Table of Experimental Studies on Beam, Beam Column, and Shear Tests

From Composite Systems
Jump to: navigation, search

General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Furlong 1967 Ultimate strength of CFT bm-cols. (experimental vs. theoretical) 52 CFTs (13 col, 39 bmcol)
  • Axial load applied incrementally
  • Eccentric load applied via hydraulic ram and yokes attached to each end of col.
  • Single curvature
  • P vs. ε, P vs. εconcr (cols)
  • Po, Pu (cols)
  • Pu/Po vs. Mu/Mo (other test plotted also) (bm-cols)
  • Tube shape
  • D/t
  • fy
  • f'c
  • As
  • Variety of results
  • Detailed graphs
Furlong 1968 Design of CFT bmcols; previous exps. examined 28 CFTs (col) (tests by others tabulated); also includes 52 CFTs from Furlong, '67 N.A.
  • σ vs. ε, exp vs. calc stiffness
  • P vs. ε
  • M vs. φ (bonded, unb.)
  • Po, Pu
  • Analytical interaction diags.
  • Based on tests by other authors
  • Bond
  • Residual stress
Analytical formulas presented and discussed
Tomii and Sakino 1979 a & b Examination of M-P-φ relationship for square CFTs
  • 28 CFTs (bmcol)
  • 8 CFTs (col)
  • Axial load applied first
  • Moment applied incr. via jacks at ends
  • Beam-col. restrained at 3rd pts, inducing bending
  • P vs. ε (D/t varied)
  • M vs. φ (D/t, P varied)
  • Pu/Po vs. Mu/Mo curves
  • D/t
  • fy
  • f'c
  • P/Po
  • Several detailed curves
  • Expansive cement used
Tomii and Sakino 1979 c Shear behavior of square CFTs 40 CFTs (bmcol)
  • Axial load
  • Transverse shear force applied at ends
  • V vs. R (P/Po, a/D, D/t varied)
  • Po, Mu, Vmax
  • P/Po vs. Mu/Mo
  • φ, γ along length
  • P/Po
  • D/t
  • a/D
  • fy
  • f'c
  • Very detailed V-R curves
  • Expansive cement used
Sakino and Tomii 1981 Hysteretic behavior of beam-columns failing in flexure 15 CFTs (bmcol)
  • Axial load
  • Transverse cyclic shear force applied at ends (3 cycles at increments of R=0.5%)
  • V vs. R hysteresis loops (P/Po/sub>, a/D, D/t varied)
  • V/Vmax vs. R (P/Po varied)
  • P vs. Mu
  • P/Po
  • D/t
  • a/D
  • fy
  • f'c
  • Very detailed V-R hysteresis loops
  • Expansive cement used
Sakino and Ishibashi 1985 Monotonic and hysteretic behavior of beam-columns failing in shear 21 CFTs (bmcol) (12 monotonic, 9 cyclic)
  • Axial load
  • Transverse shear force applied at ends (cyclic: 3 cycles at increments of R=0.5%)
  • V vs. R (P/Po, a/D, D/t varied)
  • V vs. R hysteresis loops (P/Po, a/D, D/t varied)
  • V/Vmax vs. R (P/Po varied)
  • P/Po vs. V/Vmax (exp & calc)
  • P/Po
  • D/t
  • a/D
  • fy
  • f'c
  • Very detailed V-R curves and hysteresis loops
  • Expansive cement
Matsui and Tsuda 1987 Axial load & bending (cyclic & monotonic)
  • 14 CFT (8 monotonic, 6 cyclic)
  • 12 HT (mono.)
  • Non-proportional
  • Axial load applied, then lateral load at column top
  • H vs. Δ (monotonic and cyclic)
  • M/Mpc vs. θ/θpc
  • D/t
  • CFT vs. HT
Excellent load-defl. curves
Cai 1988 7 test phases:
  • 2 col (short, long)
  • 5 bmcol (pure bending, applied ecc.-- single & double curvature, restrained cantilever)
  • Phases 1-2: 93 CFTs (col)
  • Phases 3-7: 80 CFTs (bmcol)
  • No details of end conds.
  • Phase 3: pure bending;
  • Phases 4,5: single-curv;
  • Phase 6: double-curv, ratio of eccs = -1/3, -1/2, -1;
  • Phase 7: comb axial & latl.;
  • Deflection curves (along length of col) for phase 6
  • P vs ε (exp, theor.)
  • Global strength reduction vs. L/D, e/concr. radius
  • P-M interaction diagrams
  • L/D
  • e/(concr. radius)
  • Limited data --refers to previous Chinese articles
  • Primarily theoretical
Prion and Boehme 1989
  • Axial, pure bending, & combination (cyclic & monotonic)
  • Thin-walled CFTs w/ high-strength concr.
  • 10 CFT (col)
  • 5 CFT (bm)(1 cyclic)
  • 11 CFT (bmcol)(9 monotonic, 2 cyclic)
  • Cols: load conc(6), both(4)
  • Bms: load applied at 2 pts.
  • Bmcols: load at 2 pts (6 mono, 2 cycl), apply eccen. (3) through spherical bearings
  • Pu/Po vs. avg. ε
  • M vs. φ, Mu/Mo vs. φ
  • Pu/Po vs. Mu/Mo
  • Load ratios (exp., theor.)
  • L
  • Loading type
  • Emphasis on level of ductility achieved
  • Compared w/ design codes
Konno, Kai, and Nagashima 1990 Cyclic loading of square CFT bmcols 19 CFTs (bmcol)
  • Transverse load applied at midpt. of bmcol
  • Const. axial load applied at member ends
  • Mu
  • V vs. R
  • D/t
  • f'c
  • fy
  • P/Po
Compared w/ proposed design equations.
Huang, Huang, and Zhong 1991 Cyclic, lateral loading of CFTs 46 CFTs (bmcol) Lateral load applied via a frame fixed to top of beam
  • H vs. δ
  • Hysteretic loops (H vs. δ)
  • Ductility ratio (2 spcms.)
  • Absorbed energy (2 spcms.)
  • λ
  • As/Ac
