞ are not real numbers: they are just suggestive pieces of notation.

◦ The notation (−∞,∞) denotes the set of all real numbers.

• Notation: If S is a set, x ∈ S means �x is an element of S�, and the notation x 6∈ S means �x is not an element
of S�.

◦ Example: For S = {1, 2, 5} we have 1 ∈ S and 5 ∈ S but 3 6∈ S and π 6∈ S.

• De�nition: If A and B are two sets with the property that every element of A is also an element of B, we say
A is a subset of B (or that A is contained in B) and write A ⊆ B.

◦ Example: If A = {1, 2, 3}, B = {1, 4, 5}, and C = {1, 2, 3, 4, 5}, then A ⊆ C and B ⊆ C but neither A
nor B is a subset of the other.

◦ Note: Subset notation is not universally agreed-upon: the notation A ⊂ B is also commonly used to say
that A is a subset of B.

◦ The di�erence is not terribly relevant except for when A can be equal to B: some authors allow A ⊂ B
to include the possibility that A could be equal to B, while others insist that A ⊂ B means that A is a
subset of B which cannot be all of B.

• De�nition: If A and B are two sets, then the intersection A ∩ B is the set of all elements contained in both
A and B. The union A ∪B is the set of all elements contained in either A or B (or both).

◦ Example: If A = {1, 2, 3} and B = {1, 4, 5}, then A ∩B = {1} and A ∪B = {1, 2, 3, 4, 5}.

0.2 Functions

• De�nition: A function is a relation between a set of inputs (called the domain of the function) and a set of
outputs (called the range of the function): to each element of the domain, the function associates a single
value in the range.

◦ Example: Consider f(x) = x3, with domain and range both the set of real numbers. This function f
sends each real number x to its cube x3: thus f(2) = 8, f(0) = 0, and f(−1) = −1.
◦ We will usually work with functions whose domain and range are (subsets of) the real numbers. But
functions can be de�ned with any arbitrary domain and range.

◦ In general, unless speci�ed, the domain of a function is the largest possible set of real numbers for which
the de�nition of the function makes sense. We generally adopt the conventions that square roots of
negative real numbers are not allowed, nor is division by zero.

• Example: Find the domains of the functions g(x) =
√
x+ 1 and h(x) =

1

x2 − 1
.

◦ For g, the values of x in the domain are those which do not require taking the square root of a negative
number. We require x+ 1 ≥ 0, which is the same as saying x ≥ −1 . We can also write the domain as

the interval [−1,∞) .

◦ For h, the values of x in the domain are those which do not require dividing by zero. We require

x2 − 1 6= 0, which will be true whenever x is not 1 or −1. Thus, the domain is all real x 6= ±1 , which

can be written as the union of intervals (−∞,−1) ∪ (−1, 1) ∪ (1,∞) .

• The notation f(g(x)) is used to symbolize the result of applying f to the value g(x): this is called function composition,
and is well-de�ned provided that the range of g is a subset of the domain of f . We use the notation f ◦ g to
refer to the composite function itself, so that (f ◦ g)(x) = f(g(x)).
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◦ Example: Let f(x) = x2 and g(x) = 2x+ 1. Find f ◦ g and g ◦ f .

∗ We have (f ◦ g)(x) = f(g(x)) = f(2x+ 1) = (2x+ 1)2 = 4x2 + 4x+ 1 .

∗ Meanwhile, (g ◦ f)(x) = g(f(x)) = g(x2) = 2x2 + 1 .

◦ In the example above, notice that the composition depends on the order. In general, it will be the case
that f ◦ g and g ◦ f are completely unrelated functions!

• De�nition: A function f is one-to-one (or injective) if f(a) = f(b) implies a = b, or equivalently, if a 6= b then
f(a) 6= f(b). In other words, f is one-to-one if unequal elements in the domain are sent to unequal elements
in the range.

◦ For functions whose domain and range are the real numbers, one-to-one functions satisfy the �horizontal
line test�: a horizontal line can intersect the graph of the function at most once.

• De�nition: A one-to-one function f(x) has an inverse function f−1(x) de�ned so that f−1(f(x)) = x for every
x in the domain of f , and f(f−1(y)) = y for every y in the range of f .

◦ To compute the inverse function of f , simply solve the equation y = f(x) for x in terms of y: this will
give x = f−1(y).

• Example: Verify that the function h(x) = 3x− 2 is one-to-one and �nd its inverse function.

◦ To show that h is one-to-one, notice that h(a) = h(b) is the same as 3a− 2 = 3b− 2, and this can easily
be rearranged to obtain a = b.

◦ To �nd the inverse function, we want to solve y = 3x − 2 for x in terms of y. We obtain x =
y + 2

3
, so

h−1(y) =
y + 2

3
.

