Table of Experimental Studies on CFT Frame Tests

From Composite Systems
Jump to: navigation, search

General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Matsui 1985, 1986 Monotonic and cyclic loading of portal frames having CFT and HT columns 2 HT frames, 10 CFT frames Constant axial load on both columns and monotonic or cyclic lateral load at one beam-to-column connection
  • H vs. Δ
  • Hmax,Hu,Mpc
  • Type of connection, D/t
  • Cyclic vs. monotonic loading
Morino et al. 1993 Non-proportional cyclic loading of 3D CFT/steel cruciform subassemblies 10 subassemblies 6 w/ sym out-of-plane loads, 4 asym) 5--connection failure 5--column failure
  • Constant axial load on col.
  • Sym or asym. const loads on 2 out-of-plane bms.
  • Anty-symmetric cyclic loading on 2 in-plane bms
  • V vs. ε
  • V vs. R
  • V vs. lat'l displ. of connection
  • Conn. design, out-of-plane loading
  • Biaxial bending
  • Failure: typ. instability due to lat'l displ. of connection
Kawaguchi et al. 2002 Cyclic loading of portal frames made up of CFT columns 4 CFT frames Constant axial load on both columns and cyclic lateral load applied to the base-beam of the columns
  • H vs. R
  • H vs. εd
Failure mode, axial load ratio (P/Po)
Tsai et al. 2008 Pseudo-dynamic test of a full scale CFT/BRB frame 1 CFT/BRB frame 3 bay, 3 story Ground motions from the 1999 ChiChi and 1989 Loma Prieta earthquakes scaled to different intensities,eight motions total
  • Roof displacement vs. time
  • Base shear vs. time
  • Story shear vs. story drift
  • BRB force
  • Energy dissipation
Three different types of BRBs, beams had concrete floor slab
Herrera, Ricles, and Sause 2008 Hybrid pseudo-dynamic test of a three-fifths scale MRF 1 CFT frame 2 bay, 4 story Ground motions from the 1979 Imperial Valley and 1994 Northridge earthquakes scaled to different intensities factors, four motions total
  • Floor disp vs. time
  • Story drift and shear vs. story
Analytically modeled leaner column to represent interior gravity frame
Han, Wang, and Zhao 2008 Behavior of the composite frame with concrete-filled square hollow section (SHS) columns to steel beam 6 concrete filled SHS columns to steel composite frame specimens Constant axial load and a cyclically increasing lateral load
  • Cyclic Load vs. Lateral Deformation
  • Lateral Load vs. Displacement
  • Level of axial load
  • k

Specimen Information

Reference Beam Information Column Information Connection Information End Conditions
Matsui 1985, 1986
  • BH200 x 200 x 6 x 6
  • Length: 59.1 in
  • Length (L): 39.4 in
  • Length/Diameter (L/D): 6.67
Outside stiffener, through stiffener
  • Col: Fixed base
  • Beam to col: Rigid
Morino et al. 1993
  • H250 x 250 x 6 x 9
  • Length: in-plane: 70.87, out-of-plane 49.21 in
  • Length (L): 39.67 in
  • Length/Diameter (L/D): 8.1
Through stiffener Fixed base, pinned top (roller)
Kawaguchi et al. 2002
  • BH125 x 150 x 16 x 25
  • Length: 59.1 in
  • Length (L): 39.4 in
  • Length/Diameter (L/D): 8
Through stiffener
  • Col: Fixed base
  • Beam to col: Rigid
Tsai et al. 2008
  • H456 x 201 x 10 x 17
  • H450 x 200 x 9 x 14
  • H400 x 200 x 8 13
  • Length: 275.6 in
  • Length (L): 157.5 in
  • Length/Diameter (L/D): 10
  • Through beam (1st floor)
  • External diaphragm (2nd floor)
  • Bolted end plate (3rd floor)
Concrete footing
Herrera, Ricles, and Sause 2008
  • W18x46
  • W16x40
  • W16x31
  • W12x22
  • Length: 216 in
  • Length (L): 90, 108 in
  • Length/Diameter (L/D): 7.5, 9
Split tee Pinned bases with basement level
Han, Wang, and Zhao 2008
  • 6.3x3.15x0.14x0.14
  • 5.51x2.76x0.14x0.14
  • 7.09x3.15x0.17x0.17
  • Length: 98.42 in
  • 4.72x0.14
  • 5.51x0.16
  • Length: 57.09 in
Welded
  • Col: Fixed base
  • Beam to col: Rigid

Cross Section Information

Reference Tube Dimensions Steel Properties (girder) Steel Properties (column) Concrete Properties
Matsui 1985, 1986
  • ◌: (D) □: (D) x (B): 5.91 x 5.91 (square)
  • Wall Thickness (t)(in): 0.177, 0.126, 0.091
  • Diameter/thickness (D/t): 33, 47, 68
Fyb= 38.7, 51.8 ksi Mild, cold formed channel sections

Fy= 59.8, 41.7, 41.8 ksi

f'c= 5.2-5.8
Morino et al. 1993
  • ◌: (D) □: (D) x (B): 4.92 x 4.92 (square)
  • Wall Thickness (t)(in): 0.23
  • Diameter/thickness (D/t): 22.0
N.A. STKR400 steel (Jap.)

Fy= 57.3 ksi

f'c= 2.8-3.0
Kawaguchi et al. 2002
  • ◌: (D) □: (D) x (B): 4.92x 4.92 (square)
  • Wall Thickness (t)(in): 0.236
  • Diameter/thickness (D/t): 20.83
SS400

Fyb= 49.68 ksi

STKR400

Fy= 58.50 ksi

f'c= 2.7
Tsai et al. 2008
  • ◌: (D) □: (D) x (B): 15.75 (circular) 15.75 x 15.75 (square)
  • Wall Thickness (t)(in): 0.354
  • Diameter/thickness (D/t): 44.5
Fyb= 54-70 ksi Fy= 78.7 (circular), 54.2 (square) ksi f'c= 5.1
Herrera, Ricles, and Sause 2008
  • ◌: (D) □: (D) x (B): 12 x 12 (square)
  • Wall Thickness (t)(in): 0.393
  • Diameter/thickness (D/t): 30.5
A992

Fyb= 50 ksi

A500 Grade 80 f'c= 9.8
Han, Wang, and Zhao 2008
  • ◌: (D) □: (D) x (B): 4.72 x 4.72, 5.51 x 5.51 (square)
  • Wall Thickness (t)(in): 0.14, 0.16
  • Diameter/thickness (D/t): 33.7, 34.4
Fy= 44, 52 ksi Fy= 52, 58 ksi f'c= 7.63