  • P/Po
Monotonic and cyclic loading
Ichinohe et al. 1991 Monotonic & cyclic loading of CFTs w/ high-strength steel & concrete
  • 20 CFTs (bmcol)
  • 11 moment-curvature tests (M-φ plotted)
  • 9 shear bending tests (M-R plotted)
  • Both tests axially loaded
  • M-φ test: loaded at 35.4 in. from each end, s-s beam
  • Shear bending test: loaded at midpt; bmcol at load pt. considered fixed
  • σ vs. ε (exp. & calc.)
  • Biaxial stresses in tubes
  • M vs. φ, M vs. R (monotonic, cyclic, exp. vs. theoretical)
  • P/Po for given cyclical loading
  • D/t
Sato, Saito, and Suzuki 1991 Reversed cyclic shear loading of circular CFTs 3 CFTs
  • Axial load applied concentrically
  • Lateral load applied transversely at bmcol midpt.
  • R (max) vs. P/Po
  • Hysteresis loops: V vs. R (1 circular and 1 square test)
  • Pu vs. Mu
  • P/Po
  • D/t
  • fy
  • f'c
  • Very detailed plots, but only for selected sections
Sugano, Nagashima, and Kei 1992 Cyclic loading of square and circular beam-columns
  • 19 circular CFTs
  • 20 square CFTs
  • L-shaped load frame
  • Lateral load applied to column top from frame
  • σ vs. ε, -H vs. ε
  • Hysteresis loops (H vs. δ) (deflection at column top)
  • Pu deterioration (Pu vs. cyc.)
  • Energy dissipation (hysteresis loop area vs. loading cycle
  • Hollow vs. filled
  • P
  • Alternately repeated lateral load w/ constant axial load
  • Failure: local buckling at base
Kawaguchi et al. 1993 Cyclic loading of cantilever CFT beam-columns
  • 14 CFTs (bmcol)
  • 12 HTs (bmcol)
N.A.
  • σ vs. ε (stub col.'s)
  • P vs. ε (HTs, conc., CFTs)
  • M vs. φ (exp. vs. theory)
  • M vs. slip
  • N.A. movement vs. M
  • D/t
  • L/d
  • a/D
  • Slip measured and reported
  • Discussion of slip
  • Pure bending behavior and discussion of rigidity
Lu and Kennedy 1994 Monotonic uniaxial loading (pure bending, simple supports) of rectangular CFTs
  • 12 CFTs (bm)
  • 5 HTs (bm)
  • 5 HT stub col.
  • 5 CFT stub col.
  • Constant axial load, monotically increasing end moments
  • M vs. φ
  • Mu vs. Pu (interaction diagrams)
  • P/Po, Mu
  • Mu/Mpc vs. D/t
  • D/t
  • fy
  • axial load ratio P/Po
  • f’c
Sakino 1995 Monotonic loading of circular CFT beam-columns 28 CFTs (bmcol)
  • Rigid rectangular frame
  • Reversed cyclic loading applied to rigid stub welded to column at mid-height from frame
  • σ vs. ε for varying ecc. dist.
  • P vs. δ
  • Eccentric distance (as calc. in paper) vs. δ
  • V vs. R, P vs. R
P/Po for given cyclic loading
Fujimoto et al. 1996 & Inai et al. 2004 Cyclic load-deformation and ultimate strength of CFT beam-columns with variable axial load
  • 13 Circular CFT
  • 20 Square CFT
  • Both constant and variable axial load on columns
  • Lateral load applied on top CFT stub by hydraulic jack
  • M vs. R (per conc. type)
  • R vs. ε (per conc. type)
  • Interaction diagrams (per conc. type) All graphs for both variable and constant axial load
  • Tube shape
  • fu
  • f'c
  • D/t
  • P/Po
  • loading angle (biaxial bending)
Tsuda, Matsui, and Mino 1996 Series II - Slender Cantilever CFT’s subjected to cyclic horizontal load while under constant axial load
  • 10 Circular CFT’s
  • 10 Square CFT’s
  • Axial load: Applied by a testing machine and kept constant throughout
  • Horiz. Load: A hydraulic jack kept the top of the col. fixed while the frame on which it was mounted moved side-to-side
  • V vs. δ
  • Mu vs. Pu (interaction diagrams)
  • Axial load ratio P/Po
  • Buckling length section depth ratio (Lk/D)
El-Remaily et al. 1997 Cyclic loading of circular CFTs w/ high strength concrete 4 CFTs (cyclic)
  • Horizontally placed specimens
  • Constant axial load and cyclically applied lateral load at the mid-height
  • Displacement controlled loading
  • H vs. δ (lat. defl.)
  • H vs. δaxial
  • Mu
  • D/t
  • Axial load ratio P/Po
  • f'c
Zhang and Shahrooz 1997 Monotonic loading of square CFT beam-columns at a horizontal position 2 CFTs (bmcol) Constant axial load, monotically increasing point loads applied at two points along the specimen length
  • σ-ε relation for steel
  • M vs. φ
  • P vs. δ (vert. defl.at midspan)
  • M vs. θ
  • Strain distribution over depth
Axial load ratio P/Po
Nakahara and Sakino 1998 Monotonic loading of square hollow tubes and square CFTs w/ high strength concrete and steel
  • 4 HT stub col.
  • 4 CFT stub col.
  • 10 CFTs (bmcol)
  • Cols: Concentric loading
  • Bmcols: Constant axial load, monotonically increasing end moments, curvature controlled loading
  • P vs. εaxial
  • M vs. φ
  • Mu vs. Pu (interaction diagrams)
  • Pu, Mu
  • D/t
  • fy
  • axial load ratio P/Po
Nakahara and Sakino 2000a