◦ Conceptually, h multiplies its argument by 3 and then subtracts 2, so its inverse function necessarily
reverses these operations, in the opposite order: namely, h−1 �rst adds 2 and then divides its argument
by 3.

• A function that is not one-to-one does not have a well-de�ned inverse function, because there will be an
ambiguity somewhere: such a function must send two values in its domain to the same value in its range, but
then this causes di�culties if we attempt to de�ne an inverse function.

◦ The way to get around this ambiguity problem is to narrow the domain of the function: if we restrict
the domain so as to make the new restricted function one-to-one on the smaller domain, we can de�ne
an inverse function on that restricted domain.

• Example: Consider trying to de�ne an inverse function for the function f(x) = x2 de�ned for all real numbers
x.

◦ We have f(2) = 22 = 4, and so f−1 should have f−1(4) = 2. But it is also the case that f(−2) = (−2)2 =
4, and so we should also have f−1(4) = −2. This is a problem: f−1(4) cannot have two di�erent values.

◦ We can get around this problem by restricting the domain of f . Speci�cally, if we work with the function
g(x) = x2 de�ned only for x ≥ 0, then g does have an inverse, namely g−1(x) =

√
x = x1/2, the

nonnegative square root of x.

◦ By removing negative numbers from the domain of f , we have made a function g that is one-to-one and
that does possess an inverse function.
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0.3 Algebra and Inequalities

• One of the central properties of the real numbers is that they possess an ordering, and we can compare any
two real numbers under this ordering: for any two real numbers a and b, either a < b (a is less than b), a = b
(a equals b), or a > b (a is greater than b).

◦ Note that the statement a > b (a is greater than b) is the same as b < a (b is less than a).

◦ A statement such as 3 < 7 or x+ 1 > −3 is called an inequality.

◦ We also use the symbols a ≤ b (a is less than or equal to b) and a ≥ b (a is greater than or equal to b)
as shorthand to include the possibilities that a = b.

• Here are some fundamental properties of inequalities:

◦ Adding and subtracting preserve inequalities: for any a, b, c, if a < b then a+ c < b+ c and a− c < b− c.
◦ Multiplying by a positive constant preserves inequalities, and multiplying by a negative constant reverses
them: for any a, b, c, if a < b and c > 0 then ac < bc, and if c < 0 then ac > bc.

◦ Similar results hold for the non-strict inequalities: if a ≤ b then a+ c ≤ b+ c and a− c ≤ b− c, if a ≤ b
and c > 0 then ac ≤ bc, if a ≤ b and c < 0 then ac ≥ bc.

◦ In particular, ab = 0 precisely when at least one of a and b is zero, ab > 0 precisely when a and b have
the same sign, and ab < 0 precisely when a and b have opposite signs.

◦ Taking reciprocals reverses inequalities of numbers with the same sign: for any a, b both positive or both

negative, if a < b then
1

b
<

1

a
.

• Using the basic properties, we can solve inequalities (i.e., characterize all the values satisfying an inequality)
in the same way that we can solve equations.

• Example: Solve the inequality −3x− 5 < 4, and express the answer in interval notation.

◦ First, we add 5 to both sides to obtain −3x < 9.

◦ Now multiplying both sides by −1

3
yields x > −3 (note that the direction of the inequality reverses,

because we multiplied by a negative number).

◦ As an interval, we obtain the answer (−3,∞) .

• Example: Solve the inequality
6

3− x
≥ −1, and express the answer in interval notation.

◦ First, if 3− x is zero, then the quantity
6

3− x
is unde�ned, so x 6= 3.

◦ Next, note that if 3 − x is positive (equivalently, if x < 3), then
6

3− x
is also positive, and so will

automatically be greater than −1.
◦ Finally, if 3 − x is negative, then multiplying both sides by 3 − x yields 6 ≤ (−1)(3 − x), where the
inequality reversed direction since 3 − x is negative. Multiplying out yields 6 ≤ −3 + x, which is the
same as x ≥ 9.

◦ Therefore, the values satisfying the inequality are any x with x < 3 or x ≥ 9. In interval notation, we

obtain (−∞, 3) ∪ [9,∞) .

• We can also solve some basic inequalities involving quadratic functions.

◦ Recall that the quadratic formula says the values of x satisfying ax2+bx+c = 0 are x =
−b±

√
b2 − 4ac

2a
.

• Example: Find all values of x satisfying the inequality x2 − 2x < 3.

5



◦ Subtracting 3 from both sides yields x2−2x−3 < 0, and factoring the left-hand side yields (x−3)(x+1) <
0.

◦ The given quantity will be less than zero precisely when one term is positive and the other is negative.

◦ Since x− 3 < x+ 1 we see that the inequality holds precisely when −1 < x < 3 .

• An important function that often shows up in inequalities is the absolute value function:

• De�nition: The absolute value of x, denoted |x|, is de�ned as |x| =
√
x2 =

{
x if x ≥ 0

−x if x < 0
.

