Table of Experimental Studies on Axially Loaded Column Tests

From Composite Systems
Jump to: navigation, search

General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Klöppel and Goder 1957 Concentrically loaded CFTs and HTs 104 tests N.A. P vs. various σ's and ε's in both concr. and steel (tabular & graphical) Individual tests tabulated by load increment (very detailed)
Salani and Sims 1964 Seamless mortar-filled columns
  • 17 Mortar-filled Tubes
  • 9 HTs
  • Concentric
  • Slow loading in equal increments
  • P vs. ε
  • P vs. v, P vs. Ec
  • Comparison: Pu, Pcr
  • D
  • CFT vs. HT
Mortar-filled
Gardner and Jacobson 1967 Short and long CFT columns (experimental vs. theoretical) 32 CFTs Concentric loading to failure
  • Po, Pu several allowable calcs incl. ACI, NBC, Klöppel('57), & author's own
  • K (author's "lateral restraint factor") vs. P/Pu
  • End conditions
  • D/t
Discussion by Furlong and Knowles followed (1968)
Gardner 1968 Short and long columns w/ spiral welded tubes
  • 17 CFTs
  • 2 HTs
Concentric loading to failure
  • Manufacturing ε, εcircum
  • P vs. ε, P vs. εcircum
  • ACI & NBC Pa, Pu, Po, Pcr
  • Type of tubing
  • D/t
  • L
Through examination of residual stresses
Knowles and Park 1969 Concentric and eccentric loading w/ KL/r (experiment, theoretical)
  • 28 CFTs (18 conc., 10 ecc.)
  • 30 HTs (20 conc., 10 ecc.)
  • Offset one end of column to produce eccentricity
  • Uniaxial bending
  • σ vs. ε, σ vs. E, σ vs. λ (HTs concrete cores)
  • Pu/Po (HT, CFT)
  • Pu, Mu, Pu/Po, Mu/Mo (HT, CFT)
  • Pu/Po vs. Mu/Mo (HT, CFT)
  • Type of tubing
  • D/t
  • L/D
  • e
Neogi, Sen, and Chapman 1969 Elasto-plastic behavior of pinned eccentrically and concentrically loaded CFTs (exp. vs. theor.) 18 CFTs (ecc.) C:cold-drawn(8) M:mild, hot-finish(10)
  • Eccentricity varied by moving top end of column laterally (single curvature)
  • Short duration, constant loading
  • P vs. ε (exp, calc)
  • P vs. δ, M vs. δ (exp, calc)
  • Selected load ratios using: Pu, Py, 'exact' calc. load, calc. cos method (Neogi & others)
  • Type of tubing
  • D/t
  • L/D
  • e
Knowles and Park 1970 Design eqns. developed and compared w/ tests by author and others 111 CFTs (previous tests) N.A. Po, Pu, Pu/Po for all tests Parameters vary with author Test of the authors' proposed formulas
Bridge 1976 Square pin-ended eccentrically loaded CFTs (experiment theory) 8 CFTs (ecc.)
  • Incr. loading to failure
  • Ends offset equally (single curvature)
  • Biaxial bending (inclination of axis: 0°, 30°, 45°)
  • P vs. δ (exp., calc.)
  • M-φ-P curves
  • Py, Pu, Po, Pu/Po, Py/Po
  • λ
  • e
  • Inclination of loading axis
Excellent paper -- very clear and detailed
Kitada, Yoshida, and Nakai 1987 Short CFT columns subjected to axial compression 14 CFTs 3 cases: load steel only, concrete only, & both mat'ls simultaneously
  • σsl/fy vs. σsc/fy for steel tubes
  • P vs. εcircum, P vs. δaxial
  • Pu (exp. vs. calc.)
Zhong and Miao 1988 Short CFT columns subjected to axial compression 11 CFTs Concentrically-applied load
  • σ vs. ε
  • P vs. ε
*L/D ratio
  • Steel ratio
  • End conditions
Mostly theoretical
Liu and Geol 1988 Cyclic load behavior of CFT bracing
  • 6 CFTs (brace)
  • 3 HTs (brace)
Rectangular, pinned frame loaded laterally w/ diagonal brace put in alternate compression & tension
  • P/Py vs. δaxial
  • P/Py vs. # of cycles (vary D/t)
  • 1st buckling load (exp, theor)
  • Load histories
  • Energy absor. (CFT, HT)
  • HT vs CFT
  • f'c
  • D/t
  • λ
  • Good failure descr.
  • Steel fibers used in 3 of the concr. mixes to vary f'c
Kawano and Matsui 1988 Cyclic axial loading of CFT braces
  • 10 CFTs
  • 10 HTs
  • Cyclically applied axial load at both ends
  • Displacement controlled loading with either large or small amplitude
  • P vs. λ
  • P vs. δaxial
  • Energy absorption (CFT, HT)
  • H vs. Δ (K-braced frames with HT and CFT braces)
  • HT vs. CFT
  • λ
  • axial load amplitude
Matsui and Kawano 1988 Monotonic and cyclic loading of trusses with CFT and HT chords
  • 1 CFT and 1 HT (monotonic)
  • 1 CFT and 1 HT (cyclic)
  • Monotonic uniform moment applied at the ends
  • Constant axial load and cyclically applied lateral load applied at the top
  • M vs. θ
  • P vs. δaxial
  • H vs. Δ
HT vs. CFT
Shakir-Khalil and Zeghiche 1989 Concentric and eccentric loading of rectangular CFTs
  • 1 CFT (conc.)
  • 6 CFTs (ecc.)
  • Additional squash load and bond strength tests performed
  • Cols tested horizontally
  • Equal end eccentricities
  • Incremental loading
  • Tests: 1 axial, 4 uniaxial (2 maj.,2 min.), 2 biaxial
  • δ (x and y directions)
  • P vs. ε, P vs. δ, P vs. e/D
  • M vs. φ (varying P/Po)
  • Pu, Po, Mu
  • Bond tests: Pu, bond strength
  • L/D
  • λ
  • e
  • Bond test & squash load test conducted (see summary)
  • Detailed tabulation
Cederwall, Engstrom, and Grauers 1990 Eccentrically loaded rectangular CFT columns
  • 19 CFT (ecc.)
  • 19 short col. tests
  • Axial load applied eccentrically to failure
