Reference
|
Experiment Synopsis
|
Number of Tests
|
Loading Method
|
Results Reported
|
Main Parameters
|
Comments
|
Furlong 1967
|
Ultimate strength of CFT bm-cols. (experimental vs. theoretical)
|
52 CFTs (13 col, 39 bmcol)
|
- Axial load applied incrementally
- Eccentric load applied via hydraulic ram and yokes attached to each end of col.
- Single curvature
|
- P vs. ε, P vs. εconcr (cols)
- Po, Pu (cols)
- Pu/Po vs. Mu/Mo (other test plotted also) (bm-cols)
|
|
- Variety of results
- Detailed graphs
|
Furlong 1968
|
Design of CFT bmcols; previous exps. examined
|
28 CFTs (col) (tests by others tabulated); also includes 52 CFTs from Furlong, '67
|
N.A.
|
- σ vs. ε, exp vs. calc stiffness
- P vs. ε
- M vs. φ (bonded, unb.)
- Po, Pu
- Analytical interaction diags.
|
- Based on tests by other authors
- Bond
- Residual stress
|
Analytical formulas presented and discussed
|
Tomii and Sakino 1979 a & b
|
Examination of M-P-φ relationship for square CFTs
|
- 28 CFTs (bmcol)
- 8 CFTs (col)
|
- Axial load applied first
- Moment applied incr. via jacks at ends
- Beam-col. restrained at 3rd pts, inducing bending
|
- P vs. ε (D/t varied)
- M vs. φ (D/t, P varied)
- Pu/Po vs. Mu/Mo curves
|
|
- Several detailed curves
- Expansive cement used
|
Tomii and Sakino 1979 c
|
Shear behavior of square CFTs
|
40 CFTs (bmcol)
|
- Axial load
- Transverse shear force applied at ends
|
- V vs. R (P/Po, a/D, D/t varied)
- Po, Mu, Vmax
- P/Po vs. Mu/Mo
- φ, γ along length
|
|
- Very detailed V-R curves
- Expansive cement used
|
Sakino and Tomii 1981
|
Hysteretic behavior of beam-columns failing in flexure
|
15 CFTs (bmcol)
|
- Axial load
- Transverse cyclic shear force applied at ends (3 cycles at increments of R=0.5%)
|
- V vs. R hysteresis loops (P/Po/sub>, a/D, D/t varied)
- V/Vmax vs. R (P/Po varied)
- P vs. Mu
|
|
- Very detailed V-R hysteresis loops
- Expansive cement used
|
Sakino and Ishibashi 1985
|
Monotonic and hysteretic behavior of beam-columns failing in shear
|
21 CFTs (bmcol) (12 monotonic, 9 cyclic)
|
- Axial load
- Transverse shear force applied at ends (cyclic: 3 cycles at increments of R=0.5%)
|
- V vs. R (P/Po, a/D, D/t varied)
- V vs. R hysteresis loops (P/Po, a/D, D/t varied)
- V/Vmax vs. R (P/Po varied)
- P/Po vs. V/Vmax (exp & calc)
|
|
- Very detailed V-R curves and hysteresis loops
- Expansive cement
|
Matsui and Tsuda 1987
|
Axial load & bending (cyclic & monotonic)
|
- 14 CFT (8 monotonic, 6 cyclic)
- 12 HT (mono.)
|
- Non-proportional
- Axial load applied, then lateral load at column top
|
- H vs. Δ (monotonic and cyclic)
- M/Mpc vs. θ/θpc
|
|
Excellent load-defl. curves
|
Cai 1988
|
7 test phases:
- 2 col (short, long)
- 5 bmcol (pure bending, applied ecc.-- single & double curvature, restrained cantilever)
|
- Phases 1-2: 93 CFTs (col)
- Phases 3-7: 80 CFTs (bmcol)
|
- No details of end conds.
- Phase 3: pure bending;
- Phases 4,5: single-curv;
- Phase 6: double-curv, ratio of eccs = -1/3, -1/2, -1;
- Phase 7: comb axial & latl.;
|
- Deflection curves (along length of col) for phase 6
- P vs ε (exp, theor.)
- Global strength reduction vs. L/D, e/concr. radius
- P-M interaction diagrams
|
|
- Limited data --refers to previous Chinese articles
- Primarily theoretical
|
Prion and Boehme 1989
|
- Axial, pure bending, & combination (cyclic & monotonic)
- Thin-walled CFTs w/ high-strength concr.
|
- 10 CFT (col)
- 5 CFT (bm)(1 cyclic)
- 11 CFT (bmcol)(9 monotonic, 2 cyclic)
|
- Cols: load conc(6), both(4)
- Bms: load applied at 2 pts.