◦ The absolute value function is an example of a piecewise-de�ned function, de�ned using di�erent formulas
on di�erent parts of its domain.

◦ Examples: |4| = 4, |−5| = 5, |0| = 0, |π − 4| = 4− π.
◦ Geometrically, the absolute value of x represents the distance from x to 0 along the real line, and |x− y|
represents the distance from x to y.

• Here are some fundamental properties of absolute values:

◦ The absolute value is multiplicative: for any a and b, |ab| = |a| · |b|. If b 6= 0, then
∣∣∣a
b

∣∣∣ = |a||b| .
◦ The triangle inequality: for any a and b, |a+ b| ≤ |a|+ |b|.
◦ If a > 0, the statement |x| < a is equivalent to −a < x < a, and |x| > a is equivalent to x < −a or x > a.

• Example: Solve the equation
∣∣x2 + 2x− 4

∣∣ = 4.

◦ The given equation is equivalent to x2 + 2x− 4 = 4 or x2 + 2x− 4 = −4.
◦ The �rst equation is the same as x2 + 2x − 8 = 0, whose solutions by the quadratic formula are x =
−2±

√
4 + 32

2
=
−2± 6

2
= −4, 2.

◦ The second equation is the same as x2 + 2x = 0, which factors as x(x+ 2) = 0, so that x = −2, 0.

◦ Thus, we obtain x = −4,−2, 0, 2 .

• Example: Find all values of x satisfying the inequality |2x− 5| ≤ 3.

◦ Note that |2x− 5| ≤ 3 is equivalent to −3 ≤ 2x− 5 ≤ 3.

◦ Adding 5 everywhere yields 2 ≤ 2x ≤ 8, and dividing by 2 yields 1 ≤ x ≤ 4 .

• Example: Solve the inequality |2− 3x| > 4, and express the answer in interval notation.

◦ Note that |2− 3x| = |3x− 2|, so the inequality is the same as |3x− 2| > 4.

◦ This inequality is in turn equivalent to 3x− 2 > 4 or 3x− 2 < −4.

◦ We obtain 3x > 6 or 3x < −2, which are equivalent to x > 2 or x < −2

3
. In interval notation, this is

(−∞,−2

3
) ∪ (2,∞) .
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0.4 Coordinate Geometry and Graphs

• We now turn our attention to coordinate geometry in the Cartesian xy-plane. We represent points in the
plane using a pair of coordinates (x, y), which denotes the point which is a horizontal distance x and a vertical
distance y from the origin (0,0):

0.4.1 Graphs of Functions

• We can graphically represent functions using coordinate geometry: if f(x) is a function, we can �graph� the
function by drawing all of the points (x, f(x)) in the plane.

◦ We often describe a graph in the form y = f(x), though we can also describe the points on a graph using
more general relations, like 3x+ 2y = 5, or x2 + y2 = 1.

• Here are a few graphs of functions:

• Graphs do not need to be graphs of functions of the form y = f(x): we can plot the set of points (x, y)
satisfying any relation, not just one of the form y = f(x). Here are a few examples:
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• There are a number of simple ways to transform the graph of a function using function composition. Here is
a summary of such transformations:

◦ If k > 0, the graph of y = f(x) + k is the graph of y = f(x) shifted up by k units, and the graph of
y = f(x)− k is the graph of y = f(x) shifted down by k units.

◦ If k > 0, the graph of y = f(x + k) is the graph of y = f(x) shifted left by k units, and the graph of
y = f(x− k) is the graph of y = f(x) shifted right by k units.

◦ If k > 0, the graph of y = kf(x) is the graph of y = f(x) stretched vertically by a factor of k.

◦ If k > 0, the graph of y = f(x/k) is the graph of y = f(x) stretched horizontally by a factor of k.

◦ The graph of y = −f(x) is the graph of y = f(x) re�ected vertically (through the x-axis), and the graph
of y = f(−x) is the graph of y = f(x) re�ected horizontally (through the y-axis).

• Example: Compare the graphs of y = x2, y = x2 + 1, y = x2 − 2, y = 2(x2 − 2), and y =
1

2
(x2 − 2).

◦ The graph of y = x2 + 1 is the graph of y = x2 translated up by 1 unit, and the graph of y = x2 − 2 is
the graph of y = x2 translated down by 2 units:

◦ Likewise, the graph of y = 2(x2 − 2) is the graph of y = x2 − 2 scaled vertically by a factor of 2, and the

graph of y =
1

2
(x2 − 2) is the graph of y = x2 − 2 scaled vertically by a factor of

1

2
(i.e., compressed by

a factor of 2).

• Example: In terms of f , �nd the function h(x) whose graph y = h(x) is obtained by �rst scaling the graph
of y = f(x) vertically by a factor of 2 and horizontally by a factor of 3, then translating left by 4 units and
down by 1 unit.

