Table of Experimental Studies on CFT Connection Tests

From Composite Systems
Revision as of 19:38, 26 March 2013 by Bbeck (talk | contribs) (Specimen Information)
Jump to: navigation, search

General Information

Reference Experiment Synopsis Number of Tests Loading Method Results Reported Main Parameters Comments
Dunberry, LeBlanc, and Redwood 1987 Axial loading of square stub columns through shear connections 18 CFTs Axial load applied at the top and at the connection simultaneously
  • P vs. εs, εconcr
  • L vs. ds (slip)
  • L vs. Pc, Ps
  • θc vs. P
  • Connection detail
  • Connection load/total axial load
  • D/t
  • End conditions (capped, uncapped)
Kamba, Kanatani, and Tabuchi 1991 Shear tests of through diaphragm connections to square CFT and HT columns
  • 5 CFTs
  • 5 HTs
Shear couples acting on the diaphragm plates
  • σ-ε relations for steel
  • Vu, Vy, Ko
  • Vcu, Vcy, Kco
  • V vs. γ
  • τc vs. γ
  • D/t (column and panel zone)
  • CFT vs. HT
  • Annealing of steel tube
Prion and McLellan 1992 Through-bolt connections between steel wide-flange girders and CFTs 8 CFTs Tension pull-out and compression pull-in tests
  • Concrete and steel stress-strain relationships
  • Bolt slip-load and load-strain relationships
Post-tensioning of the bolts in the connection
Azizinamini and Prakash 1992 Pass-through girder with internal stiffeners 1 CFT Shear forces were applied to the girder ends in opposite directions N.A. N.A.
Shakir-Khalil and Al-Rawdan 1995, 1996 Full-scale simple interior beam-to-column connections of circular and square CFTs 28 CFTs
  • Symm. loading of the beams and axial loading of the column, simult.
  • Beam-to-column load ratios were 1:8 or 1:5
  • M vs. θc
  • Ko, Pu
  • P vs. εs
  • Fin-plate vs. tee cleat
  • D
  • t
  • Shear connector
  • Beam load to column load ratio
  • Eccentricity of beam load
Shakir-Khalil and Al-Rawdan 1995, 1996 Monotonic tests for full-scale simple exterior beam-to-column connections of square CFTs 4 CFTs
  • Eccentric loading of the beam and axial loading of the column, simult.
  • Beam-to-column load ratios were 1:8 or 1:5
  • M vs. θc
  • Ko, Pu
  • Longitudinal strain distribution along the column length
  • Beam load to column ratio
  • Eccentricity of beam load
Shakir-Khalil and Al-Rawdan 1995, 1996 Monotonic test for full-scale simple interior beam-to-column connections of square CFTs 4 CFTs
  • Symm. loading of the beams and axial loading of the column, simult.
  • Beam-to-column ratios were 1:3, 1:5 or 1:8
  • M vs. θc
  • Ko, Pu
  • P vs. in-plane displacement along the column length
  • Beam load-to-column load ratio
  • Eccentricity of beam load
Kawano and Matsui 1997