  • Load applied to steel, concrete, and both mat'ls
  • P vs. δ
  • Pu, Po
  • Po/Pu vs. Pco/Pso
  • t
  • fy
  • f'c
  • e
  • method of load application
Shakir-Khalil and Mouli 1990 Concentric and eccentric loading of rectangular CFTs
  • 1 CFT (conc.)
  • 8 CFT (ecc.)
  • 9 Short col tests
  • Bond strength tests
  • Cols tested horizontally
  • Equal end eccentricities
  • Incremental loading
  • Tests: 1 axial, 1 uniaxial, 7 biaxial
  • ε distribution at mid-length
  • δ (x and y directions)
  • P vs. ε, P vs. δ, P vs. e/D
  • Pu, Po for short columns
  • Pu, Mu
  • L/D
  • λ
  • e
Extension of Shakir-Khalil,'89
Cai 1991 Eccentrically loaded CFT columns 27 CFTs
  • Eccentric axial load
  • 18 cols: ecc. at one end, single curvature
  • 9 cols: opposite eccs., double curvature
Pu, Pu/Po
  • λ
  • e/(concr. radius)
  • β
Luksha and Nesterovich 1991 Large diameter CFTs under axial compression
  • 30 CFTs
  • 10 HTs
N.A.
  • Po, Py
  • % shrinkage
  • D
  • t
Variables not well defined
Masuo et al. 1991 Concentric testing of lightweight concrete CFTs
  • 26 CFTs: 18 lightweigh, 6 normal weight
Concentrically-applied load
  • σ-ε relations for steel & concr.
  • initial δ
  • P vs. δ curves
  • Pu, Pu/Po
  • Pu/Po vs. slenderness factor (see paper for definition)
  • D/t
  • Slenderness ratio
  • Several detailed P-δ curves
  • Very thorough tests, highly detailed and documented
Nakai, Kurita, and Ichinose 1991 Study on creep and drying shrinkage of CFTs 4 CFTs 2 plain concr. (3 creep tests, 3 shrinkage tests) Concentrically-applied load
  • εconcr vs. time (both tests)
  • P vs. time (creep test)
  • Creep coefficients
  • Evaluated visco-elastic parameters (for theoretical)
Time Creep and shrinkage tests conducted simultaneously for 160 days
Sakino and Hayashi 1991 Concentrically loaded stub columns
  • 7 CFTs
  • 5 HTs
Concentrically-applied load
  • σ vs. ε
  • εcircum/ε vs. ε
  • P vs. ε
  • Po, Py, Pu
  • D/t
  • f'c
Paper attempted to estimate the strain hardening effect as well as triaxial confinement
Tsuji, Nakashima, and Morita 1991 Axial compression of short CFTs 3 CFTs Concentrically-applied load
  • ε vs. εcircum
  • ν vs. ε
  • P vs. ε
  • P vs. ε (exp. vs calc.)
t Tests conducted to check validity of analytical formulation
Rangan and Joyce 1992 Eccentrically loaded slender columns w/ high-strength concr. 9 CFTs
  • Axial load offset by eccen.
  • Equal end eccentricities
  • Single curvature
  • P vs. ε
  • P vs. δ
  • Pu, Po, Pu/Po
  • λ
  • e
Compared to results by Neogi, Sen, Chapman
Bridge and Webb 1993 Axial compressions of thin-walled CFTs and HTs
  • 2 CFTs
  • 2 HTs
  • Concentrically-applied, incremental loading
  • Loaded into post-ultimate region
  • P vs. εconcr
  • P vs. δaxial
  • Pu, Po
HT vs. CFT Tests performed for high-rise construction project
Matsui, Tsuda, and El Din 1993 Axial compression of square CFTs with varying lengths and eccentricities
  • 24 CFTs
  • 6 HTs
  • Concentrically and eccentrically applied
  • Slow loading near ultimate load
  • Loaded into post-ultimate region
  • P vs. δlateral
  • Pu
  • Pcr vs λ for various eccentricities
  • λ
  • e
  • CFT vs. HT
Compared to AIJ design formulas
Tsuda, Matsui, and Mino 1996 Series I-Concentrically land eccentrically axially slender CFTs
  • 48 CFTs (24 circ., 24 sq.)
  • 12 HTs
  • Concentrically and eccentrically applied axial load on CFT’s
  • Concentric load only on steel tubes
  • P vs. δ (lat. defl.)
  • M vs. P
  • Mu vs. Pu (inter. diagrams)
  • Magnitude of eccentricity
  • buckling length-section depth ratio (kL/D)
Kawano and Matsui 1997 Cyclic and axial loading of circular CFTs and HTs
  • 5 HTs
  • 44 CFTs
  • Concentric axial loading
  • Displacement-controlled
  • P vs δaxial
  • nc, nb vs. ε
  • W / Py × δy vs. ε
  • nc vs. L/D
  • W vs. L/D
  • CFT vs HT
  • L/D, D/t
  • Loading pattern
Energy absorption and fracture of steel tube
Kilpatrick and Rangan 1997 Eccentric loading of circular CFTs in double and single curvature
  • 24 CFTS (ecc.)
  • 1 CFT (conc.)
  • Eccentric axial loading
  • Displacement-controlled
  • P vs. e
  • P vs. δ (lat. defl.)
magnitude and direction of eccentricity
Bergmann 1994 Concentrically loaded circular and square CFT with different load introduction 16
  • Load introduction was varied, load on entire crosssection, all of conc., small area of conc.
  • Concentric axial load applied until failure
P vs. d
  • Section shape and size
  • Load introduction
  • Length
O'shea and Bridge 1997a Concentric and eccentric loading of circular HTs and concentric loading of circular CFTs filled with unbonded concrete
  • 7 HTs (conc.)
  • 5 CFTs (conc.)
  • 10 HT (ecc.)
  • Concentric load only on steel tube
  • Displacement-controlled with incremental small displacements
  • σ-ε relations for stl. & conc.
  • Residual stress distribution
  • P vs. εaxial & σsl vs. εaxial
  • circum & ε) vs. εaxial
  • Pu
  • Mu vs. Pu (inter. diagrams)
  • Plate buckling curves
  • Lateral imperf. of the steel tube walls
  • CFT vs. HT