Nakahara and Sakino 2000b

Monotonic and cyclic loading of square CFT bmcols
  • 6 CFTs (bmcol) (monotonic)
  • 5 CFTs (bmcol) (cyclic)
  • Bmcols(m): Constant axial load, displacement controlled bending moment applied at the ends
  • Bmcols(c): Constant axial load, curvature controlled bending moment applied at the ends
  • σ-ε relations for steel & concr. (analytical)
  • M vs. φ (experimental & analytical)
  • φ vs. εaxial
  • D/t
  • axial load ratio P/Po
  • deformation histories(m, c)
Varma et al. 2000, 2001, 2002, 2004 Monotonic and cyclic loading of square CFTs w/ high-strength steel & concrete
  • 4 CFTs stub col.
  • 8 CFTs (bmcol) (monotonic)
  • 8 CFTs (bmcol) (cyclic)
  • Cols: Concentric loading, force controlled until failure, displacement controlled after failure
  • Bmcols (m): Constant axial load, monotically increasing end rotations
  • Bmcols (c): Constant axial load, cyclically applied lateral load at the top
  • σ-ε relations for stl. & conc.
  • P vs. δaxial
  • Pu, Mu
  • M vs. φ & M vs. θ
  • H vs. δ (lat. defl.)
  • μ vs. D/t, fy , P/ Pu
  • W vs. D/t, fy , P/ Pu
  • EI / EIs vs δaxial / δy
  • δaxial vs. δ ( lat. defl. )
  • Mu vs. Pu (interaction diagrams)
  • Axial load ratio P/Po
  • D/t
  • Type of steel
Elchalakani, Zhao, and Grzebieta 2001 Uniaxial flexural loading (pure bending) of circular CFT beams 12 CFTs
  • Pure bending through applied rotation at both ends
  • Bending was applied through coupling forces acting on the pinned points at each end
  • Mu, Rmax, Rcm, θpc
  • M vs. φ
  • D/t
  • L/D
Elremaily and Azizinamini 2002 Non-proportional cyclic loading of circular CFT beam-columns 6
  • Axial load of 0.2 to 0.4 of the squash load applied
  • Lateral load applied to middle portion which was confined by a rigid stub
  • H vs. Δ
  • Displacement Amplitude vs. Shortening
  • EI vs. Ductility
  • t
  • P/Po
  • f′c
Hsu and Yu 2003 Non-proportional cyclic loading of square CFT beam-columns with tie-rods 18
  • Axial load of 0.1 to 0.3 of the squash load applied
  • Lateral load applied to member top
  • H vs. Δ
  • H vs. drift ratio
  • Strength deterioration vs. # tie layers
  • EI vs. drift ratio
  • H vs. cumulative energy
  • Energy dissipation vs. b/t
  • t
  • P/Po
    1. tie layers
  • rod diameter
Elchalakani, Zhao, and Grzebieta 2004 Constant amplitude cyclic flexural loading (pure bending) of circular CFT beams 23
  • Constant amplitude cyclic pure bending
  • Applied rotation at both ends
  • Bending was applied through coupling forces acting on the pinned points at each end
  • M vs. θ
  • Mmax,i/Mmax,1 vs. #cycles
  • Mu/MptH vs. slenderness
  • Amplitude of cyclic load
  • D/t
Fujimoto et al. 2004 Monotonic loading of short circular and square CFT beam columns 65 Three types:
  • Two types with constant axial, increasing moment
  • One type with constant eccentricity
  • M vs. φ
  • Mu vs. D/t
  • D
  • t
  • P/Po
  • Section shape
  • f′c
  • Fy
Hardika and Gardner 2004 Non-proportional cyclic loading of square CFT beam-columns 24
  • Axial load applied
  • Lateral load applied to member top
  • Member in either square or diagonal orientation
  • H vs. Δ
  • P/Po vs. M/Mo
  • Strength capacity, ductility, flexural stiffness
  • t
  • P
  • f′c
  • Orientation
Inai, Mukai, Kai, Tokinya, Fukumoto and Mori 2004 Circular and square CFT beam columns with varying dimensions were tested under constant axial load and varying lateral load to determine the effects on the ductility of CFT beam columns.