- Bmcols: load at 2 pts (6 mono, 2 cycl), apply eccen. (3) through spherical bearings
|
- Pu/Po vs. avg. ε
- M vs. φ, Mu/Mo vs. φ
- Pu/Po vs. Mu/Mo
- Load ratios (exp., theor.)
|
|
- Emphasis on level of ductility achieved
- Compared w/ design codes
|
Konno, Kai, and Nagashima 1990
|
Cyclic loading of square CFT bmcols
|
19 CFTs (bmcol)
|
- Transverse load applied at midpt. of bmcol
- Const. axial load applied at member ends
|
|
|
Compared w/ proposed design equations.
|
Huang, Huang, and Zhong 1991
|
Cyclic, lateral loading of CFTs
|
46 CFTs (bmcol)
|
Lateral load applied via a frame fixed to top of beam
|
- H vs. δ
- Hysteretic loops (H vs. δ)
- Ductility ratio (2 spcms.)
- Absorbed energy (2 spcms.)
|
|
Monotonic and cyclic loading
|
Ichinohe et al. 1991
|
Monotonic & cyclic loading of CFTs w/ high-strength steel & concrete
|
- 20 CFTs (bmcol)
- 11 moment-curvature tests (M-φ plotted)
- 9 shear bending tests (M-R plotted)
|
- Both tests axially loaded
- M-φ test: loaded at 35.4 in. from each end, s-s beam
- Shear bending test: loaded at midpt; bmcol at load pt. considered fixed
|
- σ vs. ε (exp. & calc.)
- Biaxial stresses in tubes
- M vs. φ, M vs. R (monotonic, cyclic, exp. vs. theoretical)
|
- P/Po for given cyclical loading
- D/t
|
|
Sato, Saito, and Suzuki 1991
|
Reversed cyclic shear loading of circular CFTs
|
3 CFTs
|
- Axial load applied concentrically
- Lateral load applied transversely at bmcol midpt.
|
- R (max) vs. P/Po
- Hysteresis loops: V vs. R (1 circular and 1 square test)
- Pu vs. Mu
|
|
- Very detailed plots, but only for selected sections
|
Sugano, Nagashima, and Kei 1992
|
Cyclic loading of square and circular beam-columns
|
- 19 circular CFTs
- 20 square CFTs
|
- L-shaped load frame
- Lateral load applied to column top from frame
|
- σ vs. ε, -H vs. ε
- Hysteresis loops (H vs. δ) (deflection at column top)
- Pu deterioration (Pu vs. cyc.)
- Energy dissipation (hysteresis loop area vs. loading cycle
|
|
- Alternately repeated lateral load w/ constant axial load
- Failure: local buckling at base
|
Kawaguchi et al. 1993
|
Cyclic loading of cantilever CFT beam-columns
|
- 14 CFTs (bmcol)
- 12 HTs (bmcol)
|
N.A.
|
- σ vs. ε (stub col.'s)
- P vs. ε (HTs, conc., CFTs)
- M vs. φ (exp. vs. theory)
- M vs. slip
- N.A. movement vs. M
|
|
- Slip measured and reported
- Discussion of slip
- Pure bending behavior and discussion of rigidity
|
Lu and Kennedy 1994
|
Monotonic uniaxial loading (pure bending, simple supports) of rectangular CFTs
|
- 12 CFTs (bm)
- 5 HTs (bm)
- 5 HT stub col.
- 5 CFT stub col.
|
- Constant axial load, monotically increasing end moments
|
- M vs. φ
- Mu vs. Pu (interaction diagrams)
- P/Po, Mu
- Mu/Mpc vs. D/t
|
- D/t
- fy
- axial load ratio P/Po
- f’c
|
|
Sakino 1995
|
Monotonic loading of circular CFT beam-columns
|
28 CFTs (bmcol)
|
- Rigid rectangular frame
- Reversed cyclic loading applied to rigid stub welded to column at mid-height from frame
|
- σ vs. ε for varying ecc. dist.
