In 2018 Prof. West won an NSF CAREER award for a $503,888 grant titled “CAREER: Predictive kinetic modeling of halogenated hydrocarbon combustion.”

Halogenated hydrocarbons (HHCs) are widely used as both refrigerants and fire suppressants. Driven by environmental and economic considerations, there is rapid innovation in the industry, but the next generation of HHC compounds raise fire safety concerns. Predicting the combustion behavior of these novel HHCs earlier in the design process will save much time, effort, and expense. The chemical kinetic models for describing HHC combustion are highly complex, comprising thousands of elementary reactions involving hundreds of chemical species. To effectively predict these combustion behaviors, we must automate the construction of kinetic models. This project will use a computational approach known as machine learning to help model these complex reacting systems. This breakthrough will enable us to develop an automated reaction mechanism generation tool to create detailed kinetic models for combustion of HHCs. The methodology proposed in this work are not only novel and necessary, but will be widely applicable in other aspects of automated mechanism generation. The integrated educational objective of this CAREER project is to develop a series of computational modules teaching students to solve problems throughout their chemical engineering curriculum.

The research approach is to extend and apply automated Reaction Mechanism Generator (RMG) software to create detailed kinetic models for combustion of any mix of hydrocarbons containing any combination of halogen atoms. Optimized decision-tree and novel convolutional neural network algorithms from the field of machine learning will be extended to enable the necessary restructuring of parameter estimation codes. Quantum chemistry calculations will be automated to supplement literature searches to generate the necessary training data. The model-generating tool will be validated against available experimental data from key example compounds, and used to explain the remarkable combustion behavior of these compounds. The educational program is aligned with the research, developing a series of computational modules that will be integrated into existing classes. These modules will teach students to use Python and SciPy to solve chemical engineering problems. The integration of teaching modules for scientific computing throughout the undergraduate chemical engineering curriculum will help prepare a generation of graduate engineers for a workplace in which data analysis, processing, and computation are increasingly important.

Project abstract at NSF

This entry was posted in Grants. Bookmark the permalink. Trackbacks are closed, but you can post a comment.

Post a Comment

Your email is never published nor shared. Required fields are marked *

You may use these HTML tags and attributes <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>


This site uses Akismet to reduce spam. Learn how your comment data is processed.