◦ The graph of y = 2f(x/3) is the graph of y = f(x) scaled vertically by a factor of 2 and horizontally by
a factor of 3.

◦ The graph of y = g(x+ 4)− 1 is the graph of y = g(x) translated left by 4 units and down by 1 unit.

◦ If we then take g(x) = 2f(x/3), this will compose the transformations in the proper order.

◦ Thus, the desired function h(x) is h(x) = g(x+ 4)− 1 = 2f

(
x+ 4

3

)
− 1 .
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0.4.2 Lines and Distances

• The most basic graph is a line, whose most general equation has the form ax + by = d for some constants
a, b, d.

◦ Examples of equations of lines: x+ y = 1, y = 3x+ 2, x =
1

5
y − π, x = 4.

◦ A line passing through the two points (x1, y1) and (x2, y2) has slope m =
y2 − y1
x2 − x1

. The fundamental

property of lines is that this ratio has the same value for any two points on the line.

◦ The slope of a horizontal line is 0, and the slope of a vertical line is unde�ned (though it is often taken
to be ∞).

◦ Two lines are parallel if and only if their slopes are equal.

◦ Two lines are perpendicular if and only if their slopes have product −1 (where we interpret 0 · ∞ = −1
in this setting).

• There are two other common forms for the equation for a line:

◦ Slope-intercept form: y = mx+ b, where m is the slope and b is the y-intercept.

◦ Point-slope form: y − y0 = m(x− x0), where m is the slope and (x0, y0) is any point on the line.

◦ Note that neither of these two forms can describe a vertical line, which has the special form x = a.

• Example: Find an equation for the line through (1, 4) and (3, 7).

◦ To describe a line, we need a point on the line, and the slope.

◦ The slope is m =
7− 4

3− 1
=

3

2
, and a point on the line is (1, 4).

◦ Hence, an equation in point-slope form is y − 4 =
3

2
(x− 1) .

◦ We could also put this in slope-intercept form as y =
3

2
x+

5

2
.

• Example: Find an equation for the line through (2, 5) perpendicular to the line 3x− 2y = 7.

◦ To describe a line, we need a point on the line, and the slope.

◦ The line 3x− 2y = 7 is the same as y =
3

2
x− 7

2
, which has slope 3/2.

◦ Hence the desired line has slope
−1
3/2

= −2

3
.

◦ Using point-slope, we obtain the equation y − 5 = −2

3
(x− 2) .

• To discuss distances, we recall a central fact from geometry:

• Pythagorean Theorem: A right triangle with legs a and b and hypotenuse c has a2 + b2 = c2.

◦ Three right triangles that show up frequently are the 1− 1−
√
2, the 1−

√
3− 2, and the 3− 4− 5.
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• Distance Formula: The distance between (x1, y1) and (x2, y2) is
√
(x2 − x1)2 + (y2 − y1)2.

◦ This formula is simply an application of the Pythagorean Theorem, where the leg a is the distance x2−x1
between the x-coordinates and the leg b is the distance y2 − y1 between the y-coordinates:

◦ Example: The distance between (1, 2) and (4, 3) is
√

(4− 1)2 + (3− 2)2 =
√
10 .

• De�nition: Given two points (x1, y1) and (x2, y2) in the plane, their midpoint is the point lying on the
line segment between them that divides the segment into two pieces of equal length, and has coordinates(
x1 + x2

2
,
y1 + y2

2

)
.

• Example: Find an equation for the line passing through the points (1, 1) and (3, 5). Then verify that the
midpoint lies on the line, and that it is equidistant from the two points.

◦ Per the formula, the midpoint has coordinates

(
1 + 3

2
,
1 + 5

2

)
= (2, 3).

◦ The line itself has slope
5− 1

3− 1
= 2, so its equation is y − 1 = 2(x − 1). We can see that the midpoint

indeed lies on the line.

◦ Finally, the distance from (1, 1) to the midpoint is
√
12 + 22 =

√
5, which is also the distance from (3, 5)

to the midpoint.

0.4.3 Circles and Conic Sections

• Another important graph is the circle: geometrically, a circle is the set of points a �xed distance r (called the
radius) from a center point (h, k). From the distance formula, we see that the equation of the circle of radius
r centered at (h, k) is (x− h)2 + (y − k)2 = r2:

◦ The circumference of a circle of radius r is 2πr and the area is πr2.

• A more general class of graphs is the conic sections, which have the general form Ax2 + Bxy + Cy2 +Dx+
Ey+F = 0. They are the graphs of degree-2 equations in x and y, in the same way that lines are the graphs
of degree-1 equations in x and y. Conic sections come in three kinds: ellipses (including circles), parabolas,
and hyperbolas.
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◦ An ellipse is the set of points whose sum of distances to two other points (the foci) is a �xed value. After
an appropriate rotation and recentering of the coordinate axes, an ellipse can be put into the standard

form
x2

a2
+
y2

b2
= 1.