- P vs. δ
- Eccentric distance (as calc. in paper) vs. δ
- V vs. R, P vs. R
|
P/Po for given cyclic loading
|
|
Fujimoto et al. 1996 & Inai et al. 2004
|
Cyclic load-deformation and ultimate strength of CFT beam-columns with variable axial load
|
- 13 Circular CFT
- 20 Square CFT
|
- Both constant and variable axial load on columns
- Lateral load applied on top CFT stub by hydraulic jack
|
- M vs. R (per conc. type)
- R vs. ε (per conc. type)
- Interaction diagrams (per conc. type) All graphs for both variable and constant axial load
|
- Tube shape
- fu
- f'c
- D/t
- P/Po
- loading angle (biaxial bending)
|
|
Tsuda, Matsui, and Mino 1996
|
Series II - Slender Cantilever CFT’s subjected to cyclic horizontal load while under constant axial load
|
- 10 Circular CFT’s
- 10 Square CFT’s
|
- Axial load: Applied by a testing machine and kept constant throughout
- Horiz. Load: A hydraulic jack kept the top of the col. fixed while the frame on which it was mounted moved side-to-side
|
- V vs. δ
- Mu vs. Pu (interaction diagrams)
|
- Axial load ratio P/Po
- Buckling length section depth ratio (Lk/D)
|
|
El-Remaily et al. 1997
|
Cyclic loading of circular CFTs w/ high strength concrete
|
4 CFTs (cyclic)
|
- Horizontally placed specimens
- Constant axial load and cyclically applied lateral load at the mid-height
- Displacement controlled loading
|
- H vs. δ (lat. defl.)
- H vs. δaxial
- Mu
|
- D/t
- Axial load ratio P/Po
- f'c
|
|
Zhang and Shahrooz 1997
|
Monotonic loading of square CFT beam-columns at a horizontal position
|
2 CFTs (bmcol)
|
Constant axial load, monotically increasing point loads applied at two points along the specimen length
|
- σ-ε relation for steel
- M vs. φ
- P vs. δ (vert. defl.at midspan)
- M vs. θ
- Strain distribution over depth
|
Axial load ratio P/Po
|
|
Nakahara and Sakino 1998
|
Monotonic loading of square hollow tubes and square CFTs w/ high strength concrete and steel
|
- 4 HT stub col.
- 4 CFT stub col.
- 10 CFTs (bmcol)
|
- Cols: Concentric loading
- Bmcols: Constant axial load, monotonically increasing end moments, curvature controlled loading
|
- P vs. εaxial
- M vs. φ
- Mu vs. Pu (interaction diagrams)
- Pu, Mu
|
- D/t
- fy
- axial load ratio P/Po
|
|
Nakahara and Sakino 2000a
Nakahara and Sakino 2000b
|
Monotonic and cyclic loading of square CFT bmcols
|
- 6 CFTs (bmcol) (monotonic)
- 5 CFTs (bmcol) (cyclic)
|
- Bmcols(m): Constant axial load, displacement controlled bending moment applied at the ends
- Bmcols(c): Constant axial load, curvature controlled bending moment applied at the ends
|
- σ-ε relations for steel & concr. (analytical)
- M vs. φ (experimental & analytical)
- φ vs. εaxial
|
- D/t
- axial load ratio P/Po
- deformation histories(m, c)
|
|
Varma et al. 2000, 2001, 2002, 2004
|
Monotonic and cyclic loading of square CFTs w/ high-strength steel & concrete
|
- 4 CFTs stub col.
- 8 CFTs (bmcol) (monotonic)
- 8 CFTs (bmcol) (cyclic)
|
- Cols: Concentric loading, force controlled until failure, displacement controlled after failure
- Bmcols (m): Constant axial load, monotically increasing end rotations
- Bmcols (c): Constant axial load, cyclically applied lateral load at the top
|
- σ-ε relations for stl. & conc.
- P vs. δaxial
- Pu, Mu
- M vs. φ & M vs. θ
- H vs. δ (lat. defl.)