  • D/t
  • Loading type (BS, BSC, E1, E2)
  • Magnitude of eccentricity
Effect of internal restraint on local buckling behavior
O'shea and Bridge 1997b Concentric loading of square box HTs and square box CFTs filled with unbonded and bonded concrete
  • 17 CFTs (conc.)
  • 12 HTs (conc.)
  • Concentric load only on hollow tube
  • Displacement-controlled
  • Incremental small displacements
  • σ-ε relations for stl. & conc.
  • Residual stress distribution
  • P vs. εaxial & σsl vs. εaxial
  • εaxial vs. δ (lat. defl.)
  • Pu
  • Plate buckling curves
  • Lateral imperf. of the steel tube walls
  • Buckled shapes (anal.&exp.)
  • CFT vs. HT
  • L/D, D/t
  • Loading type (BS, BSU, CS)
Effect of internal restraint on local buckling behavior.
O'shea and Bridge 1997c Concentric and eccentric loading of circular CFTs with unbonded and bonded high strength concrete
  • 33 CFTs (conc.)
  • 7 CFTs (ecc.)
  • Displacement-controlled with incremental small displacements (CFTs with moderate strength concrete)
  • Force-controlled with slow loading near ultimate load (CFTs with high strength concrete)
  • σ-ε relations for stl. & conc.
  • P vs. εaxial
  • circum & ε) vs. εaxial
  • Pu
  • Residual stress distribution
  • Mu vs. Pu (inter. diagrams)
  • Lateral imperf. of the steel tube walls
  • Stl. reduction and conc. enhance. due to confinement
  • f’c
  • D/t,
  • Loading type (CS, CL, E1, E2)
  • Magnitude of eccentricity
Effect of concrete confinement on cross section strength
O'shea and Bridge 1997d Concentric and eccentric loading of circular CFTs with unbonded and bonded high strength concrete
  • 18 CFTs (conc.)
  • 7 CFTs (ecc.)
Force-controlled with slow loading near ultimate load
  • σ-ε relations for stl. & conc.
  • P vs. εaxial
  • circum & ε) vs. εaxial
  • Pu
  • Residual stress distribution
  • Mu vs. Pu ( inter. diagrams )
  • Lateral imperf. of the steel tube walls
  • Stl. reduction and conc. enhance. due to confinement
  • f’c
  • D/t
  • Loading type(CS,CL, E1, E2)
  • Magnitude of eccentricity
Effect of confinement on cross section strength
Shakir Khalil and Al-Rawdan 1997 Concentric & eccentric loading of full-scale rectangular CFTs
  • 11 CFTs (conc.)
  • 11 CFTs (ecc.)
  • Cols tested horizontally
  • Equal end eccentricities
  • Incremental loading
  • δ and axis of failure for each member
  • P vs. δ
  • Pu, Po
  • Pa from BS5400, BS5940, ratios Pu/Pa
  • L/D
  • λ
  • ex
  • ey
BS5400 & BS5940 are the current British standards
Schneider 1998 Monotonic axial loading of circular, square and rectangular CFTs 14 CFTs
  • Concentric axial loading
  • Force-controlled
  • P vs. δaxial
  • Py vs. λ
  • Py vs. D/t
  • P vs. Ps
  • P vs. εcircum
  • D/t
  • Cross-sectional shape
Results compared with AISC-LRFD (1994)
Han and Yan 2000 Monotonic axial loading of slender circular CFTs and HTs
  • 11 CFTs
  • 4 HTs
Concentric axial loading
  • P vs. δ (lat. defl.)
  • Pa, Pu
  • CFT vs. HT
  • f’c
Zhang and Zhou 2000 Monotonic axial loading of CFTS 36 CFTS Concentric axial loading
  • P vs. ε
  • P vs. εcircum
  • fcc/f’c vs. σr/f’c
  • D/t
  • fy
Degree of confinement compared with literature
Han and Yan 2001 Monotonic loading of square CFTs
  • 20 CFTs stub col.
  • 8 CFTs (conc.)
  • 21 CFTs (ecc.)
  • Stub Cols.: Concentric loading, force-controlled
  • Cols: Eccentric axial loading, force-controlled
  • P vs. εaxial
  • Pu
  • P vs. δ (lat. defl.)
  • Pa vs. Pu
  • Mu vs. Pu (interaction diagrams)
  • ξ (stub cols.: 1.08-5.64, bmcols & cols : 1.07- 3.27)
  • f'c
  • D/t
  • Mag. of eccentricity
  • Slenderness
Johansson and Gylltoft 2002 Short circular CFT columns subjected to axial compression with different methods of application
  • 9 CFTS
  • 4 HTs
Concentric loading on either steel only, concrete only, entire section P vs. δ
  • Load application
  • HT/CFT
Ghannam, Jawad, and Hunaiti 2004 Monotonic loading of rectangular, square, and circular CFTs with normal and lightweight concrete
  • 36 CFTs
  • 9 HTs
Concentrically applied load
  • P vs. δ
  • P vs. mid height disp.
  • section size and shape
  • normal weight/light weight/no concrete
  • slenderness
Giakoumelis and Lam 2004 Short circular CFT columns subjected to axial compression
  • 13 CFTs
  • 2 HTs
Concentrically applied load
  • P vs. δ
  • P vs. ε
  • Concrete enhancement factor vs. f′c
  • P vs. f′c
  • f′c
  • bond (some columns greased)
Gupta, Sarda, and Kumar 2007 Concentrically loaded circular CFT columns until failure
  • 72 CFTs
  • 9 Hollow circular tubes
Concentrically applied load
  • Load vs. Deformation
  • Load vs. Compression
  • Energy vs. Compression
  • % Confinement vs. % Flyash
  • D/t
  • L/D
Guo et al. 2007 Monotonic behavior of steel only loaded unbonded square CFTs
  • 12 CFTs
  • 12 HTs
Concentrically applied load
  • P vs. δ
  • P vs. ε
  • D/t
  • CFT/HT
Uy 2008
  • 8 CFTs
Concentric axial load
  • P vs. δ
  • P vs. ε
  • High Performance Steel
  • Stainless Steel
Liew and Xiong 2009 Preload effect on the axial resistance of CFTs