◦ A parabola is the set of points whose distance from a �xed point (the focus) is equal to the distance from
a �xed line (the directrix). After an appropriate rotation of the coordinate axes, a parabola can be put
into the form y = ax2 + bx+ c.

◦ A hyperbola is the set of points whose di�erence of distances to two other �xed points (the foci) is a
�xed value. After an appropriate rotation and recentering of the coordinate axes, a hyperbola can be

put into the standard form
x2

a2
− y2

b2
= 1.

◦ The conic sections are so named because they are the possible (nondegenerate) curves of intersection
of a plane and a double-cone in 3-dimensional space. They have a number of useful applications and
properties, which we will not detail here.

0.5 Trigonometry

• First, we remark that we always measure angles in radians: a right angle (90 degrees) is
π

2
radians, and a full

circle (360 degrees) is 2π radians.

◦ We cannot really justify the purpose of using radians for angle measure at the moment: ultimately,
the reason is that radians are the most natural measure for angles in calculus, and using radians will
substantially simplify matters later on.

0.5.1 Trigonometric Functions

• The three basic trigonometric functions are sine, cosine, and tangent. They are de�ned as ratios between

pairs of sides in a right triangle: explicitly, in a right triangle with an acute angle θ, sin(θ) =
opposite

hypotenuse
,

cos(θ) =
adjacent

hypotenuse
, tan(θ) =

opposite

adjacent
.

◦ The de�nitions using an acute triangle provide values for sin(θ), cos(θ), and tan(θ) for any 0 ≤ θ ≤ π/2.
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◦ To generalize the trigonometric functions to have a larger domain, we use the unit circle: per the
de�nitions above, if we draw a ray from the origin making an angle θ with the positive x-axis, the ray
will intersect the unit circle x2 + y2 = 1 at the point (cos(θ), sin(θ)).

◦ We then de�ne cos(θ) to be the x-coordinate of the intersection point for an arbitrary angle θ, and sin(θ)
to be the y-coordinate.

• Here are the graphs of sine, cosine, and tangent (respectively):

◦ The ranges of sine and cosine are [−1, 1] and the range of tangent is (−∞,∞).

◦ Sine and tangent are odd functions, meaning that sin(θ) = − sin(−θ) and similarly for tangent. Cosine
is an even function, meaning that cos(θ) = cos(−θ).
◦ Sine and cosine are periodic with period 2π: thus, sin(θ+2π) = sin(θ) for any θ, and similarly for cosine.

◦ Tangent is periodic with period π: thus, tan(θ + π) = tan(θ) for any θ.

◦ Note that tan(π/2) is unde�ned. We can see that as θ approaches π/2 from below, the value tan(θ) goes
to +∞, and as θ approaches π/2 from above, the value tan(θ) goes to −∞.

◦ The graph of y = tan(x) has a vertical asymptote at x = π/2. Since tangent is periodic, the same
behavior occurs for x = 3π/2, 5π/2, and so forth.

• There are a number of �special angles�, where the values of the trigonometric functions are easy to calculate
using geometry. Here is a table of commonly used values:

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin(θ) 0 1/2
√
2/2

√
3/2 1

√
3/2

√
2/2 1/2 0

cos(θ) 1
√
3/2

√
2/2 1/2 0 −1/2 −

√
2/2 −

√
3/2 −1

tan(θ) 0 1/
√
3 1

√
3 undef. −

√
3 −1 −1/

√
3 0

◦ Using the table above and the periodicity and even/odd relations, one can �nd sines, cosines, and tangents
of other angles.

◦ For example, sin(11π/3) = − sin(π/3) = −
√
3

2
, and cos(11π/6) = cos(π/6) =

1

2
.

• There are three other trigonometric functions that are used (though less frequently): secant, cosecant, cotan-
gent.

◦ They are de�ned as sec(θ) =
1

cos(θ)
, csc(θ) =

1

sin(θ)
, and cot(θ) =

1

tan(θ)
.
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◦ Here are the graphs of secant, cosecant, and cotangent (respectively):

◦ Cosecant and cotangent are odd functions, and secant is an even function.

◦ Secant and cosecant have period 2π. Cotangent has period π.

◦ All of the functions have vertical asymptotes: secant has asymptotes in the same places as tangent, while
cosecant and cotangent have asymptotes at integer multiples of π.

0.5.2 Trigonometric Identities

• There are many trigonometric identities. The most important identities are the following three, which hold
for any angles θ and ϕ:

◦ Addition formula for sine: sin(ϕ+ θ) = sin(ϕ) cos(θ) + cos(ϕ) sin(θ).