- μ vs. D/t, fy , P/ Pu
- W vs. D/t, fy , P/ Pu
- EI / EIs vs δaxial / δy
- δaxial vs. δ ( lat. defl. )
- Mu vs. Pu (interaction diagrams)
|
- Axial load ratio P/Po
- D/t
- Type of steel
|
|
Elchalakani, Zhao, and Grzebieta 2001
|
Uniaxial flexural loading (pure bending) of circular CFT beams
|
12 CFTs
|
- Pure bending through applied rotation at both ends
- Bending was applied through coupling forces acting on the pinned points at each end
|
- Mu, Rmax, Rcm, θpc
- M vs. φ
|
|
|
Elremaily and Azizinamini 2002
|
Non-proportional cyclic loading of circular CFT beam-columns
|
6
|
- Axial load of 0.2 to 0.4 of the squash load applied
- Lateral load applied to middle portion which was confined by a rigid stub
|
- H vs. Δ
- Displacement Amplitude vs. Shortening
- EI vs. Ductility
|
|
|
Hsu and Yu 2003
|
Non-proportional cyclic loading of square CFT beam-columns with tie-rods
|
18
|
- Axial load of 0.1 to 0.3 of the squash load applied
- Lateral load applied to member top
|
- H vs. Δ
- H vs. drift ratio
- Strength deterioration vs. # tie layers
- EI vs. drift ratio
- H vs. cumulative energy
- Energy dissipation vs. b/t
|
- t
- P/Po
- tie layers
- rod diameter
|
|
Elchalakani, Zhao, and Grzebieta 2004
|
Constant amplitude cyclic flexural loading (pure bending) of circular CFT beams
|
23
|
- Constant amplitude cyclic pure bending
- Applied rotation at both ends
- Bending was applied through coupling forces acting on the pinned points at each end
|
- M vs. θ
- Mmax,i/Mmax,1 vs. #cycles
- Mu/MptH vs. slenderness
|
- Amplitude of cyclic load
- D/t
|
|
Fujimoto et al. 2004
|
Monotonic loading of short circular and square CFT beam columns
|
65
|
Three types:
- Two types with constant axial, increasing moment
- One type with constant eccentricity
|
|
- D
- t
- P/Po
- Section shape
- f′c
- Fy
|
|
Hardika and Gardner 2004
|
Non-proportional cyclic loading of square CFT beam-columns
|
24
|
- Axial load applied
- Lateral load applied to member top
- Member in either square or diagonal orientation
|
- H vs. Δ
- P/Po vs. M/Mo
- Strength capacity, ductility, flexural stiffness
|
|
|
Wheeler and Bridge 2004
|
Monotonic four point bending of circular CFT beams
|
|
- Four point bending
- 51 in. between support and loading point on either end
|
- M vs. Δmidspan
- M vs. concrete slip
|
D/t
f′c
|
|
Han and Yang 2005
|
Non-proportional cyclic loading of circular CFT beam columns
|
|
- Constant axial load
- Cyclic load applied at midheight through rigid stub
|
H vs. Δ
|
|
|
Elchalakani and Zhao 2008
|
Variable amplitude cyclic flexural loading (pure bending) of circular CFT beams
|
10 CFTs
|
- Variable amplitude cyclic pure bending
- Applied rotation at both ends
- Bending was applied through coupling forces acting on the pinned points at each end
|
- M vs. θ (also envelope compared to monotonic test)
- Mmax,i/MptH vs. #cycles
|
|
|
Gajalakshmi and Helena 2012
|
|
- Cyclic lateral load
- Constant axial load
|
- Load vs. Displacement
- Load vs. Drift Ratio
|
- D/t
- CFT and SCFT
- Variable amplitude loading
- Constant amplitude loading histories
|
|
Reference
|
Length (L)(in)
|
L/D
|
Eccentricity(in)
|
Residual Stresses(ksi)
|
End Conditions
|
Furlong 1967
|
Approx. 36.0
|
5.5-12.0
|
Constant for all tests
|
N.A.
|
- Pinned-pinned
- Spherical bearings
|
Furlong 1968
|
33.9-102
|
8.7-40.0
|
N.A.
|
Extensive stresses noted in plain tube tests
|
N.A.
|
Tomii and Sakino 1979 a & b
|
11.8
|
3.0
|
N.A.
|
Tubes annealed
|
- Pinned-pinned
- Knife-edge and spherical seat supports
|
Tomii and Sakino 1979 c
|
6.5-23.6
|
1.66-6.0 (a/D = 0.83-3.0)
|
N.A.
|
Tubes annealed
|
- Fixed-fixed (embed-ded in cross-beams)
- Load applied through spherical seats
|
Sakino and Tomii 1981
|
15.7-23.6
|
4.0-6.0 (a/D = 2.0-3.0)
|
N.A.
|
Tubes annealed
|
- Fixed-fixed (embedded in cross-beams)
- Load applied through spherical seats
|
Sakino and Ishibashi 1985
|
7.9-11.8
|
2.0-3.0 (a/D = 1.0-1.5)
|
N.A.
|
Tubes annealed
|
- Fixed-fixed (embedded in cross-beams)
- Load applied through spherical seats
|
Matsui and Tsuda 1987
|
29.5
|
5.0
|
N.A.
|
N.A.
|
Vertical cantilever:
fixed base, free end
|
Cai 1988
|
see L/D
|
1) <= 4.0
2) 3-50
3) ?