8 CFTs

  • Preloaded with pre-stressing strands
  • Axial Load
  • Predicted Load vs. Test Results
  • P vs. δ
  • L
  • fy
  • β (Preload Ratio)
Han and Li 2010 Combination of tests performed on both columns and beams
  • 6 CFT beams
  • 2 CFT columns
  • Axial load (columns)
  • Cyclic load (Beams)
  • P vs. εaxial
  • P vs. δ
  • M
  • Join type
  • P
Han, He and Liao 2011 Tensile test performed on CFTs
  • 18
  • Axial Tension
  • Ptensile vs. ε
  • Concrete type
  • Steel ratio
Han, Li and Liao 2011 Testing done on CFDST with a combination of loading and shaped columns
  • 4 CFDST (2 square, 2 circle)
  • 2 CFT
  • 10 CFDST and CFT for reference
  • Long-term sustained axial loading
  • P vs. δ (lat. defl.)
  • L
  • Shape
Liao, Han and He 2011 Testing done on both beams and columns for effect of gap
  • 21
  • Short columns: axial load
  • Beams: Bending moment
  • P vs. δshortening
  • εlongitudinal, transverse
  • M vs. ε
  • Gap type
  • Gap ratio
Uy, Tao and Han 2011 Eccentrically and concentrically loaded stainless steel CFTs and HTs
  • 33HTs (2 eccentric, 31 concentric)
  • 84 CFTs (all concentric)
  • Concentric
  • Eccentric
  • P vs. εaxial, lateral
  • D/t
  • f'c
  • e
Li, Han and Zhao 2012 Preloaded square and circular columns
  • 35 circular CFTs
  • 35 square CFTs
  • Axial load
  • Axial preload applied from 0 to 0.8 of ultimate axial strength
  • P vs. εaxial
  • Stress index vs. prelad ratio
  • P
  • Preload condition
  • Slenderness ratio
Wang, Han and Hou 2013 Impact loading using a drop hammer on CFTs
  • 22 CFTs
  • Axial load
  • Lateral impact loading
  • Impact force vs. time
  • P
  • Impact energy
Han, Hou, Zhao, and Rasmussen 2014 Transverse impact loading using drop hammer rig
  • 12 CFTs
  • Transverse impact loading
  • δ vs. time
  • Impact force vs. time
  • Impact force vs. mass of drop hammer
  • Height of drop hammer
  • Impact energy
  • Length of specimen

Specimen Information

Reference Length (L)(in) L/D Eccentricity(in) Residual Stresses(ksi) Initial Out-Of-Straightness(in) End Conditions
Klöppel and Goder 1957
  • Leff = 33.86-90.95
  • λ = 36.9-114.1
8.68-20.80 N.A. N.A. N.A. Pinned-pinned
Salani and Sims 1964 60.0 20-60 N.A. Steel tubes annealed to remove stresses N.A. Fixed-fixed
Gardner and Jacobson 1967 6, 8, 9.5, 12, 24, 41.34, 60, 66 2, 8, 8.7, 11, 15, 20 N.A. N.A. N.A.
  • Pinned-pinned (long cols.)
  • Pinned-fixed (short)
Gardner 1968
  • CFT: 12.0, 72.0, 84.0
  • HT: 68.0
  • Leff = L + 6.0
1.8-12.8 N.A. Incorporated into fy N.A.
  • Pinned-pinned (long cols)
  • Pinned-fixed (short)
Knowles and Park 1969
  • concentric: 9-68 (λ =7.76-60.2)
  • eccentric 32, 44, 56
2.60-22.67
  • 0.30, 1.00 (initial)
  • 0.50-1.45 (at failure)
N.A. N.A.
  • Pinned-pinned (knife edge)
  • Stub col: fixed ends
  • Ends packed w/ cardboard-uniform load on both mat'ls
Neogi, Sen, and Chapman 1969
  • C: 55.5, 67.5, 80.0;
  • M: 131.0
11.1-23.7
  • C: 0.25-0.88;
  • M: 1.25-1.88
N.A. 0.022-0.224
Knowles and Park 1970 Leff = 10.0-91.0 N.A. N.A. N.A. N.A.
  • Pinned-pinned (knife edge)
  • Uniaxial bending
  • Ends capped such that both mat'ls were loaded
Bridge 1976 83.9, 120.1 10.65, 15.25, 20.33 0, 1.50, 2.52 N.A 0.011-0.055
  • Pinned-pinned (rocker bearings)
  • Expansive mortar endcap (for equal load distribution)
Kitada, Yoshida, and Nakai 1987 9.94 2.21 N.A. N.A. N.A.
  • Fixed-fixed
  • Loading through bearing plates
Zhong and Miao 1988 see L/D 2, 2.5, 3, 3.5, 4, 4.5, 5 N.A. N.A. N.A.
  • Pinned-pinned: (2 knife hinges; 1 knife, 1 plate hinge; 1 spherical, 1 pl hinge; or 2 pl. hinges)
Liu and Geol 1988 λ = 58-100 N.A. N.A. N.A. N.A. Welded gusset plates, weld and plate strength 33% > steel tube
Kawano and Matsui 1988
  • L = 16.2-97.4
  • λ = 19.9-119.5
6.81-40.88 N.A. N.A. N.A. Pinned-pinned
Matsui and Kawano 1988
  • L = 47.9
  • λ = 59
28.67 N.A. N.A. N.A.
  • Pinned-pinned (monotonically loaded trusses)
  • Cantilever (cyclically loaded trusses)
Shakir-Khalil and Zeghiche 1989
  • 108.7
  • Leff = 115.7-126.4
23.0
  • ex = 0.0, 0.94, 2.36
  • ey = 0.0, 0.63, 1.57
N.A. Acknowledged as possible error
  • Pinned-pinned
  • Crossed knife edges (free biaxial rotat.)
  • End plates (0.6 in. thick) welded to tube
Cederwall, Engstrom, and Grauers 1990 118 25 0.39, 0.79 N.A. N.A. Pinned-pinned
Shakir-Khalil and Mouli 1990
  • Leff = major : 126.4 minor: 115.7
  • Short col tests: 3.9, 7.9
  • Major: 21.4, 26.75
  • Minor: 29.5, 36.7
  • ex = 0.0-2.95
  • ey = 0.0-1.97
N.A. Acknowledged as possible error
  • Pinned-pinned
  • Crossed knife edges (free biaxial rotat.)
  • End plates (0.6 in. thick) welded to tube
Cai 1991 26.2-117.7 5.24-19.30 0.79, 1.57, 2.36, 3.94 N.A. N.A.
  • Pinned-pinned
  • Stiff 1 in. cap plates
Luksha and Nesterovich 1991 18.8-120.5 3.0 N.A. N.A. N.A. Fixed-fixed
Masuo et al. 1991 45.3-189.0 6.0-18.0 N.A. N.A. Initial defl. = L/2000 at mid-height Pinned-pinned (cylindrical bearings)
Nakai, Kurita, and Ichinose 1991 39.4 (1 m) 6.05 N.A. N.A. N.A. Fixed-fixed
Sakino and Hayashi 1991 14.2 2.0 N.A. Steel tubes annealed to remove stresses N.A. Pinned-fixed
Tsuji, Nakashima, and Morita 1991 9.0 2.0 N.A. N.A. N.A. Pinned (spherical)-fixed
Rangan and Joyce 1992 Leff = 31.8-91.4 8.0-22.9 0.39, 1.18 N.A. N.A.
  • Pinned-pinned
  • End plates on rollers
Bridge and Webb 1993 29.5 3.0 N.A. N.A. N.A.
  • Pinned (spherical seat)-fixed
  • Ends plastered to ensure flush loading
Matsui, Tsuda, and El Din 1993 23.6, 47.2, 70.9, 106.3, 141.7, 177.2 4, 8, 12, 18, 24, 30 0, 0.98, 2.95, 4.92 N.A.(yield stress measured by 0.2% offset) N.A. Pinned (spherical seat)- eccentricity imposed by moving bearing plate
Tsuda, Matsui, and Mino 1996 Noted values are kL; 26.0-195.1, 23.6-177.2 kL/D; 4, 8, 12, 18, 24, 30(same for both)
  • 0-4.06 (circular)
  • 0-4.92 (square)
N.A. N.A. Pinned-pinned: Specimens are loaded through hemispherical oil film bearing at each end
Kawano and Matsui 1997 10.0, 12.8, 33.8, 71.3 5, 10, 20 N.A. N.A. N.A. Pinned-pinned
Kilpatrick and Rangan 1997 85.6 21.4 -1.97-1.97 N.A. N.A. Pinned-pinned : The ends were clamped to knife-edge assemblages
Bergmann 1994
  • 40
  • 160
4 - 22.8 N.A. N.A. N.A.
  • Fixed-Fixed
  • Wood plates between ends of column and loading head
O'shea and Bridge 1997a 22.7, 26.2 3.5 0.28-0.83
  • 6.37-51.96 (bending)
  • 11.40- 47.30 (membrane)
N.A.
  • Fixed (conc.): Ends attached to grooved plates filled with low temperature metal
  • Pinned-pinned (ecc.): Eccentricity provided through thick endplates with an offset half round
O'shea and Bridge 1997b 8.4-38.0 0.8, 1.2, 1.7, 2.3, 2.9, 3.5 N.A. 7.70-22.24 N.A. Fixed: Ends attached to grooved plates filled with low temperature metal
O'shea and Bridge 1997c 22.7, 26.2 3.5 0.28-0.82
  • 6.37-51.96 (bending)
  • 11.4-47.30 (membrane)
N.A.
  • Ends were ground flat and the top loading plate had a hemi-spherical head (conc.)
  • Pinned-pinned (ecc.): eccentricity provided through thick endplates with an off-set half round
O'shea and Bridge 1997d 22.7, 26.2 3.5 0.26-0.67
  • 6.37-51.96 (bending)
  • 11.40-47.30 (membrane)
N.A.
  • Ends were ground flat and the top plate had a hemispherical head (conc.)
  • Pinned-pinned (ecc.): eccentricity provided through thick endplates with an off-set half round
Shakir Khalil and Al-Rawdan 1997
  • Leff = major: 126-187 minor: 116-193
  • short col: 3.9, 5.9, 7.9
  • Major: 21.3-31.7
  • Minor: 29.5-49.0