◦ Addition formula for cosine: cos(ϕ+ θ) = cos(ϕ) cos(θ)− sin(ϕ) sin(θ).

◦ Pythagorean identity: sin2(θ) + cos2(θ) = 1.

◦ We remark that it is standard notation to write sin2(θ) to mean [sin(θ)]
2
, the square of sin(θ), and more

generally sink(θ) denotes the kth power of sin(θ) whenever k is a positive integer.

• Using the results above, one can obtain a number of others, such as the following:

◦ Addition formula for tangent: For any angles θ and ϕ, tan(ϕ+ θ) =
tan(ϕ) + tan(θ)

1− tan(ϕ) tan(θ)
.

◦ Double-angle formulas: For any angle θ,

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ)

tan(2θ) =
2 tan(θ)

1− tan2(θ)
.

◦ Half-angle formulas: For any angle 0 ≤ θ ≤ π,

sin(θ/2) =

√
1− cos(θ)

2

cos(θ/2) =

√
1 + cos(θ)

2
.

◦ (Other) Pythagorean identities: For any angle θ, tan2(θ) + 1 = sec2(θ) and 1 + cot2(θ) = csc2(θ).

• The primary use of trigonometry in applications is to triangle measurement (indeed, the word �trigonometry�
is Greek for �triangle measurement�), because the trigonometric functions relate angle measurements to side
lengths in general triangles. Here are two fundamental results:

◦ Law of sines: In triangle ABC,
a

sin(A)
=

b

sin(B)
=

c

sin(C)
, where a = length of BC, b = length of AC,

c = length of AB.

◦ Law of cosines: In triangle ABC, c2 = a2 + b2 − 2ab cos(C), where a = length of BC, etc.

13



• Most problems in basic trigonometry can be solved by using one or more of the basic identities.

• Example: If tan(θ) =
2

5
and π < θ <

3π

2
, �nd sec(θ), cos(θ), sin(θ), and sin(2θ).

◦ We �rst look for a relation between secant and tangent, which we can see is given by the Pythagorean
identity sec2(θ) = 1 + tan2(θ).

◦ Plugging in the given value yields sec2(θ) = 1 +
4

25
=

29

25
, so sec(θ) = ±

√
29

5
. Since π < θ <

3π

2
, and

secant is negative on this interval, we conclude that sec(θ) = −
√
29

5
.

◦ Next, we have cos(θ) =
1

sec(θ)
= − 5√

29
.

◦ To �nd sine, we use the Pythagorean identity sin2(θ) + cos2(θ) = 1 to see that sin2(θ) = 1 − cos2(θ) =

1− 25

29
=

4

29
.

◦ Therefore, sin(θ) = ± 2√
29

. Again, since π < θ <
3π

2
, and sine is negative on this interval, we conclude

that sin(θ) = − 2√
29

.

◦ Finally, we can use the double-angle identity to write sin(2θ) = 2 sin(θ) cos(θ) =
20

29
.

• Example: Find all angles 0 ≤ θ ≤ 2π such that sin(θ) + cos(2θ) = 1.

◦ We would like to try to write the given expression in terms of a single trigonometric function. We can
do this using the double angle formula cos(2θ) = 1− 2 sin2(θ).

◦ Plugging in yields sin(θ) + 1− 2 sin2(θ) = 1, which is the same as sin(θ)− 2 sin2(θ) = 0.

◦ Factoring the left-hand side yields sin(θ) · [1− 2 sin(θ)] = 0. The given expression will be zero precisely

when sin(θ) = 0 or when 1− 2 sin(θ) = 0, which is to say sin(θ) =
1

2
.

◦ In the interval [0, 2π], we know that sin(θ) = 0 when θ = 0, π, 2π, and we know that sin(θ) =
1

2
when

θ =
π

6
,
5π

6
. So there are �ve solutions: θ = 0,

π

6
,
5π

6
, π, 2π .

0.5.3 Inverse Trigonometric Functions

• None of the six standard trigonometric functions is one-to-one, so to de�ne inverse functions, we restrict the
domain of each function to an interval where it is one-to-one.

• Here are the standard de�nitions for arcsine (inverse sine), arccosine (inverse cosine), and arctangent (inverse
tangent):

◦ Arcsine: arcsin(x), also written sin−1(x), is the inverse function of sin(x) on the interval
[
−π
2
,
π

2

]
. Its

domain is [−1, 1] and its range is
[
−π
2
,
π

2

]
.

◦ Arccosine: arccos(x), also written cos−1(x), is the inverse function of cos(x) on the interval [0, π]. Its
domain is [−1, 1] and its range is [0, π] .

◦ Arctangent: arctan(x), also written tan−1(x), is the inverse function of tan(x) on the interval
(
−π
2
,
π

2

)
.