Kawano and Matsui 1997 II

Simple tension tests on CFT and HT connections and cyclic tests on cruciform frames including both CFTs and HTs
  • 6 CFTs, 9 HTs (simple tension)
  • 9 CFTs, 11 HTs (cruciform frame)
  • Tensile loading until fracture through flanges (smpl. tension test)
  • Constant axial load on the columns and cyclic shear force at the girder ends (cruciform frames)
  • Pu, Pa, Pu/Pa
  • Vu/Vc
  • V vs. R
  • CFT vs. HT
  • Connection type
  • Size of diaphragm and vertical stiffener
Schneider and Alostaz 1998 Cyclic testing of 2/3 scale beam-to-column connections of circular CFTs 6 CFTs Constant axial load on to the column and cyclic shear load at the girder end M vs. θ, Mc Connection details
France, Davison, and Kirby 1999 Cyclic and monotonic loading of beam-to-column flow-drill connections of square CFTs and HTs
  • 20 HTs
  • 6 CFTs
Monotonic or cyclic shear force applied at the girder tips with either constant or no axial load acting on the columns M vs. θ, Mu, θu
  • CFT vs. HT
  • Connection type (simple or fully restrained)
  • Beam size
  • t
  • P
  • Bolt spacing
  • Endplate type
  • fy
Cheng, Hwang, and Chung 2000 Cyclic loading of beam-to-column connections of circular CFTs
  • 3 CFTs
  • 3 HTs
Constant axial load on the columns and cyclic shear load at the girder ends
  • V vs. girder-end deflection
  • Contribution of girder, column, and panel zone to the total deformation
  • CFT vs. HT
  • D/t
  • Connection type
Elremaily and Azizinamini 2001 Loading of through beam connection specimens representing interior joints 7 CFTs Constant axial load on the columns and equal and opposite vertical loads on the beam ends
  • Load vs. Drift
  • Load vs. Shear Strain
  • Load vs. Joint Distortion
  • Beam-to-column flexural capacity ratio
  • Type of weld
  • Connection type
Kingsley et al. 2005 Performance and constructability of embedded-type CFT column-concrete footing connection with slender tubes of high-performance vanadium-alloy steel
  • 3 CFTs
Constant axial load on the columns and cyclic lateral load at the top of the column
  • Drift Ratio vs. Horizontal Load
  • Drift Ratio vs. Column Base Moment
  • Embedment Depth
  • Vertical Reinforcement in Footing
  • f'c
  • Flange Dimensions
Cheng, Chan, and Chung 2007 Seismic performance of four steel beam to CFT column connection with floor slabs
  • 4 CFTs
Constant axial load on the columns and cyclic shear load at each beam tip
  • Load vs. Displacement
  • Load vs. Rotation
  • Connection Type
Nie, Bai, and Cai 2008 Cyclic loading connections between CFT columns and reinforced concrete beam
  • 3 cyclic interior column connection tests
  • 3 cyclic corner column connection tests
Constant axial load on the columns and cyclic shear load at the girder ends Load displacement plots for all 6 specimens Confinement in the connection region
Lee, Kim, and Song 2008 CFT column to reinforced concrete flat plate connections subjected to gravity loading
  • 8 CFT Columns to reinforced concrete flat plate connections
Monotonic downward vertical loading
  • Failure Mode
  • Vertical Load vs. Downward Displacement
  • Connection Type
  • Anchorage Type
  • Shear Key Type
  • Post-Punching Bars
Nie, Qin, and Cai 2008 CFT column to reinforced concrete flat plate connections subjected to gravity loading Seismic behavior of connections composed of concrete-filled square steel tubular columns and steel-concrete composite beams

14 Cruciform Connection Specimens

Axial load on top of column and cyclic loading at ends
  • Strength
  • Deformation
  • Energy Dissipation
  • P vs. &delta
  • Interior Diaphragms
  • Exterior Diaphragms
  • Anchor Studs
Lehman and Roeder 2012 Seismic performance of four steel beam to CFT column connection with floor slabs
  • 19 CFTs
Constant axial load on the columns and cyclic lateral load at the top of the column
  • Drift Ratio vs. Cycle
  • Load vs. Displacement
  • Load vs. Rotation
  • Connection Type
  • Load
  • Embedment Depth
  • Load History
  • Fy

Specimen Information

Reference Beam Information Connection Information (Plate and Stiffener) End Conditions
Dunberry, LeBlanc, and Redwood 1987 N.A
  • Standard tee: 14.2 x (0.31 or 0.47) gusset plate
  • Extended tee: 22.83 x 0.31 gusset plate
  • Shortened tee: 8.66 x 0.31 gusset plate
  • Single plate had only web without gusset plate
N.A.
Kamba, Kanatani, and Tabuchi 1991 N.A Through diaphragm plates manufactured from PL25 Pinned-pinned (column)
Prion and McLellan 1992 N.A N.A. N.A.
Azizinamini and Prakash 1992 W30 x 99 Four #11 reinforcing bars with 4 x 2 x 1 in. plates welded to the ends were attached to the girder inside the CFT N.A.
Shakir-Khalil and Al-Rawdan 1995, 1996 406 x 178 x 67 UB
  • 10.24 or 14.17 in. long and 3.94 x 0.39 in. fin-plates
  • 14.17 in. long tee cleats manufactured from 305 x 127 x 48 UB type beam
  • 0.146 in. diameter 2.44 in. long Hilti nails
Pinned-pinned (column)
Shakir-Khalil and Al-Rawdan 1995, 1996 406 x 178 x 67 UB 14.17 in. long tee cleats manufactured from 305 x 127 x 48 UB type beam Pinned-pinned (column)
Shakir-Khalil and Al-Rawdan 1995, 1996 406 x 178 x 67 UB 14.17 in. long tee cleats manufactured from 305 x 127 x 48 UB type beam Pinned-pinned (column)
Kawano and Matsui 1997