ex = 0.24, 0.59, 1.77, 2.95

  • ey = 1.18
N.A. Acknowledged as possible error
  • Pinned-pinned
  • Crossed knife edges (free biaxial rotat.)
  • End plates (0.6 in. thick) welded to tube
Schneider 1998 see L/D 4.0-4.8 N.A. Steel tubes annealed to remove stresses N.A. Pinned-pinned through spherical bearings
Han and Yan 2000 138.2-163.7 32.5-38.5( λ = 130-154) N.A. N.A. N.A. Pinned-pinned through loading plate with triangular wedge inserted into the grooved endplate.
Zhang and Zhou 2000 N.A. 3-4 N.A. N.A. N.A. N.A.
Han and Yan 2001 see L/D 3 (stub cols.) λ= 45-75 (cols) 0-3.15 N.A. N.A.
  • Stub cols.: Thick, stiff endplates welded to the tube
  • Cols.: pinned ends through loading plate with triangular wedge inserted into the grooved endplate
Johansson and Gylltoft 2002 25.6 4.09 N.A. N.A. N.A.
  • Fixed-Fixed
  • Both ends bearing on loading plate
Ghannam, Jawad, and Hunaiti 2004 78.75-98.43 15-20 N.A. N.A. N.A. Pinned-Pinned
Giakoumelis and Lam 2004 11.8 2.62 N.A. N.A. N.A. Fixed-Fixed
Gupta, Sarda, and Kumar 2007 13.4 3.0, 3.8, 7.2 N.A. N.A. N.A. Both ends bearing on loading plate
Guo et al. 2007 9.4 – 23.6 3.0 N.A. N.A. N.A. Fixed-Fixed (stiffeners welded to ends in accordance with Chinese design)
Uy 2008 N.A. N.A. N.A. N.A. N.A. Fixed-Fixed
Liew and Xiong 2009 68.0 - 121.2 7.9-14.1 N.A. N.A. N.A. Fixed-Fixed (Ends attached to steel plate to obtain uniform loading)
Han and Li 2010 51.18, 102.36 .017-.026 N.A. N.A. N.A. Pinned-Pinned
Han, He and Liao 2011 19.3, 24.8 N.A. N.A. N.A. N.A. Fixed-Fixed
Han, Li and Liao 2011 57.23- 59.06 12.13-12.51 N.A. N.A. N.A. N.A.
Liao, Han and He 2011
  • 29.13 (Columns)
  • 5.43 (Beams)
N.A. N.A. N.A. N.A. Pin-Ended
Uy, Tao and Han 2011
  • CFT: 5.91- 19.69
  • HT: 11.81, 14.76, 17.72
.10-.12 .79, 1.57 N.A. Acknowledged as possible error, suggests further research Pinned-Pinned (Spherical hinged)
Li, Han and Zhao 2012 86.2-293.7 N.A. N.A. N.A. N.A. N.A.
Wang, Han and Hou 2013 47.24 N.A. N.A. N.A. N.A. Fixed-Sliding
Han, Hou, Zhao, and Rasmussen 2014 76.38, 94.48, 110.24 10.77-15.55 N.A. N.A. N.A.
  • Fixed-Fixed
  • Pinned-Pinned
  • Fixed-Pinned

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Klöppel and Goder 1957
  • ◌: diam. (D) □: depth (D) x width: 3.75, 4.75, 8.5 (circular)
  • Wall Thickness (t) (in): 0.079-0.472
  • Diameter/thickness (D/t): 7.9-60.5
N.A.