Its domain is (−∞,∞) and its range is
[
−π
2
,
π

2

]
.
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◦ Here are the graphs of arcsine, arccosine, and arctangent (respectively):

◦ Notational Warning: Despite the fact that sin2(x) means the same thing as [sin(x)]
2
, the notation

sin−1(x) does NOT mean the same thing as [sin(x)]
−1

= csc(x). This kind of overload of notation,
while confusing, is historical and used essentially everywhere. Some authors exclusively write arcsin(x)
to denote the inverse sine function in order to avoid the possibility of confusion.

• We can compute some basic values using the de�nition: for example, sin−1(1/2) =
π

6
, from the list of special

angles. We can �nd some others using geometry.

• Example: Find the exact value of cos(tan−1(4/3)).

◦ If θ = tan−1(4/3), then θ is the acute angle in a right triangle having opposite side of length 4 and
adjacent side of length 3, as pictured below:

◦ Then cos(tan−1(4/3)) = cos(θ) =
adjacent

hypotenuse
, in this triangle.

◦ The Pythagorean Theorem says that the hypotenuse has length
√
32 + 42 = 5, so we see that cos(θ) =

3

5
.

• For the other three functions, there is some disagreement about the proper domain. We will not make much
use of these, but here are the de�nitions (merely for the record):

◦ Arcsecant: sec−1(x) is the inverse function of sec(x) on
(
0,
π

2

)
and

(π
2
, π
)
. Its domain is (∞,−1]∪[1,∞)

and its range is
(
0,
π

2

)
∪
(π
2
, π
)
.

◦ Arccosecant: csc−1(x) is the inverse function of csc(x) on
(
−π
2
, 0
)
and

(
0,
π

2

)
. Its domain is (∞,−1] ∪

[1,∞) and its range is
(
−π
2
, 0
)
∪
(
0,
π

2

)
.

◦ Arccotangent: cot−1(x) is the inverse function of cot(x) on the interval (0, π). Its domain is (−∞,∞)
and its range is (0, π).

◦ Here are graphs of the inverse secant, inverse cosecant, and inverse cotangent functions:
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0.6 Exponentials and Logarithms

• De�nition: The exponential function ax for a > 0 is motivated by the idea of repeated multiplication: if n is
a positive integer, an is de�ned to be the result of multiplying a by itself n times: thus a2 = a ·a, a3 = a ·a ·a,
and so forth.

◦ For fractional powers, q
√
a = a1/q is de�ned to be the (nonnegative) real number whose qth power is a.

◦ We can then de�ne the exponential with any fractional exponent ap/q to be (a1/q)p.

◦ For negative powers, we also set a−b =
1

ab
.

◦ Examples: We have 24 = 16 , 3
√
125 = 5 , and 16−3/4 =

1(
161/4

)3 =
1

23
=

1

8
.

◦ For arbitrary real number exponents, we must resort to a limiting procedure. (We will omit the details.)

◦ Integer powers of negative numbers (e.g., (−2)3 = −8) are de�ned using repeated multiplication.

◦ 0b is zero for positive b and is unde�ned for other b.

◦ Non-integer powers of negative numbers (e.g., (−2)−1/2) are not real numbers: the expressions can be
given meaning using complex numbers, although there is some amount of ambiguity involved.

• Here are graphs of some exponential functions:

• In general, exponentials possess the following properties:

◦ The domain of the function f(x) = ax for a > 0 is the real line (−∞,∞), and the range for a 6= 1 is the
interval (0,∞).

◦ For any x, a, b, xa+b = xaxb.

◦ For any x, y, a, (xy)a = xaya.

◦ For any x, b, c,
(
xb
)c

= xbc.

◦ For any x, a, x−a =
1

xa
.

• Example: Express (x2/3y3/4)2 · (xy)−1 in the form xayb.
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◦ From the properties, (x2/3y3/4)2 · (xy)−1 = x4/3y3/2 · x−1y−1 = x1/3y1/2 .

• For b > 0, it is easy to see that the exponential function f(x) = bx is one-to-one whenever b 6= 1, and therefore
it has an inverse function.

• De�nition: For b > 0 with b 6= 1, the general base-b logarithm logb x is de�ned to be the inverse function of the
exponential function f(x) = bx. Thus, the statement y = logb x is equivalent to the statement that x = by.

◦ The domain of f(x) = logb x is (0,∞) and the range is (−∞,∞).

◦ Examples: log5 125 = 3 , since 125 = 53, and log3
√
27 =

3

2
, since

√
27 =

√
33 = 33/2.

• Here are graphs of a few logarithm functions:

• For any positive a, b, c, x, y with b 6= 1, the following properties hold:

◦ The logarithm of 1 is always 0, in any base: logb 1 = 0.

◦ Logarithms convert multiplication to addition: logb [xy] = logb x+ logb y.

◦ Exponents �drop down� in logarithms of powers: logb [x
a] = a logb x.