Kawano and Matsui 1997 II

  • 0.177 in. flange (smpl. tension)
  • Fy=44.9 (smpl. tension)
  • H200x100x3.2x4.5, H250x1000x6.0x6.0 (cruciform frame)
  • Fy=43.11-55.35 (cruciform frame)
0.177 in. thick external diaphragms and vertical stiffeners manufactured from SS400 plates Pinned-pinned (columns in cruciform frames)
Schneider and Alostaz 1998
  • W14 x 38
  • Girder Fy=44.3 (flange), 52.0 (web)
  • Connection Stub Fy=48.2 (flange), 39.4 (web)
  • Connection stub with flared flange
  • Connection stub web and/or flange continued into the column
  • External diaphragm plate
  • Deformed bars welded to the connection stub flange
Roller at the top and pinned at the bottom (column)
France, Davison, and Kirby 1999
  • 457 x 152 x 52 UB
  • 356 x 171 x 45 UB
  • 254 x 146 x 31 UB
  • Grade 43
  • Partial depth end plate (smaller than the beam sections)
  • Flush end plate (same size with the girder section)
  • Extended end plate (larger size than the girder section)
Pinned-pinned with fully-restraint or simple beam-to-column connections at the middle
Cheng, Hwang, and Chung 2000
  • H-600 x 200 x 11 x 17
  • Fy=44.67 (flange), 47.57 (web)
  • Through diaphragm plates with 3.94 in. opening at the middle
  • External diaphragms
Pinned-pinned (column)
Elremaily and Azizinamini 2001
  • 12 in. Diam. CFT Columns
  • 16 in. Diam. CFT Columns
  • Fillet welds with hollow panel zone
  • Full penetration and fillet welds with rebar with joint
  • Web plate in joint zone
Pinned-pinned (column)
Kingsley et al. 2005
  • 20 in. Diam. CFT Columns
  • Embedded Annular Ring
  • Cantilever Column
Cheng, Chan, and Chung 2007
  • 350 x 350 x 9 mm CFT Columns
  • H450 x 200 x 9 x 14 mm Composite beams
  • Web-through design of a continuous shear tab passing through the panel zone of the connection and applied shear studs on the inner tube wall with two shear-tabs on the outer tube wall to sandwich the beam web were compared
  • 2 Cruciform Shape
  • 2 Tee Shape
  • Pinned-pinned (column)
Nie, Bai, and Cai 2008 Reinforced Concrete Through-beam connection Cruciform, pinned-pinned (column)
Lee, Kim, and Song 2008 CFT Column Flat Plate Connection Cantilever Column
Nie, Qin, and Cai 2008 H-Shape built-up sections Vertical Stiffeners Cantilever Column
Lehman and Roeder 2012
  • 20 in. Diam. CFT Columns
  • 30 in. Diam. CFT Columns
  • Embedded Monolithic
  • Embedded Recessed
  • Cantilever Column

Cross Section Information

Reference Tube Dimensions Steel Properties Concrete Properties
Dunberry, LeBlanc, and Redwood 1987
  • ◌: diam. (D) □: depth (D) x width: 4.0-8.0 (square)
  • Wall Thickness (t) (in): 0.187-0.249
  • Diameter/thickness (D/t): 20.8-37.1
Class H Grade 50W

Fy = 51.3-64.3 ksi

f'c = 2.25-4.29 ksi
Kamba, Kanatani, and Tabuchi 1991
  • ◌: diam. (D) □: depth (D) x width: 8.52 x 8.52 (square)
  • Wall Thickness (t) (in): 0.177-0.315 (panel zone-web & flange) 0.315, 0.500 (column-web & flange)
  • Diameter/thickness (D/t): 27, 36, 48 (panel zone) 17, 27 (column)
STK400