4) 4-22
5) 5-13
6) 9-19
7) 4-8
|
e / (concrete radius) = 0-1.28
|
N.A.
|
- Phases 1-6: pinned-pinned
- Phase 7: fixed cantilever
|
Prion and Boehme 1989
|
- Cols: 19.7-35.4
- Bms: 43.3,83.5
- Bmcols: 83.5
|
- Cols: 3.3-6
- Bms: 7.25, 14
- Bmcols: 14
|
3 bmcol tests:
0.43-0.59
|
N.A.
|
- Cols: fixed-fixed
- Bms, bmcols: pinned-pinned
|
Konno, Kai, and Nagashima 1990
|
66.9
|
6.8
|
N.A.
|
N.A.
|
Pinned-pinned
|
Huang, Huang, and Zhong 1991
|
35.4-65.4
|
5.45-17.5 (λ = 22-75)
|
N.A.
|
N.A.
|
- Base fixed, top fixed to movable frame
- Details sketchy
|
Ichinohe et al. 1991
|
35.4, 90.6
|
|
N.A.
|
Annealed specimens noted
|
Both pinned-pinned
|
Sato, Saito, and Suzuki 1991
|
43.3
|
7.33
|
N.A.
|
Annealed
|
- Pinned-pinned (pin & roller)
- Axial load applied thruplates welded to ends of specimen
|
Sugano, Nagashima, and Kei 1992
|
- 78.7 (circular)
- 66.9 (square)
|
- 6.67 (circular)
- 6.8 (square)
|
N.A.
|
N.A.
|
Pinned transverse supports
|
Kawaguchi et al. 1993
|
39.3 (1 m)
|
10
|
N.A.
|
N.A.
|
Fixed base, pinned top (roller)
|
Lu and Kennedy 1994
|
77.75-167.72
|
8.78-20
|
Pure bending
|
N.A.
|
Simply supported beam with load applied symmetrically at two points. Stiffeners under loads
|
Sakino 1995
|
12.75-53.15
|
3
|
N.A.
|
N.A.
|
Two loading plates welded to the ends
|
Fujimoto et al. 1996 & Inai et al. 2004
|
37.8-56.7
|
6
|
N.A.
|
N.A.
|
Fixed CFT columns attached to CFT stubs at ends to guarantee sufficient stiffness
|
Tsuda, Matsui, and Mino 1996
|
All noted are kL;
|
- 6, 9, 12, 18, 24
- 6, 9, 12, 18, 24
|
N.A.
|
N.A.
|
Col: Fixed base, unspecified connection at top (poss. free or pin)
|
El-Remaily et al. 1997
|
110.83
|
7.16
|
N.A.
|
N.A.
|
Pinned ends, rigid stub at the midheight
|
Zhang and Shahrooz 1997
|
143.98
|
14.4
|
N.A.
|
N.A.
|
Pinned ends through cylindrical bearings
|
Nakahara and Sakino 1998
|
23.62
|
3
|
N.A.
|
N.A.
|
- Cols: Two loading plates welded to the ends
- Bmcols: Two thick loading plates welded to the ends, two trapezoidal plates welded to the tension face at the ends
|
Nakahara and Sakino 2000a
Nakahara and Sakino 2000b
|
23.62
|
3
|
N.A.
|
Annealed
|
Two loading plates welded to the ends
|
Varma et al. 2000, 2001, 2002, 2004
|
48.03, 58.50, 60.00
|
4.00, 5.00, 4.87
|
N.A.
|
N.A.
|
- Col: Fixed
- Bmcol (m): Pinned ends through cylindrical bearings
- Bmcol (c): Fixed at base, not specified at top
|
Elchalakani, Zhao, and Grzebieta 2001
|
23.62, 31.49
|
5.41-23.68
|
N.A.
|
N.A.
|
Attached to rotational fixtures at each end
|
Elremaily and Azizinamini 2002
|
86
|
6.7
|
N.A.
|
N.A.
|
- Pinned-Pinned
- Both ends capped with rigid steel caps
|
Hsu and Yu 2003
|
118 (72.4 effective length)
|
10.7
|
N.A.
|
N.A.