34 (bmcol)

  • Constant axial load
  • Cyclically varying lateral load
  • Moment-curvature
  • Axial strain-curvature
  • fy
  • f'c
  • D/t
Wheeler and Bridge 2004 Monotonic four point bending of circular CFT beams
  • 4 CFTs
  • 2 HTs
  • Four point bending
  • 51 in. between support and loading point on either end
  • M vs. Δmidspan
  • M vs. concrete slip

D/t f′c

Han and Yang 2005 Non-proportional cyclic loading of circular CFT beam columns
  • 8 CFTs
  • 2 HTs
  • Constant axial load
  • Cyclic load applied at midheight through rigid stub
H vs. Δ
  • Axial load level
  • D/t
  • f′c
Elchalakani and Zhao 2008 Variable amplitude cyclic flexural loading (pure bending) of circular CFT beams 10 CFTs
  • Variable amplitude cyclic pure bending
  • Applied rotation at both ends
  • Bending was applied through coupling forces acting on the pinned points at each end
  • M vs. θ (also envelope compared to monotonic test)
  • Mmax,i/MptH vs. #cycles
  • D/t
    1. of repeat cycles
Gajalakshmi and Helena 2012
  • 8 CFTs
  • 8 SCFTs
  • Cyclic lateral load
  • Constant axial load
  • Load vs. Displacement
  • Load vs. Drift Ratio
  • D/t
  • CFT and SCFT
  • Variable amplitude loading
  • Constant amplitude loading histories
Perea et al. 2013 Full Scale Slender CFT Beam-Columns 18 CFT (10 circular and 8 rectangular)
  • Concentric axial compression
  • Axial compression plus uniaxial cyclic bending
  • Axial compression plus biaxial cyclic bending
  • Load
  • Displacement
  • Curvatures
  • Section shape and size
  • Concrete strength
  • Slenderness
  • Axial load
Du, Chen, Liew and Xiong 2017 Rectangular CFT beam columns with high-strength steel 23 (bmcol)
  • Axial Load and bending moment
  • P vs. Δ
  • P vs. ε
  • In-fill concrete
  • eccentricity
  • D/t
  • Slenderness