Fy= 38.3-57.3 ksi

f'c= 2.94-4.32 ksi
Salani and Sims 1964
  • ◌: diam. (D) □: depth (D) x width: 1, 1.5, 2, 2.75, 3 (circular)
  • Wall Thickness (t) (in): 0.035, 0.065, 0.109
  • Diameter/thickness (D/t): 28.6-46.2
Cold-drawn seamless finish-annealed

Fy= 76 ksi

f'c= 3.35-4.95 ksi (Mortar)
Gardner and Jacobson 1967
  • ◌: diam. (D) □: depth (D) x width: 3, 4, 4.75, 6 (circular)
  • Wall Thickness (t) (in): 0.067-0.194
  • Diameter/thickness (D/t): 30-48
Cold-drawn seamless finish- annealed

Fy= 52.7-91.9 ksi

f'c= 3.0-6.3 ksi
Gardner 1968
  • ◌: diam. (D) □: depth (D) x width: 6.62-6.66 (circular)
  • Wall Thickness (t) (in): 0.104, 0.142, 0.197
  • Diameter/thickness (D/t): 34-64
Spiral welded

Fy= 28.6-48.3 ksi

f'c= 2.6-5.3 ksi
Knowles and Park 1969
  • ◌: diam. (D) □: depth (D) x width: 3.25, 3.5 (circular), 3.0 × 3.0 (square)
  • Wall Thickness (t) (in): 0.23, 0.055 (circular), 0.132 (square)
  • Diameter/thickness (D/t): 15.2, 59.1 (circular), 22.6-22.9 (square)

Hot-finish mild seamless (cir), welded (sq) Fy= 58, 70 ksi (cir), 47 ksi (square)

No cylinder test done (avg. max stress = 5.925)
Neogi, Sen, and Chapman 1969
  • ◌: diam. (D) □: depth (D) x width: C: 5.0; (circular), M: 5.5, 6.625 (circular)
  • Wall Thickness (t) (in): 0.064-0.384
  • Diameter/thickness (D/t): 14.4-78.1
Seamless M: mild, hot-finish, gr.16; C: cold-drawn

Fy= 25.0-40.4 ksi

fcu= 4.64-12.10 ksi
Knowles and Park 1970
  • ◌: diam. (D) □: depth (D) x width: 1.0-14.0 (circular) 4 × 4, 5 × 5 (square)
  • Wall Thickness (t) (in): 0.035-0.502
  • Diameter/thickness (D/t): N.A.
N. A.

Fy= 36.9-87.8 ksi

f'c= 2.94-9.60 ksi
Bridge 1976
  • ◌: diam. (D) □: depth (D) x width: 5.91 × 5.91, 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.256, 0.394
  • Diameter/thickness (D/t): 20.0, 23.1
N.A.

Fy= 36.8-46.3 ksi

f'c= 4.38-5.48 ksi
Kitada, Yoshida, and Nakai 1987
  • ◌: diam. (D) □: depth (D) x width: 4.5 (circular)
  • Wall Thickness (t) (in): 0.118, 0.177, 0.197
  • Diameter/thickness (D/t): 22.9, 25.4, 38.1
Welded seam & seamless

Fy= 40.5-52.6 ksi

f'c= 2.50, 4.96 ksi
Zhong and Miao 1988
  • ◌: diam. (D) □: depth (D) x width: 4.27 (circular)
  • Wall Thickness (t) (in): N.A.
  • Diameter/thickness (D/t): N.A.
N.A. Stress determined analytically f'c= 4.35, 5.80
Liu and Geol 1988
  • ◌: diam. (D) □: depth (D) x width: 6 × 3, 4 × 2 (rectangular)
  • Wall Thickness (t) (in): 0.188, 0.125, 0.25
  • Diameter/thickness (D/t): 14, 30
A500 gr. B, coldformed

Fy= 54, 60 ksi

f'c= 4, 6, 8 ksi
Kawano and Matsui 1988
  • ◌: diam. (D) □: depth (D) x width: 2.38 (circular)
  • Wall Thickness (t) (in): 0.091
  • Diameter/thickness (D/t): 26.3
Cold-formed, mild steel

Fy= 48.5 ksi

f'c= 4.75, 4.98, 5.08 ksi
Matsui and Kawano 1988
  • ◌: diam. (D) □: depth (D) x width: 2.39 (circular)
  • Wall Thickness (t) (in): 0.083
  • Diameter/thickness (D/t): 28.9
Cold-formed, mild steel

Fy= 48.5 ksi

f'c= 4.98
Shakir-Khalil and Zeghiche 1989
  • ◌: diam. (D) □: depth (D) x width: 4.72 × 3.15 (rectangular)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): major axis: 24, minor axis: 16
Rolled, grade 43

Fy= 49.8-56.0 ksi

fcu= 5.80-6.53
Cederwall, Engstrom, and Grauers 1990
  • ◌: diam. (D) □: depth (D) x width: 4.72 × 4.72 (square)
  • Wall Thickness (t) (in): 0.197, 0.315
  • Diameter/thickness (D/t): 15, 24
N.A.

Fy= 44.1-63.7 ksi

f'c= 5.65-14.90 ksi
Shakir-Khalil and Mouli 1990
  • ◌: diam. (D) □: depth (D) x width: 5.91 × 3.94, 4.72 × 3.15 (rectangular)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): maj. axis: 24, 30, minor axis: 16, 20
Rolled, grade 43

Fy= 49.3-52.6 ksi

fcu= 5.18-5.87
Cai 1991
  • ◌: diam. (D) □: depth (D) x width: 6.5 (circular)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): 33.2
N.A.