|
- Fixed-free
- Bottom was rigidly clamped a stiffened base
|
Elchalakani, Zhao, and Grzebieta 2004
|
31.5 (length of pure bending)
|
7.3-13.1
|
Pure bending
|
N.A.
|
Attached to rotational fixtures at each end
|
Fujimoto et al. 2004
|
12.75-53.1
|
3.0
|
- N.A.: all circular, some square
- 1.77-11.8: some square
|
N.A.
|
Either pinned-pinned or fixed-free
|
Hardika and Gardner 2004
|
75
|
9.4
|
0.5 in between horizontal load and section centroid
|
N.A.
|
Fixed-free
|
Wheeler and Bridge 2004
|
149.6
|
9.4, 8.3
|
N.A.
|
N.A.
|
Pinned-pinned
|
Han and Yang 2005
|
59
|
|
N.A.
|
N.A.
|
Pinned-pinned, cylindrical bearings
|
Elchalakani and Zhao 2008
|
31.5
|
7.3-13.1
|
Pure bending
|
N.A.
|
Attached to rotational fixtures at each end
|
Reference
|
Tube Dimensions
|
Steel Properties
|
Concrete Properties
|
Furlong 1967
|
- ◌: diam. (D) □: depth (D) x width: 4.5, 5.0, 6.0 (circular) 4 × 4, 5 × 5 (square)
- Wall Thickness (t) (in): 0.061-0.189
- Diameter/thickness (D/t): 26.3-98.4
|
Seam-weld cold-rolled
Fy= 42.0-60.0 ksi (circular) 48.0-70.3 ksi (rect.)
|
f'c= 3.05-5.10 ksi (circular) 3.40-6.50 ksi (rect.)
|
Furlong 1968
|
- ◌: diam. (D) □: depth (D) x width: 1.0-4.74 (circular)
- Wall Thickness (t) (in): 0.064-0.465
- Diameter/thickness (D/t): 5.6-74.4
|
Seam-welded cold-rolled
Fy= 39.6-76.0 ksi
|
f'c= 2-5 ksi
|
Tomii and Sakino 1979 a & b
|
- ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
- Wall Thickness (t) (in): 0.164, 0.119, 0.089
- Diameter/thickness (D/t): 24, 33, 44
|
Mild cold-worked, welded, annealed
Fy= 28.7-50.2 ksi
|
f'c= 2.7-5.5 ksi
|
Tomii and Sakino 1979 c
|
- ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
- Wall Thickness (t) (in): 0.164, 0.119, 0.089
- Diameter/thickness (D/t): 24, 33, 44
|
Mild, cold-worked, welded, annealed
Fy= 28.2-44.9 ksi
|
f'c= 3.3-6.6 ksi
|
Sakino and Tomii 1981
|
- ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
- Wall Thickness (t) (in): 0.085, 0.088, 0.117, 0.166
- Diameter/thickness (D/t): 24, 34, 45, 46
|
Mild, cold-worked, welded, annealed
Fy= 42.1-44.9 ksi
|
f'c= 2.9-3.7 ksi
|
Sakino and Ishibashi 1985
|
- ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
- Wall Thickness (t) (in): 0.087, 0.117, 0.167
- Diameter/thickness (D/t): 24, 34, 45
|
Mild, cold-worked, welded, annealed
Fy= 41.8-45.8 ksi
|
f'c= 2.4-3.7 ksi
|
Matsui and Tsuda 1987
|
- ◌: diam. (D) □: depth (D) x width: 5.9 × 5.9 (square)
- Wall Thickness (t) (in): 0.063-0.125
- Diameter/thickness (D/t): 47-94
|
Mild-steel plates
Fy= 51.4-71.5 ksi
|
f'c= 4.6-6.0 ksi
|
Cai 1988
|
- ◌: diam. (D) □: depth (D) x width: see L/D
- Wall Thickness (t) (in): N.A.