Specimen Information

Reference Length (L)(in) L/D Eccentricity(in) Residual Stresses(ksi) End Conditions
Furlong 1967 Approx. 36.0 5.5-12.0 Constant for all tests N.A.
  • Pinned-pinned
  • Spherical bearings
Furlong 1968 33.9-102 8.7-40.0 N.A. Extensive stresses noted in plain tube tests N.A.
Tomii and Sakino 1979 a & b 11.8 3.0 N.A. Tubes annealed
  • Pinned-pinned
  • Knife-edge and spherical seat supports
Tomii and Sakino 1979 c 6.5-23.6 1.66-6.0 (a/D = 0.83-3.0) N.A. Tubes annealed
  • Fixed-fixed (embed-ded in cross-beams)
  • Load applied through spherical seats
Sakino and Tomii 1981 15.7-23.6 4.0-6.0 (a/D = 2.0-3.0) N.A. Tubes annealed
  • Fixed-fixed (embedded in cross-beams)
  • Load applied through spherical seats
Sakino and Ishibashi 1985 7.9-11.8 2.0-3.0 (a/D = 1.0-1.5) N.A. Tubes annealed
  • Fixed-fixed (embedded in cross-beams)
  • Load applied through spherical seats
Matsui and Tsuda 1987 29.5 5.0 N.A. N.A. Vertical cantilever:

fixed base, free end

Cai 1988 see L/D

1) <= 4.0 2) 3-50 3) ? 4) 4-22 5) 5-13 6) 9-19 7) 4-8

e / (concrete radius) = 0-1.28 N.A.
  • Phases 1-6: pinned-pinned
  • Phase 7: fixed cantilever
Prion and Boehme 1989
  • Cols: 19.7-35.4
  • Bms: 43.3,83.5
  • Bmcols: 83.5
  • Cols: 3.3-6
  • Bms: 7.25, 14
  • Bmcols: 14
3 bmcol tests:

0.43-0.59

N.A.
  • Cols: fixed-fixed
  • Bms, bmcols: pinned-pinned
Konno, Kai, and Nagashima 1990 66.9 6.8 N.A. N.A. Pinned-pinned
Huang, Huang, and Zhong 1991 35.4-65.4 5.45-17.5 (λ = 22-75) N.A. N.A.
  • Base fixed, top fixed to movable frame
  • Details sketchy
Ichinohe et al. 1991 35.4, 90.6
  • 2.0 (M-φ)
  • 3.0 (M-R)
N.A. Annealed specimens noted Both pinned-pinned
Sato, Saito, and Suzuki 1991 43.3 7.33 N.A. Annealed
  • Pinned-pinned (pin & roller)
  • Axial load applied thruplates welded to ends of specimen
Sugano, Nagashima, and Kei 1992
  • 78.7 (circular)
  • 66.9 (square)
  • 6.67 (circular)
  • 6.8 (square)
N.A. N.A. Pinned transverse supports
Kawaguchi et al. 1993 39.3 (1 m) 10 N.A. N.A. Fixed base, pinned top (roller)
Lu and Kennedy 1994 77.75-167.72 8.78-20 Pure bending N.A. Simply supported beam with load applied symmetrically at two points. Stiffeners under loads
Sakino 1995 12.75-53.15 3 N.A. N.A. Two loading plates welded to the ends
Fujimoto et al. 1996 & Inai et al. 2004 37.8-56.7 6 N.A. N.A. Fixed CFT columns attached to CFT stubs at ends to guarantee sufficient stiffness
Tsuda, Matsui, and Mino 1996 All noted are kL;
  • 39.10-156.28
  • 35.6-142.3
  • 6, 9, 12, 18, 24
  • 6, 9, 12, 18, 24
N.A. N.A. Col: Fixed base, unspecified connection at top (poss. free or pin)
El-Remaily et al. 1997 110.83 7.16 N.A. N.A. Pinned ends, rigid stub at the midheight
Zhang and Shahrooz 1997 143.98 14.4 N.A. N.A. Pinned ends through cylindrical bearings
Nakahara and Sakino 1998 23.62 3 N.A. N.A.
  • Cols: Two loading plates welded to the ends
  • Bmcols: Two thick loading plates welded to the ends, two trapezoidal plates welded to the tension face at the ends
Nakahara and Sakino 2000a