Fy= 40.2-45.5 ksi

f'c= 5.05, 7.45 ksi
Luksha and Nesterovich 1991
  • ◌: diam. (D) □: depth (D) x width: 6.25-40.15 (circular)
  • Wall Thickness (t) (in): 0.20-0.52
  • Diameter/thickness (D/t): 31.4-105.8
Electronically welded

Fy= 42.3-56.8 ksi

f'c= 2.18-6.67 ksi
Masuo et al. 1991
  • ◌: diam. (D) □: depth (D) x width: 7.51, 10.53 (circular)
  • Wall Thickness (t) (in): 0.236, 0.276
  • Diameter/thickness (D/t): 32, 38
Cold-formed

Fy= 73.3, 66.8 ksi

f'c= Light: 8.11 ksi Normal: 7.01 ksi
Nakai, Kurita, and Ichinose 1991
  • ◌: diam. (D) □: depth (D) x width: 6.5 (circular)
  • Wall Thickness (t) (in): 0.0, 0.177, 0.197
  • Diameter/thickness (D/t): 33.0, 36.7
N.A.

Fy= 60.7, 63.9 ksi

f'c= 4.04 ksi
Sakino and Hayashi 1991
  • ◌: diam. (D) □: depth (D) x width: 6.85, 7.00, 7.05 (circular)
  • Wall Thickness (t) (in): 0.118, 0.217, 0.354
  • Diameter/thickness (D/t): 20, 32, 58
Annealed

Fy= 36.0, 38.6, 41.1 ksi

f'c= 3.21, 3.47, 6.33, 6.59 ksi
Tsuji, Nakashima, and Morita 1991
  • ◌: diam. (D) □: depth (D) x width: 4.5 (circular)
  • Wall Thickness (t) (in): 0.138, 0.177
  • Diameter/thickness (D/t): 25.4, 32.7
Mild steel

Fy= 49.2, 50.8 ksi

f'c= 4.84 ksi
Rangan and Joyce 1992
  • ◌: diam. (D) □: depth (D) x width: 4 (circular)
  • Wall Thickness (t) (in): 0.063
  • Diameter/thickness (D/t): 64
N.A.

Fy= 31.6 ksi

f'c= 9.77 ksi
Bridge and Webb 1993
  • ◌: diam. (D) □: depth (D) x width: 9.8 (circular)
  • Wall Thickness (t) (in): 0.079
  • Diameter/thickness (D/t): 124
N.A.

Fy= 37.7 ksi

f'c= 8.63 ksi
Matsui, Tsuda, and El Din 1993
  • ◌: diam. (D) □: depth (D) x width: 6.12 × 6.12 (square)
  • Wall Thickness (t) (in): 0.177
  • Diameter/thickness (D/t): 33.3
Cold-formed from mild steel plate

Fy= 66

f'c= 4.6-5.0 ksi
Tsuda, Matsui, and Mino 1996
  • ◌: diam. (D) □: depth (D) x width: 6.51 (circular), 5.91 × 5.91 (square)
  • Wall Thickness (t) (in): 0.161 (circular), 0.168 (square)
  • Diameter/thickness (D/t): 40.4, 35.2
Mild steel; STK400 (circular), STKR400 (square)

Fy= 51.2 ksi (circular), 59.8 ksi (square)

f'c= 4.62 ksi(circular), 5.93 ksi(square)
Kawano and Matsui 1997
  • ◌: diam. (D) □: depth (D) x width: 2.38, 4.00 (circular)
  • Wall Thickness (t) (in): 0.043-0.214
  • Diameter/thickness (D/t): 18.6-53.1
Cold-formed STK400

Fy= 44.8-61.2 ksi

f'c= 4.37, 6.69 ksi
Kilpatrick and Rangan 1997
  • ◌: diam. (D) □: depth (D) x width: 4 (circular)
  • Wall Thickness (t) (in): 0.094
  • Diameter/thickness (D/t): 42.3
Cold-formed

Fy= 59.5

f'c= 13.92
Bergmann 1994
  • ◌: diam. (D) □: depth (D) x width: Circ: 12.75, 20, Sqaure: 7, 10.25
  • Wall Thickness (t) (in): Circ: 0.22, 0.25, Square: 0.25, 0.28
  • Diameter/thickness (D/t): Circ: 58, 80, Square: 28, 36.6
Fy= 51 ksi (most specimens) 34 ksi (one specimen) f'c= 13.4 ksi
O'shea and Bridge 1997a
  • ◌: diam. (D) □: depth (D) x width: 6.50, 7.48 (circular)
  • Wall Thickness (t) (in): 0.034-0.111
  • Diameter/thickness (D/t): 58.5-220.9
Cold-rolled, Hot-rolled, Cold-drawn

Fy= 26.9, 29.5, 30.6 ksi(Cold-rolled) 37.2, 44.4 ksi(Hot-rolled) 52.7 ksi(Cold-drawn)

f'c= 6.89 ksi
O'shea and Bridge 1997b
  • ◌: diam. (D) □: depth (D) x width: 3.15 × 3.15, 4.72 × 4.72, 6.30 × 6.30, 7.87 × 7.87, 9.45 × 9.45, 11.02 × 11.02 (square)
  • Wall Thickness (t) (in): 0.084
  • Diameter/thickness (D/t): 37.3-130.7
Mild steel plate

Fy= 40.9 ksi

f'c= 2.41-3.13 ksi
O'shea and Bridge 1997c
  • ◌: diam. (D) □: depth (D) x width: 6.50, 7.48 (circular)
  • Wall Thickness (t) (in): 0.034-0.111
  • Diameter/thickness (D/t): 58.5-220.9
Cold-rolled, Hot-rolled, Cold-drawn

Fy= 26.9, 30.7 ksi(Cold-rolled), 37.2, 44.4(Hot-rolled) 52.7 (Cold-drawn)

f'c= 5.54-11.63 ksi
O'shea and Bridge 1997d
  • ◌: diam. (D) □: depth (D) x width: 6.50, 7.48 (circular)
  • Wall Thickness (t) (in): 0.034-0.111
  • Diameter/thickness (D/t): 58.5-220.9
Cold-rolled, Hot-rolled, Cold-drawn

Fy= 26.9, 30.6 ksi (Cold-rolled) 37.2, 44.4 ksi (Hot-rolled) 52.7 ksi (Cold-drawn)

f'c= 11.18-16.00 ksi
Shakir Khalil and Al-Rawdan 1997
  • ◌: diam. (D) □: depth (D) x width: 5.91 × 3.94 (rectangular)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): major axis: 30 minor axis: 20
Rolled, grade 43

Fy= 48.0-53.4 ksi

f'c= 5.42-6.16 ksi
Schneider 1998
  • ◌: diam. (D) □: depth (D) x width: 5.51 (circular) 5.00 × 5.00 (square) 5.98 × 2.99 , 5.98 × 4.02 (rectangular)
  • Wall Thickness (t) (in): 0.118-0.294
  • Diameter/thickness (D/t): 17.0-50.8
Cold-formed

Fy= 41.3-77.9 ksi

f'c= 3.45, 4.42 ksi
Han and Yan 2000
  • ◌: diam. (D) □: depth (D) x width: 4.25 (circular)
  • Wall Thickness (t) (in): 0.177
  • Diameter/thickness (D/t): 24
N.A.