- Diameter/thickness (D/t): N.A.
|
N.A.
|
N.A.
|
Prion and Boehme 1989
|
- ◌: diam. (D) □: depth (D) x width: 6.0 (circular)
- Wall Thickness (t) (in): 0.065
- Diameter/thickness (D/t): 92.0
|
Electrically welded long. seam
Fy= 36-48 ksi
|
f'c= 10.6-13.3 ksi
|
Konno, Kai, and Nagashima 1990
|
- ◌: diam. (D) □: depth (D) x width: 9.84 × 9.84 (square)
- Wall Thickness (t) (in): 0.178- 0.469
- Diameter/thickness (D/t): 21.0-55.0
|
Fy= 45.9-69.3
|
f'c= 4.38- 12.31 ksi
|
Huang, Huang, and Zhong 1991
|
- ◌: diam. (D) □: depth (D) x width: 3.75-6.50 (circular)
- Wall Thickness (t) (in): 0.079-0.197
- Diameter/thickness (D/t): 25.2-54.0 (As/Ac =0.074- 0.134)
|
Fy= 34.2-44.1 ksi
|
f'c= 3.96-5.32 ksi
|
Ichinohe et al. 1991
|
- ◌: diam. (D) □: depth (D) x width: 6.5, 11.8 (circular)
- Wall Thickness (t) (in): 0.167-0.461
- Diameter/thickness (D/t): 25.6-70.6
|
Some specimens annealed
Fy= 50.8-85.3 ksi
|
f'c= 9.0-9.6 ksi
|
Sato, Saito, and Suzuki 1991
|
- ◌: diam. (D) □: depth (D) x width: 5.91 (circular)
- Wall Thickness (t) (in): 0.315
- Diameter/thickness (D/t): 18.75
|
Annealed
Fy= 55.8 ksi
|
f'c= 5.15 ksi
|
Sugano, Nagashima, and Kei 1992
|
- ◌: diam. (D) □: depth (D) x width: 11.8 (circular) 9.84 × 9.84 (square)
- Wall Thickness (t) (in): 0.157-0.472
- Diameter/thickness (D/t): 25-75 (circular) 20.8-62.5 (square)
|
Fy= 47.9-72.1 ksi
|
f'c= 4.5-12.8 ksi
|
Kawaguchi et al. 1993
|
- ◌: diam. (D) □: depth (D) x width: 3.94 × 3.94 (square)
- Wall Thickness (t) (in): 0.118, 0.177
- Diameter/thickness (D/t): 22.2, 33.3
|
Cold-formed
Fy= 49.2 ksi
|
f'c= 3.1-3.6 ksi
|
Lu and Kennedy 1994
|
- ◌: diam. (D) □: depth (D) x width: 6.0 × 6.0 (square) 10.0 × 6.0 (rectangular)
- Wall Thickness (t) (in): 0.189, 0.252, 0.347
- Diameter/thickness (D/t): 16, 23.8, 26.7, 31.6, 39.6
|
Cold-formed
Fy= 50 ksi
|
f'c= 5.87-6.83 ksi
|
Sakino 1995
|
- ◌: diam. (D) □: depth (D) x width: 4.25-17.72 (circular)
- Wall Thickness (t) (in): 0.117, 0.179, 0.255
- Diameter/thickness (D/t): 26.9-152.0
|
Fy= 59.2, 93.7, 127.5 ksi
|
f'c=
|
Fujimoto et al. 1996 & Inai et al. 2004
|
- ◌: diam. (D) □: depth (D) x width: 9.45, 6.3 (circular) 8.27 × 8.27, 7.09 × 7.09 (square)
- Wall Thickness (t) (in): 0.177, 0.235, 0.354
- Diameter/thickness (D/t): Circular 17.8-53.3 Square 20.0-53.3
|
Cold-formed
Fy= 58.0, 85.6, 113.1 ksi
|
f'c= 5.80, 13.05 ksi
|
Tsuda, Matsui, and Mino 1996
|
- ◌: diam. (D) □: depth (D) x width: 6.51 (circular) 5.93 × 5.93 (square)
- Wall Thickness (t) (in): 0.165 (circular) 0.172 (square)
- Diameter/thickness (D/t): 39.6 (circular) 34.5 (square)
|
Mild steel;
Fy= STK 400: 51.5 ksi, STKR 400: 57.5 ksi
|
f'c= 5.04 ksi
|
El-Remaily et al. 1997
|
- ◌: diam. (D) □: depth (D) x width: 12.01 (circular)
- Wall Thickness (t) (in): 0.252, 0.374
- Diameter/thickness (D/t): 32, 48
|
Fy= 54
|
f'c= 10, 15 ksi
|
Zhang and Shahrooz 1997
|
- ◌: diam. (D) □: depth (D) x width: 10 × 10 (square)