Nakahara and Sakino 2000b

23.62 3 N.A. Annealed Two loading plates welded to the ends
Varma et al. 2000, 2001, 2002, 2004 48.03, 58.50, 60.00 4.00, 5.00, 4.87 N.A. N.A.
  • Col: Fixed
  • Bmcol (m): Pinned ends through cylindrical bearings
  • Bmcol (c): Fixed at base, not specified at top
Elchalakani, Zhao, and Grzebieta 2001 23.62, 31.49 5.41-23.68 N.A. N.A. Attached to rotational fixtures at each end
Elremaily and Azizinamini 2002 86 6.7 N.A. N.A.
  • Pinned-Pinned
  • Both ends capped with rigid steel caps
Hsu and Yu 2003 118 (72.4 effective length) 10.7 N.A. N.A.
  • Fixed-free
  • Bottom was rigidly clamped a stiffened base
Elchalakani, Zhao, and Grzebieta 2004 31.5 (length of pure bending) 7.3-13.1 Pure bending N.A. Attached to rotational fixtures at each end
Fujimoto et al. 2004 12.75-53.1 3.0
  • N.A.: all circular, some square
  • 1.77-11.8: some square
N.A. Either pinned-pinned or fixed-free
Hardika and Gardner 2004 75 9.4 0.5 in between horizontal load and section centroid N.A. Fixed-free
Inai, Mukai, Kai, Tokinya, Fukumoto and Mori 2004 37.56-56.93 6 N.A. N.A. Pinned-pinned
Wheeler and Bridge 2004 149.6 9.4, 8.3 N.A. N.A. Pinned-pinned
Han and Yang 2005 59
  • 13.9
  • 13.1
N.A. N.A. Pinned-pinned, cylindrical bearings
Elchalakani and Zhao 2008 31.5 7.3-13.1 Pure bending N.A. Attached to rotational fixtures at each end
Gajalakshmi and Helena 2012 39.37 8.77 N.A. N.A. Column fixed at base
Perea et al. 2013 216-312 10.8-56.1 N.A. Not Measured Column fixed at base
Du, Chen, Liew and Xiong 2017 N.A. N.A. .41-2.96 N.A. Pinned-pinned

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Furlong 1967
  • ◌: diam. (D) □: depth (D) x width: 4.5, 5.0, 6.0 (circular) 4 × 4, 5 × 5 (square)
  • Wall Thickness (t) (in): 0.061-0.189
  • Diameter/thickness (D/t): 26.3-98.4
Seam-weld cold-rolled

Fy= 42.0-60.0 ksi (circular) 48.0-70.3 ksi (rect.)

f'c= 3.05-5.10 ksi (circular) 3.40-6.50 ksi (rect.)
Furlong 1968
  • ◌: diam. (D) □: depth (D) x width: 1.0-4.74 (circular)
  • Wall Thickness (t) (in): 0.064-0.465
  • Diameter/thickness (D/t): 5.6-74.4
Seam-welded cold-rolled

Fy= 39.6-76.0 ksi

f'c= 2-5 ksi
Tomii and Sakino 1979 a & b
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.164, 0.119, 0.089
  • Diameter/thickness (D/t): 24, 33, 44
Mild cold-worked, welded, annealed

Fy= 28.7-50.2 ksi

f'c= 2.7-5.5 ksi
Tomii and Sakino 1979 c
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.164, 0.119, 0.089
  • Diameter/thickness (D/t): 24, 33, 44
Mild, cold-worked, welded, annealed

Fy= 28.2-44.9 ksi

f'c= 3.3-6.6 ksi
Sakino and Tomii 1981
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.085, 0.088, 0.117, 0.166
  • Diameter/thickness (D/t): 24, 34, 45, 46
Mild, cold-worked, welded, annealed

Fy= 42.1-44.9 ksi

f'c= 2.9-3.7 ksi
Sakino and Ishibashi 1985
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.087, 0.117, 0.167
  • Diameter/thickness (D/t): 24, 34, 45
Mild, cold-worked, welded, annealed

Fy= 41.8-45.8 ksi

f'c= 2.4-3.7 ksi
Matsui and Tsuda 1987
  • ◌: diam. (D) □: depth (D) x width: 5.9 × 5.9 (square)
  • Wall Thickness (t) (in): 0.063-0.125
  • Diameter/thickness (D/t): 47-94
Mild-steel plates

Fy= 51.4-71.5 ksi

f'c= 4.6-6.0 ksi
Cai 1988
  • ◌: diam. (D) □: depth (D) x width: see L/D
  • Wall Thickness (t) (in): N.A.
  • Diameter/thickness (D/t): N.A.
N.A. N.A.
Prion and Boehme 1989
  • ◌: diam. (D) □: depth (D) x width: 6.0 (circular)
  • Wall Thickness (t) (in): 0.065
  • Diameter/thickness (D/t): 92.0
Electrically welded long. seam

Fy= 36-48 ksi

f'c= 10.6-13.3 ksi
Konno, Kai, and Nagashima 1990
  • ◌: diam. (D) □: depth (D) x width: 9.84 × 9.84 (square)
  • Wall Thickness (t) (in): 0.178- 0.469
  • Diameter/thickness (D/t): 21.0-55.0
Fy= 45.9-69.3 f'c= 4.38- 12.31 ksi
Huang, Huang, and Zhong 1991
  • ◌: diam. (D) □: depth (D) x width: 3.75-6.50 (circular)
  • Wall Thickness (t) (in): 0.079-0.197
  • Diameter/thickness (D/t): 25.2-54.0 (As/Ac =0.074- 0.134)
Fy= 34.2-44.1 ksi f'c= 3.96-5.32 ksi
Ichinohe et al. 1991
  • ◌: diam. (D) □: depth (D) x width: 6.5, 11.8 (circular)
  • Wall Thickness (t) (in): 0.167-0.461
  • Diameter/thickness (D/t): 25.6-70.6
Some specimens annealed