Fy = 48.4, 52.6 ksi (annealed) 54.07-56.92 ksi (cold-formed)

f'c = 3.37, 3.56 ksi
Prion and McLellan 1992
  • ◌: diam. (D) □: depth (D) x width: 12 x 12, 8 x 8 (square)
  • Wall Thickness (t) (in): 0.472
  • Diameter/thickness (D/t): 25
Fy = 50.8 ksi f'c = 6.53 ksi
Azizinamini and Prakash 1992
  • ◌: diam. (D) □: depth (D) x width: 24 x 24 (square)
  • Wall Thickness (t) (in): 0.5
  • Diameter/thickness (D/t): 48
Fy = 36.1 ksi f'c = 14.07 ksi
Shakir-Khalil and Al-Rawdan 1995, 1996
  • ◌: diam. (D) □: depth (D) x width: 6.63, 8.63 (circular) 5.91 x 5.91, 7.87 x 7.87 (square)
  • Wall Thickness (t) (in): 0.197, 0.248
  • Diameter/thickness (D/t): 30.0-34.8
Fy = 44.0-60.2 ksi f'c = 4.25-5.90 ksi
Shakir-Khalil and Al-Rawdan 1995, 1996
  • ◌: diam. (D) □: depth (D) x width: 5.91 x 5.91 (square)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): 30
Fy = 47.9, 48.2 ksi f'c = 4.54-4.90 ksi
Shakir-Khalil and Al-Rawdan 1995, 1996
  • ◌: diam. (D) □: depth (D) x width: 5.91 x 5.91 (square)
  • Wall Thickness (t) (in): 0.197
  • Diameter/thickness (D/t): 30
Fy = 49.3, 49.8 ksi f'c = 4.29-4.84 ksi
Kawano and Matsui 1997

Kawano and Matsui 1997 II

  • ◌: diam. (D) □: depth (D) x width: 5.91 x 5.91 (square)
  • Wall Thickness (t) (in): 0.177 (simple tension) 0.166, 0.171 (cruciform frame)
  • Diameter/thickness (D/t): 33.3 (simple tension) 34.5, 35.5 (cruciform frame)
Cold formed STKR400

Fy = 62.8 ksi

f'c = 4.97, 5.19 ksi
Schneider and Alostaz 1998
  • ◌: diam. (D) □: depth (D) x width: 14 (circular)
  • Wall Thickness (t) (in): 0.269
  • Diameter/thickness (D/t): 52.0
Fy = 57.5 ksi f'c = 7.8-8.2 ksi
France, Davison, and Kirby 1999
  • ◌: diam. (D) □: depth (D) x width: 29 x 29 (square)
  • Wall Thickness (t) (in): 0.248-0.492
  • Diameter/thickness (D/t): 31.8-9.7
Hot-rolled Grade 43

Fy = 44.5-61.9 ksi

f'c = 6.29-7.32 ksi
Cheng, Hwang, and Chung 2000
  • ◌: diam. (D) □: depth (D) x width: 15.75 (square)
  • Wall Thickness (t) (in): 0.236, 0.394
  • Diameter/thickness (D/t): 40, 66.7
Cold-formed

Fy = 45.5, 56.9 ksi

f'c = 3.77, 3.92 ksi
Elremaily and Azizinamini 2001
  • ◌: diam. (D) □: depth (D) x width: 12, 16 (circular)
  • Wall Thickness (t) (in): 0.252, 0.374
  • Diameter/thickness (D/t): 32, 47, 63
Fy = 53.8, 54.2, 64.3 ksi f'c = 4.7-6.03 ksi
Kingsley et al. 2005
  • ◌: diam. (D) □: depth (D) x width: 20 (circular)
  • Wall Thickness (t) (in): 0.25
  • Diameter/thickness (D/t): 80
Fy = 76.3 ksi f'c = 10-11 ksi
Cheng, Chan, and Chung 2007
  • ◌: diam. (D) □: depth (D) x width: 13.8 (square)
  • Wall Thickness (t) (in): 0.354
  • Diameter/thickness (D/t): 39
Fy = 67 ksi f'c = 3.55 (columns), 2.2 (floor) ksi
Nie, Bai, and Cai 2008 Square cross section with embedded circular concrete filled steel tube Fy = 45, 49 ksi f'c = 4.3-6.2 ksi
Lehman and Roeder 2012
  • ◌: diam. (D) □: depth (D) x width: 15.75 (square)
  • Wall Thickness (t) (in): 1.575, 0.787
  • Diameter/thickness (D/t): 10, 13.7
Fy = 42.9-93.4 ksi f'c = 2.48-4.20 ksi
Lehman and Roeder 2012
  • ◌: diam. (D) □: depth (D) x width: 20, 30 (circular)
  • Wall Thickness (t) (in): 0.25, 0.252
  • Diameter/thickness (D/t): 80, 119
Fy = 49-75 ksi f'c = 7.83-11.89 ksi