- Wall Thickness (t) (in): 0.313
- Diameter/thickness (D/t): 32.0
|
Cold- formed
Fy= 53.7 ksi
|
f'c= 6.05 ksi
|
Nakahara and Sakino 1998
|
- ◌: diam. (D) □: depth (D) x width: 7.87 × 7.87 (square)
- Wall Thickness (t) (in): 0.122-0.252
- Diameter/thickness (D/t): 30, 60
|
Cold-formed channel sections
Fy= 45.0, 113.3 ksi
|
f'c= 17.26 ksi
|
Nakahara and Sakino 2000a
Nakahara and Sakino 2000b
|
- ◌: diam. (D) □: depth (D) x width: 7.87 × 7.87 (square)
- Wall Thickness (t) (in): 0.080, 0.167, 0.233
- Diameter/thickness (D/t): 33.7, 47.1, 98.0
|
Fy= 30.6, 36.7, 46.4 ksi
|
f'c= 6.90 ksi
|
Varma et al. 2000, 2001, 2002, 2004
|
- ◌: diam. (D) □: depth (D) x width: 12.01 × 12.01 (square)
- Wall Thickness (t) (in): 0.230- 0.350
- Diameter/thickness (D/t): 34.3-52.2
|
A500
A500
Fy= Grade B: 37.6, 68.3 ksi, Grade 80: 81.2, 95.7 ksi
|
f'c= 4.33 ksi
|
Elchalakani, Zhao, and Grzebieta 2001
|
- ◌: diam. (D) □: depth (D) x width: 1.33-4.37 (circular)
- Wall Thickness (t) (in): 0.039- 0.132
- Diameter/thickness (D/t): 12.8-109.9
|
Cold-formed
Fy= 52.9-66.7 ksi
|
f'c= 3.39 ksi
|
Elremaily and Azizinamini 2002
|
- ◌: diam. (D) □: depth (D) x width: 12.75
- Wall Thickness (t) (in): 0.25, 0.375
- Diameter/thickness (D/t): 34, 51
|
Fy= 54 ksi
|
f'c= 5.8-15.1 ksi
|
Hsu and Yu 2003
|
- ◌: diam. (D) □: depth (D) x width: 11 × 11
- Wall Thickness (t) (in): 0.236, 0.177, 0.126
- Diameter/thickness (D/t): 46.7, 62.2, 87.5
|
Cold bent JIS SS-400 plates
Fy= 46.5 ksi
|
f'c= 4.93 ksi
|
Elchalakani, Zhao, and Grzebieta 2004
|
- ◌: diam. (D) □: depth (D) x width: 2.4 – 4.3 (circular)
- Wall Thickness (t) (in): 0.027-0.123
- Diameter/thickness (D/t): 20-162
|
Cold formed, electric resistance welded
Fy= 60.6 ksi
|
f'c= 3.35 ksi
|
Fujimoto et al. 2004
|
- ◌: diam. (D) □: depth (D) x width: 4.25 – 14.2 (circular) 4.76 × 4.76 – 12.7 × 17.7 (square)
- Wall Thickness (t) (in): 0.116-0.255
- Diameter/thickness (D/t): 16.7-152
|
Cold formed plate
Circular: cold form and seam weld
Square: welding two channels
Fy= 38-121 ksi
|
f'c= 3.7-12.3 ksi
|
Hardika and Gardner 2004
|
- ◌: diam. (D) □: depth (D) x width: 8 × 8
- Wall Thickness (t) (in): 0.1875, 0.375
- Diameter/thickness (D/t): 21.3, 42.6
|
ASTM A 500 Grade C
Fy= 56-59 ksi
|
f'c= 5.8-14.9 ksi
|
Wheeler and Bridge 2004
|
- ◌: diam. (D) □: depth (D) x width: 15.98, 17.95
- Wall Thickness (t) (in): 0.25
- Diameter/thickness (D/t): 63.4, 71.3
|
Cold rolled with continuous seamless welds
Fy= 50.9 ksi
|
f'c= 5.8-8.1 ksi
|
Han and Yang 2005
|
- ◌: diam. (D) □: depth (D) x width: 4.25, 4.49
- Wall Thickness (t) (in): 0.157, 0.118
- Diameter/thickness (D/t): 27, 38
|
Fy= 51.6, 44.7 ksi
|
f'c= 3.2, 5.6 ksi
|
Elchalakani and Zhao 2008
|
- ◌: diam. (D) □: depth (D) x width: 2.4 – 4.3 (circular)
- Wall Thickness (t) (in): 0.035 – 0.121
- Diameter/thickness (D/t): 20-120
|
Cold formed (in some cases machined to achieve D/t)
Fy= 61.4 ksi
|
f'c= 3.35 ksi
|