Fy= 50.8-85.3 ksi

f'c= 9.0-9.6 ksi
Sato, Saito, and Suzuki 1991
  • ◌: diam. (D) □: depth (D) x width: 5.91 (circular)
  • Wall Thickness (t) (in): 0.315
  • Diameter/thickness (D/t): 18.75
Annealed

Fy= 55.8 ksi

f'c= 5.15 ksi
Sugano, Nagashima, and Kei 1992
  • ◌: diam. (D) □: depth (D) x width: 11.8 (circular) 9.84 × 9.84 (square)
  • Wall Thickness (t) (in): 0.157-0.472
  • Diameter/thickness (D/t): 25-75 (circular) 20.8-62.5 (square)
Fy= 47.9-72.1 ksi f'c= 4.5-12.8 ksi
Kawaguchi et al. 1993
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.118, 0.177
  • Diameter/thickness (D/t): 22.2, 33.3
Cold-formed

Fy= 49.2 ksi

f'c= 3.1-3.6 ksi
Lu and Kennedy 1994
  • ◌: diam. (D) □: depth (D) x width: 6.0 × 6.0 (square) 10.0 × 6.0 (rectangular)
  • Wall Thickness (t) (in): 0.189, 0.252, 0.347
  • Diameter/thickness (D/t): 16, 23.8, 26.7, 31.6, 39.6
Cold-formed

Fy= 50 ksi

f'c= 5.87-6.83 ksi
Sakino 1995
  • ◌: diam. (D) □: depth (D) x width: 4.25-17.72 (circular)
  • Wall Thickness (t) (in): 0.117, 0.179, 0.255
  • Diameter/thickness (D/t): 26.9-152.0
Fy= 59.2, 93.7, 127.5 ksi f'c=
Fujimoto et al. 1996 & Inai et al. 2004
  • ◌: diam. (D) □: depth (D) x width: 9.45, 6.3 (circular) 8.27 × 8.27, 7.09 × 7.09 (square)
  • Wall Thickness (t) (in): 0.177, 0.235, 0.354
  • Diameter/thickness (D/t): Circular 17.8-53.3 Square 20.0-53.3
Cold-formed

Fy= 58.0, 85.6, 113.1 ksi

f'c= 5.80, 13.05 ksi
Tsuda, Matsui, and Mino 1996
  • ◌: diam. (D) □: depth (D) x width: 6.51 (circular) 5.93 × 5.93 (square)
  • Wall Thickness (t) (in): 0.165 (circular) 0.172 (square)
  • Diameter/thickness (D/t): 39.6 (circular) 34.5 (square)
Mild steel;

Fy= STK 400: 51.5 ksi, STKR 400: 57.5 ksi

f'c= 5.04 ksi
El-Remaily et al. 1997
  • ◌: diam. (D) □: depth (D) x width: 12.01 (circular)
  • Wall Thickness (t) (in): 0.252, 0.374
  • Diameter/thickness (D/t): 32, 48
Fy= 54 f'c= 10, 15 ksi
Zhang and Shahrooz 1997
  • ◌: diam. (D) □: depth (D) x width: 10 × 10 (square)
  • Wall Thickness (t) (in): 0.313
  • Diameter/thickness (D/t): 32.0
Cold- formed

Fy= 53.7 ksi

f'c= 6.05 ksi
Nakahara and Sakino 1998
  • ◌: diam. (D) □: depth (D) x width: 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.122-0.252
  • Diameter/thickness (D/t): 30, 60
Cold-formed channel sections

Fy= 45.0, 113.3 ksi

f'c= 17.26 ksi
Nakahara and Sakino 2000a

Nakahara and Sakino 2000b

  • ◌: diam. (D) □: depth (D) x width: 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.080, 0.167, 0.233
  • Diameter/thickness (D/t): 33.7, 47.1, 98.0
Fy= 30.6, 36.7, 46.4 ksi f'c= 6.90 ksi
Varma et al. 2000, 2001, 2002, 2004
  • ◌: diam. (D) □: depth (D) x width: 12.01 × 12.01 (square)
  • Wall Thickness (t) (in): 0.230- 0.350
  • Diameter/thickness (D/t): 34.3-52.2
A500

