Table of Experimental Studies on Axially Loaded Column Tests Subjected to Fire

From Composite Systems
Jump to: navigation, search

General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Fire Exposure Time (min.) Comments
Han, Zhao, Yang, and Feng 2003 Concrete filled HSS columns exposed to ISO-834 fire standard 13 Axial and eccentric loading
  • Residual strength
  • Vertical displacement
  • ε
  • Steel surface temperature
  • Axial shortening vs. fire exposure time
  • Diameter
  • Fire protection thickness
  • Eccentricity
  • Tube thickness
90, 180
Han, Huo, and Wang 2007 Beam to CFST column connections exposed to ISO fire standard 6 Constant axial loading and increasing cyclical flexural load
  • Ultimate bending strength
  • Deformation
  • Yield strength after exposure
  • Axial load
0, 90
Han, Wang, and Yu 2010 Beam to column frames tested under ISO 834 standard fire 6 Axial Loading
  • Ultimate axial deformation
  • Limiting temperature
  • Fire exposure Time
  • Specimen Shape (circular vs. square)
  • L
41-95
Lu, Han, and Zhao 2010 Self consolidating concrete filled double skin tubular columns tested under fire until specimens fail at maximum fire endurance time 6 Axial and eccentric loading
  • Failure mode
  • Temperature
  • Deformation
  • Fire endurance time
  • Specimen Shape (circular vs. square)
  • Inner and outer tube dimensions
  • Load
  • Eccentricity
40-240
Lu, Zhao, and Han 2010 Self consolidating concrete filled double skin tube stub columns exposed to fire until they reached the maximum fire endurance time 18 Axial Loading
  • Temperature reached
  • Fire endurance time
  • Specimen Shape (circular vs. square)
  • Inner and outer tube dimensions
0-138
Song, Han, and Uy 2010 Concrete filled steel columns to steel beam joints with reinforced concrete slab tested under combined loading and fire throughout heating, cooling, and post-fire phases. 3 Axial Loading
  • Temperature reached
  • Joint deformation
  • Heating time
  • Fire protection thickness
30-48
Han, Chen, Liao, Tao, and Uy 2013 Full scale concrete filled steel tubular columns tested under fire. 5 Axial Loading
  • Temperature distribution
  • Axial deformation
  • Fire endurance time
  • Load level
  • Specimen shape (circular of square)
  • Dimension
67-240
Han, Tan, and Song 2014 Steel reinforced concrete columns under ISO-834 standard fire 4 Axial and eccentric loading
  • Axial deformation
  • Fire endurance time
  • Temperature vs. time
  • Load
  • Eccentricity
151-183
Neuenschwander, Knobloch and Fontanta 2017 Concrete filled steel columns with solid steel core tested under fire 4 Axial and eccentric loading with preloading
  • Fire endurance time
  • Deformation
  • Temperature vs. time
  • Load
  • Steel core dimensions
24-179

Specimen Information

Reference Length (L)(in) L/D Eccentricity(in) End Conditions Fire Coating Thickness (in)
Han, Zhao, Yang, and Feng 2003 23.62-47.24 5.56-12 0-.59 Pinned-Pinned 0, .98
Han, Huo, and Wang 2007 61.81 11.8-13.08 0 N.A. 0
Han, Wang, and Yu 2010 75.98 13.79 0 N.A. 0.11-0.43
Lu, Han, and Zhao 2010 150 0-13.61 0, 2.95 N.A. 0, .39
Lu, Zhao, and Han 2010 31.5 1.97-8.98 0 N.A. 0
Song, Han, and Uy 2010 153.54 12 0 N.A. Thickness not specified, sprayed according to Chinese Code CECS24:90
Han, Chen, Liao, Tao, and Uy 2013 141.73 5.71, 11.43 0 Pinned-Pinned 0
Han, Tan, and Song 2014 150 12.7 0, 2.95 Pinned-Fixed 0
Neuenschwander, Knobloch and Fontanta 2017 139.37, 141.73 16.44, 26.62 .393 Pinned-Pinned, Pinned-Fixed 0

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Han, Zhao, Yang and Feng 2003
  • ◌: diam. (D) □: depth (D) x width: 4.25 (circular), 3.93x3.93 (square)
  • Wall Thickness (t) (in): .17 (circular), .12 (square)
  • Diameter/thickness (D/t): 25 (circular), 32.75 (square)

Fy= 51.63 ksi (circular), 42.64 (square)

fcu= 10.18 ksi (circular), 10.34 (square)
Han, Huo, and Wang 2007
  • ◌: diam. (D) □: depth (D) x width: 5.24 (circular), 4.72x4.72 (square)
  • Wall Thickness (t) (in): .19 (circular), .11 (square)
  • Diameter/thickness (D/t): 28.30 (circular), 41.38 (square)

Fy= 49.31 ksi (circular), 47.86 (square)

fcu= 7.25 ksi
Han, Wang, and Yu 2010
  • ◌: diam. (D) □: depth (D) x width: 5.51 (circular)
  • Wall Thickness (t) (in): .15
  • Diameter/thickness (D/t): 36.73

Fy= 38.14-59.76 ksi

f'c= 6.87 ksi
Lu, Han, and Zhao 2010
  • ◌: diam. (D) □: depth (D) x width: Outer Tube Dimensions: 11.81 (circular), 11.02 (square)
  • Wall Thickness (t) (in): .20 (circular), .20 (square)
  • Diameter/thickness (D/t): 59.05 (circular), 55.1 (square)
  • ◌: diam. (D) □: depth (D) x width: Inner Tube Dimensions: 4.92, 8.86 (circular), 5.51 (square)
  • Wall Thickness (t) (in): .20 (circular), .20 (square)
  • Diameter/thickness (D/t): 24.6, 43.3 (circular), 27.55 (square)

Fy= 46.41 ksi

fcu= 5.51 ksi
Lu, Zhao, and Han 2010
  • ◌: diam. (D) □: depth (D) x width: 3.98-15.98 (circular), 3.5-13.78 (square)
  • Wall Thickness (t) (in): .12-.31 (circular), .14-.31 (square)
  • Diameter/thickness (D/t): 12.84-133.17 (circular), 11.29-98.43 (square)

Fy= 57.87-74.55 ksi

f'c= 5.8-10.15 ksi
Song, Han, and Uy 2010
  • ◌: diam. (D) □: depth (D) x width: 12.80 (circular)
  • Wall Thickness (t) (in): .20 (circular)
  • Diameter/thickness (D/t): .64 (circular)

Fy= 54.53 ksi (circular)

fcu= 6.87 ksi
Han, Chen, Liao, Tao, and Uy 2013
  • ◌: diam. (D) □: depth (D) x width: 11.80 (circular), 12.4x12.4, 24.8x24.8 (square)
  • Wall Thickness (t) (in): .20 (circular), .20, .40 (square)
  • Diameter/thickness (D/t): 57.5 (circular), 62 (square)

Fy= 50.18-65.4 ksi (circular)

fcu= 7.72 ksi
Han, Tan, and Song 2014
  • ◌: diam. (D) □: depth (D) x width: 11.81 (square)
  • Wall Thickness (t) (in): 0

Fy= 44.53 ksi

fcu= 5.51 ksi
Neuenschwander, Knobloch and Fontanta 2017
  • ◌: diam. (D) □: depth (D) x width: 5.24, 8.62 (circular)
  • Wall Thickness (t) (in): .16, .18 (circular)
  • Diameter/thickness (D/t): 29.11, 53.88 (circular)

Fy= varies with temperature and specimen

fcu= varies with temperature and specimen