Fy= 50.5 ksi

fcu= 4.61,6.79
Zhang and Zhou 2000
  • ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
  • Wall Thickness (t) (in): 0.079-0.197
  • Diameter/thickness (D/t): 20-50
N.A.

Fy= 34.8-58.5 ksi

fcu= 5.87
Han and Yan 2001
  • ◌: diam. (D) □: depth (D) x width: 4.72 × 4.72, 5.51 × 5.51, 7.87 × 7.87 (square)
  • Wall Thickness (t) (in): 0.151, 0.231
  • Diameter/thickness (D/t): 20.5-36.5
N.A.

Fy= 46.6, 47.9 ksi

f'c= 1.54-5.31 ksi
Johansson and Gylltoft 2002
  • ◌: diam. (D) □: depth (D) x width: 6.25
  • Wall Thickness (t) (in): 0.189
  • Diameter/thickness (D/t): 33.1
Fy= 62.8 ksi f'c= 9.35 ksi
Ghannam, Jawad, and Hunaiti 2004
  • ◌: diam. (D) □: depth (D) x width: 7.87 × 3.94, 5.51 × 5.51, 5.90 × 3.54, 3.94 × 3.94, 6.50, 4.33
  • Wall Thickness (t) (in): 0.075-0.197
  • Diameter/thickness (D/t): 20-57.9
Fy= 34.8-53.1 ksi f'c= 4.84 ksi (normal wt) 1.45 ksi (lightweight)
Giakoumelis and Lam 2004
  • ◌: diam. (D) □: depth (D) x width: 4.49
  • Wall Thickness (t) (in): 0.148-0.198
  • Diameter/thickness (D/t): 22.9-30.5
Fy= 49.7-52.9 ksi f'c= 4.5-15.2 ksi
Gupta, Sarda, and Kumar 2007
  • ◌: diam. (D) □: depth (D) x width: 1.86, 3.51, 4.43 (circular)
  • Wall Thickness (t) (in): 0.07, 0.11, 0.11
  • Diameter/thickness (D/t): 25.283, 32.598, 38.948
Fy= 4.35, 5.80 ksi f'c= 52.2 ksi
Guo et al. 2007
  • ◌: diam. (D) □: depth (D) x width: 3.14-7.88
  • Wall Thickness (t) (in): 0.063
  • Diameter/thickness (D/t): 50-125
Two L shaped plates welded to form square

Fy= 40.6 ksi

f'c= 5.6 ksi
Uy 2008
  • ◌: diam. (D) □: depth (D) x width: 3.94 (SS), 4.3 (HPS)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): 20 (SS), 21.8 (HPS)
Fy= 65 ksi (HPS), 32 ksi (SS) f'c= N.A.
Liew and Xiong 2009
  • ◌: diam. (D) □: depth (D) x width: 8.62
  • Wall Thickness (t) (in): .25
  • Diameter/thickness (D/t): 34.5
Hot-rolled circular tubes

Fy= 57.0, 58.7 ksi

f'c= 5.1-16.1 ksi
Han and Li 2010
  • ◌: diam. (D) □: depth (D) x width: 5.9-9.05 (circular)
  • Wall Thickness (t) (in): .22
  • Diameter/thickness (D/t): 26.14-41.14

Fy= 40.03-68.95 ksi

f'c= 5.18-8.122 ksi
Han, He and Liao 2011
  • ◌: diam. (D) □: depth (D) x width: 5.1, 5.5 (circular)
  • Wall Thickness (t) (in): .15, .197
  • Diameter/thickness (D/t): 25.89-36.67

Fy= 48.2, 49.6 ksi

fcu= 8.8, 10.7 ksi
Han, Li and Liao 2011
  • ◌: diam. (D) □: depth (D) x width: 4.72 (circular)
  • Wall Thickness (t) (in): .08
  • Diameter/thickness (D/t): 59

Fy= 45.12 ksi

fcu= 9.63 ksi
Liao, Han and He 2011
  • ◌: diam. (D) □: depth (D) x width: 7.09 (circular)
  • Wall Thickness (t) (in): .15
  • Diameter/thickness (D/t): 47.27

Fy= 52.21 ksi

fcu= 9.30 ksi
Uy, Tao and Han 2011
  • ◌: diam. (D) □: depth (D) x width: 2-8 (circular), 2x2, 3.94x3.84, 3.98x3.98, 5.98x5.98 (square)
  • Wall Thickness (t) (in): .05-.2
  • Diameter/thickness (D/t): .70-4
Type 304 austenitic stainless steel

Fy= N.A.

f'c= 1.74-10.94 ksi
Li, Han and Zhao 2012
  • ◌: diam. (D) □: depth (D) x width: 15.47 (circular), 15.47x15.47 (square)
  • Wall Thickness (t) (in): .366, .685
  • Diameter/thickness (D/t): 22.58, 42.27
Fy= .92-50.03 ksi f'c= 7.40 ksi
Wang, Han and Hou 2013
  • ◌: diam. (D) □: depth (D) x width: 4.48 (circular)
  • Wall Thickness (t) (in): .063-.138
  • Diameter/thickness (D/t): 32.46- 71.11

Fy= 33.65-43.22 ksi

fcu= 7.06 ksi
Han, Hou, Zhao, and Rasmussen 2014
  • ◌: diam. (D) □: depth (D) x width: 7.09 (circular), 7.09x7.09 (square)
  • Wall Thickness (t) (in): .14
  • Diameter/thickness (D/t): 50.64

Fy= 35.8 ksi

fcu= 7.06 ksi