A500 Fy= Grade B: 37.6, 68.3 ksi, Grade 80: 81.2, 95.7 ksi

f'c= 4.33 ksi
Elchalakani, Zhao, and Grzebieta 2001
  • ◌: diam. (D) □: depth (D) x width: 1.33-4.37 (circular)
  • Wall Thickness (t) (in): 0.039- 0.132
  • Diameter/thickness (D/t): 12.8-109.9
Cold-formed

Fy= 52.9-66.7 ksi

f'c= 3.39 ksi
Elremaily and Azizinamini 2002
  • ◌: diam. (D) □: depth (D) x width: 12.75
  • Wall Thickness (t) (in): 0.25, 0.375
  • Diameter/thickness (D/t): 34, 51

Fy= 54 ksi

f'c= 5.8-15.1 ksi
Hsu and Yu 2003
  • ◌: diam. (D) □: depth (D) x width: 11 × 11
  • Wall Thickness (t) (in): 0.236, 0.177, 0.126
  • Diameter/thickness (D/t): 46.7, 62.2, 87.5
Cold bent JIS SS-400 plates

Fy= 46.5 ksi

f'c= 4.93 ksi
Elchalakani, Zhao, and Grzebieta 2004
  • ◌: diam. (D) □: depth (D) x width: 2.4 – 4.3 (circular)
  • Wall Thickness (t) (in): 0.027-0.123
  • Diameter/thickness (D/t): 20-162
Cold formed, electric resistance welded

Fy= 60.6 ksi

f'c= 3.35 ksi
Fujimoto et al. 2004
  • ◌: diam. (D) □: depth (D) x width: 4.25 – 14.2 (circular) 4.76 × 4.76 – 12.7 × 17.7 (square)
  • Wall Thickness (t) (in): 0.116-0.255
  • Diameter/thickness (D/t): 16.7-152
Cold formed plate

Circular: cold form and seam weld Square: welding two channels Fy= 38-121 ksi

f'c= 3.7-12.3 ksi
Hardika and Gardner 2004
  • ◌: diam. (D) □: depth (D) x width: 8 × 8
  • Wall Thickness (t) (in): 0.1875, 0.375
  • Diameter/thickness (D/t): 21.3, 42.6
ASTM A 500 Grade C

Fy= 56-59 ksi

f'c= 5.8-14.9 ksi
Inai, Mukai, Kai, Tokinya, Fukumoto and Mori 2004
  • ◌: diam. (D) □: depth (D) x width: 6.30, 9.45 (Circle), 7.09x7.09, 8.27x8.27 (square)
  • Wall Thickness (t) (in): 0.178-.354
  • Diameter/thickness (D/t): 17.80-53.09
Fy= 58.02-113.13 ksi f'c= 5.08, 13.05 ksi
Wheeler and Bridge 2004
  • ◌: diam. (D) □: depth (D) x width: 15.98, 17.95
  • Wall Thickness (t) (in): 0.25
  • Diameter/thickness (D/t): 63.4, 71.3
Cold rolled with continuous seamless welds

Fy= 50.9 ksi

f'c= 5.8-8.1 ksi
Han and Yang 2005
  • ◌: diam. (D) □: depth (D) x width: 4.25, 4.49
  • Wall Thickness (t) (in): 0.157, 0.118
  • Diameter/thickness (D/t): 27, 38
Fy= 51.6, 44.7 ksi f'c= 3.2, 5.6 ksi
Elchalakani and Zhao 2008
  • ◌: diam. (D) □: depth (D) x width: 2.4 – 4.3 (circular)
  • Wall Thickness (t) (in): 0.035 – 0.121
  • Diameter/thickness (D/t): 20-120
Cold formed (in some cases machined to achieve D/t)

Fy= 61.4 ksi

f'c= 3.35 ksi
Gajalakshmi and Helena 2012
  • ◌: diam. (D) □: depth (D) x width: 4.49 (circular)
  • Wall Thickness (t) (in): 0.079, 0.118
  • Diameter/thickness (D/t): 38, 57

Fy= 42.5 ksi

f'c= 4.70 (CFT), 8.38 (SCFT) ksi
Perea et al. 2013
  • HSS5.563X0.134
  • HSS12.750X0.250
  • HSS20.000X0.250
  • HSS20X12X5/16
Fy = 42 ksi-55 ksi f'c = 5.5 ksi-13.3 ksi
Du, Chen, Liew and Xiong 2017
  • *◌: diam. (D) □: depth (D) x width: 4.72x3.94, 7.09x4.72, 9.57x5.31
  • Wall Thickness (t) (in): .224
  • Diameter/thickness (D/t): 21.05, 31.58, 42.63
High Strength Steel

Fy = 74.62 ksi

C40 and C50 grade

f'c = 8.02, 6.27 ksi