◦ The �change of base� formula:
loga b

loga c
= logc b, also sometimes written as loga b · logb c = loga c.

• Example: Write log10(x
4y3) in the form a log10(x) + b log10(y).

◦ From the properties, log10(x
4y3) = log10(x

4) + log10(y
3) = 4 log10(x) + 3 log10(y) .

• One of the chief uses of logarithms is to solve equations involving exponentials.

• Example: Solve the equation 73x+4 = 3 for x.

◦ We take the logarithm to the base 7 of both sides: log7(7
3x+4) = log7(3).

◦ Since the logarithm and exponential are inverses, log7(7
3x+4) = 3x+ 4.

◦ Thus, 3x+ 4 = log7(3), so x =
log7(3)− 4

3
≈ −1.145.

• Example: Find all real numbers x for which 4x − 2x+3 + 12 = 0.

◦ If we write y = 2x, then 4x = y2 while 2x+3 = 8y, so the given equation is equivalent to y2−8y+12 = 0.

◦ Factoring yields (y − 2)(y − 6) = 0, so y = 2 or y = 6.

◦ Thus, 2x = 2 or 2x = 6, so the solutions are x = 1, log2 6 .

• Example: If f(x) = 34−x + 2, �nd the inverse function f−1(x).

◦ We wish to solve y = 34−x + 2 for x in terms of y.

◦ First, we rewrite y − 2 = 34−x.
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◦ Now taking the logarithm to the base 3 yields log3(y − 2) = log3(3
4−x) = 4− x.

◦ Then x = 4− log3(y − 2), meaning that f−1(y) = 4− log3(y − 2).

◦ Equivalently, this says f−1(x) = 4− log3(y − 2) .

• There is a particular logarithm base that is natural from the standpoint of calculus.

• De�nition: The natural logarithm ln(x) is equal to loge(x), whose base is the number e ≈ 2.718.

◦ The choice of this somewhat-strange number e as our logarithm base seems arbitrary. In fact, this
logarithm base, as we will see later, is by far the most natural choice in the context of calculus, in much
the same way that radians are the most natural choice for measuring angles.

◦ There are many di�erent formulas for the number e. One of the simplest is e = 1+
1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · · ,

where n! is the factorial of n, de�ned as n! = n · (n− 1) · (n− 2) · · · · · 3 · 2 · 1.
◦ Another formula for e (which arises from its connection to continuously compounded interest) is as the

value approached by the function f(x) =

(
1 +

1

x

)x

as x grows arbitrarily large.

◦ In general, all logarithms can be expressed in terms of the natural logarithm via the change-of-base

formula: logb a =
ln(a)

ln(b)
.

• Example: Find the numerical value of e4 ln 2+ln 3.

◦ Observe that 4 ln(2) + ln(3) = ln(24) + ln(3) = ln(24 · 3) = ln(48).

◦ Then e4 ln 2+ln 3 = eln 48 = 48 .

• Example: Find all real numbers x for which ln(x) + ln(3x+ 2) = 2 ln(x+ 2).

◦ Notice that ln(x) + ln(3x+ 2) = ln[x(3x+ 2)] = ln(3x2 + 2x).

◦ Similarly, 2 ln(x+ 2) = ln[(x+ 2)2] = ln(x2 + 4x+ 4).

◦ Thus, ln(3x2 + 2x) = ln(x2 + 4x+ 4).

◦ Exponentiating both sides yields 3x2 + 2x = x2 + 4x+ 4, or equivalently 2x2 − 2x− 4 = 0.

◦ Factoring yields 2(x+ 1)(x− 2) = 0, so the possible solutions are x = −1 and x = 2.

◦ However, since ln(−1) is not a real number, x = −1 is not actually a solution to the equation.

◦ We can see that x = 2 does work, however, so the only solution is x = 2 .

• Example: Find the inverse of the function f(x) = 4 ln(3x− 2) + 1.

◦ We wish to solve y = 4 ln(3x− 2) + 1 for x in terms of y.

◦ First, we isolate the logarithm term: we have
y − 1

4
= ln(3x− 2).

◦ Now exponentiating both sides yields e(y−1)/4 = eln(3x−2) = 3x− 2.

◦ Then solving for x yields x =
1

3

[
e(y−1)/4 + 2

]
, meaning that f−1(y) =

1

3

[
e(y−1)/4 + 2

]
.

◦ Equivalently, this says f−1(x) =
1

3

[
e(x−1)/4 + 2

]
.

• As a �nal remark, we note that logarithms of negative numbers and logarithms with a negative base, such as
ln(−1) and log−2 5, are not real numbers.

◦ These expressions can be given meaning using complex numbers, although there is some amount of
ambiguity involved. We will not discuss the matter further at present.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2019. You may not reproduce or distribute this
material without my express permission.
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